Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = peptidylarginine deiminase (PAD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1462 KiB  
Article
Targeting PAD4: A Promising Strategy to Combat β-Cell Loss in Type 1 Diabetes
by Hsu Lin Kang, András Szász, Zsuzsanna Valkusz, Tamás Várkonyi, Anikó Pósa and Krisztina Kupai
Int. J. Mol. Sci. 2025, 26(13), 6113; https://doi.org/10.3390/ijms26136113 - 25 Jun 2025
Viewed by 451
Abstract
Peptidylarginine deiminase 4 (PAD4) catalyzes protein citrullination, a post-translational modification implicated in type 1 diabetes mellitus (T1DM). This study examined PAD4 expression and activity in the pancreas of streptozotocin (STZ)-induced diabetic Wistar rats. Animals were divided into three groups: (A) STZ-induced diabetic rats [...] Read more.
Peptidylarginine deiminase 4 (PAD4) catalyzes protein citrullination, a post-translational modification implicated in type 1 diabetes mellitus (T1DM). This study examined PAD4 expression and activity in the pancreas of streptozotocin (STZ)-induced diabetic Wistar rats. Animals were divided into three groups: (A) STZ-induced diabetic rats (60 mg/kg, i.p.), (B) non-diabetic controls, and (C) diabetic rats treated with Cl-amidine (5 mg/kg), a pan-PAD inhibitor, from week six post-induction. Analyses included PAD4 mRNA and protein expression, citrullinated histone H3 (CitH3), calcium concentration, and neutrophil elastase activity. Diabetic rats exhibited increased PAD4 expression, CitH3 levels, and NETosis markers, alongside reduced pancreatic calcium, suggesting calcium consumption during PAD4 activation. Cl-amidine treatment attenuated NETosis. These results implicate PAD4 in T1DM pathogenesis via NETosis and support the utility of STZ-induced diabetic rats as a model for PAD4-targeted studies. Cl-amidine may represent a promising therapeutic approach to reduce pancreatic inflammation in T1DM. Full article
Show Figures

Figure 1

21 pages, 744 KiB  
Review
CitH3, a Druggable Biomarker for Human Diseases Associated with Acute NETosis and Chronic Immune Dysfunction
by Yuchen Chen, Zoe Ann Tetz, Xindi Zeng, Sophia Jihye Go, Wenlu Ouyang, Kyung Eun Lee, Tao Dong, Yongqing Li and Jianjie Ma
Pharmaceutics 2025, 17(7), 809; https://doi.org/10.3390/pharmaceutics17070809 - 23 Jun 2025
Viewed by 659
Abstract
Neutrophils are essential components of innate immunity, executing a range of effector functions including phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs). A key hallmark of NET formation is the presence of citrullinated histone H3 (CitH3), produced by peptidylarginine deiminases (PAD2 [...] Read more.
Neutrophils are essential components of innate immunity, executing a range of effector functions including phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs). A key hallmark of NET formation is the presence of citrullinated histone H3 (CitH3), produced by peptidylarginine deiminases (PAD2 and PAD4) to facilitate chromatin decondensation. While NETs play critical antimicrobial roles, excessive or dysregulated NET formation, termed NETosis, can drive tissue injury, chronic inflammation, and organ dysfunction across a wide spectrum of diseases. Beyond its structural role within NETs, CitH3 acts as a damage-associated molecular pattern (DAMP), amplifying immune activation and pathological inflammation. Elevated CitH3 levels have been identified as biomarkers in sepsis, viral infections, ischemia–reperfusion injury, organ transplantation, diabetic wounds, autoimmune diseases, and cancer. Despite increasing recognition of CitH3’s pathogenic contributions, its therapeutic potential remains largely untapped. This review summarizes recent advances in understanding the role of CitH3 in NETosis and immune dysfunction, highlights emerging strategies targeting CitH3 therapeutically, and identifies critical knowledge gaps. Collectively, these insights position CitH3 as a promising druggable biomarker for the diagnosis, prognosis, and treatment of acute and chronic inflammatory diseases. Full article
Show Figures

Figure 1

27 pages, 6113 KiB  
Article
Peptidylarginine Deiminase 4 Deficiency Suppresses Neutrophil Extracellular Trap Formation and Ameliorates Elastase-Induced Emphysema in Mouse Lung
by Megumi Katsumata, Jun Ikari, Akira Urano, Eiko Suzuki, Kazuto Kugou, Yoshinori Hasegawa, Koichiro Tatsumi and Takuji Suzuki
Int. J. Mol. Sci. 2025, 26(12), 5573; https://doi.org/10.3390/ijms26125573 - 11 Jun 2025
Viewed by 724
Abstract
Neutrophil extracellular traps (NETs) are associated with the extracellular release of nuclear chromatin decorated with cytoplasmic proteins. Excessive release of NETs has been reported in chronic lung diseases, including chronic obstructive pulmonary disease (COPD). However, the role of NETs in the pathogenesis of [...] Read more.
Neutrophil extracellular traps (NETs) are associated with the extracellular release of nuclear chromatin decorated with cytoplasmic proteins. Excessive release of NETs has been reported in chronic lung diseases, including chronic obstructive pulmonary disease (COPD). However, the role of NETs in the pathogenesis of COPD remains unclear. Peptidylarginine deaminase 4 (PAD4) contributes to NET formation. Therefore, in an elastase (ELS)-induced emphysema mouse model, we examined the role of PAD4 using Padi4 gene knockout (KO) mice. First, we confirmed that ELS induced NET formation in the parenchyma of the lungs. PAD4 deficiency suppressed ELS-induced NET expression and tended to ameliorate the lung tissue injury. The cellular profile of bronchoalveolar lavage fluid (BALF) did not differ between the two groups. Additionally, PAD4 deficiency ameliorated emphysema and apoptosis in lung cells. Finally, we examined the effects of PAD4 on comprehensive gene expression signatures using RNA sequencing. Enrichment analysis of the transcriptomic data revealed that the expression of several genes associated with COPD pathogenesis was altered in the KO mice. Overall, the results suggest that PAD4 deficiency improves NET formation and emphysema in the lungs; this pathway can be a potential therapeutic target for the treatment of COPD. Full article
Show Figures

Figure 1

12 pages, 1489 KiB  
Article
IL-6R Signaling Is Associated with PAD4 and Neutrophil Extracellular Trap Formation in Patients with STEMI
by Kristine Mørk Kindberg, Jostein Nordeng, Miriam Sjåstad Langseth, Hossein Schandiz, Borghild Roald, Svein Solheim, Ingebjørg Seljeflot, Mathis Korseberg Stokke and Ragnhild Helseth
Int. J. Mol. Sci. 2025, 26(11), 5348; https://doi.org/10.3390/ijms26115348 - 2 Jun 2025
Viewed by 607
Abstract
Inflammation contributes to myocardial injury in ST-elevation myocardial infarction (STEMI). Interleukin-6 receptor (IL-6R) inhibition has been shown to mitigate myocardial injury and reduce levels of the prothrombotic and inflammatory mediator, neutrophil extracellular traps (NETs). The enzyme peptidylarginine deiminase 4 (PAD4) is central in [...] Read more.
Inflammation contributes to myocardial injury in ST-elevation myocardial infarction (STEMI). Interleukin-6 receptor (IL-6R) inhibition has been shown to mitigate myocardial injury and reduce levels of the prothrombotic and inflammatory mediator, neutrophil extracellular traps (NETs). The enzyme peptidylarginine deiminase 4 (PAD4) is central in NET formation. We hypothesized that PAD4 links IL-6R activation and NET formation. Methods: We conducted thrombus aspiration and peripheral blood sampling in 33 STEMI patients. In thrombi and leukocytes, we quantified the mRNA of IL-6, IL-6R, and PAD4. In peripheral blood, the protein levels of IL-6, IL-6R, PAD4, dsDNA, H3Cit, MPO-DNA, and troponin T were quantified. Results: In thrombi and circulating leukocytes, PAD4 mRNA was associated with IL-6R mRNA (thrombi: β = 0.34, 95% CI [0.16–0.53], p = 0.001, circulating leukocytes: β = 0.92, 95% CI [0.07–1.77], p = 0.036). There were no correlations between PAD4 and IL-6 in thrombi and leukocytes. The protein levels of IL-6R were associated with the NET marker H3Cit (rs = 0.40, p = 0.02). In thrombi, PAD4 mRNA was associated with high levels of troponin T (β = 1.15 95% CI [0.27–2.04], p = 0.013). Conclusion: We demonstrate an association between PAD4, IL-6R, and troponin release in STEMI patients. Our findings indicate a PAD4-mediated connection between IL-6R and NET formation and highlight PAD4 as a potential treatment target for mitigating inflammation and myocardial injury in STEMI. Full article
(This article belongs to the Special Issue Molecular Pharmacology and Interventions in Cardiovascular Disease)
Show Figures

Graphical abstract

24 pages, 3715 KiB  
Article
Placental Protein Citrullination Signatures Are Modified in Early- and Late-Onset Fetal Growth Restriction
by Owen R. Vaughan, Kasia Maksym, Sara Hillman, Rebecca N. Spencer, Mariya Hristova, Anna L. David and Sigrun Lange
Int. J. Mol. Sci. 2025, 26(9), 4247; https://doi.org/10.3390/ijms26094247 - 29 Apr 2025
Viewed by 822
Abstract
Fetal growth restriction (FGR) is an obstetric condition most frequently caused by placental dysfunction. It is a major cause of perinatal morbidity with limited treatment options, so identifying the underpinning mechanisms is important. Peptidylarginine deiminases (PADs) are calcium-activated enzymes that mediate post-translational citrullination [...] Read more.
Fetal growth restriction (FGR) is an obstetric condition most frequently caused by placental dysfunction. It is a major cause of perinatal morbidity with limited treatment options, so identifying the underpinning mechanisms is important. Peptidylarginine deiminases (PADs) are calcium-activated enzymes that mediate post-translational citrullination (deimination) of proteins, through conversion of arginine to citrulline. Protein citrullination leads to irreversible changes in protein structure and function and is implicated in many pathobiological processes. Whether placental protein citrullination occurs in FGR is poorly understood. We assessed protein citrullination and PAD isozyme abundance (PAD1, 2, 3, 4 and 6) in human placental samples from pregnancies complicated by early- and late-onset FGR, compared to appropriate-for-gestational-age (AGA) controls. Proteomic mass spectrometry demonstrated that the placental citrullinome profile changed in both early- and late-onset FGR, with 112 and 345 uniquely citrullinated proteins identified in early- and late-onset samples, respectively. Forty-four proteins were citrullinated only in control AGA placentas. The proteins that were uniquely citrullinated in FGR placentas were enriched for gene ontology (GO) terms related to neurological, developmental, immune and metabolic pathways. A greater number of GO and human phenotype pathways were functionally enriched for citrullinated proteins in late- compared with early-onset FGR. Correspondingly, late-onset but not early-onset FGR was associated with significantly increased placental abundance of PAD2 and citrullinated histone H3, determined by Western blotting. PAD3 was downregulated in early-onset FGR while abundance of PAD 1, 4 and 6 was less altered in FGR. Our findings show that placental protein citrullination is altered in FGR placentas, potentially contributing to the pathobiology of placental dysfunction. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

31 pages, 4060 KiB  
Article
Brain-Region-Specific Differences in Protein Citrullination/Deimination in a Pre-Motor Parkinson’s Disease Rat Model
by Audrey Mercer, Marco Sancandi, Amy Maclatchy and Sigrun Lange
Int. J. Mol. Sci. 2024, 25(20), 11168; https://doi.org/10.3390/ijms252011168 - 17 Oct 2024
Cited by 3 | Viewed by 2286
Abstract
The detection of early molecular mechanisms and potential biomarkers in Parkinson’s disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. [...] Read more.
The detection of early molecular mechanisms and potential biomarkers in Parkinson’s disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. The current study assessed brain-region-specific citrullinated protein targets and their associated protein–protein interaction networks alongside PAD isozymes in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor PD. Six brain regions (cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb) were compared between controls/shams and the pre-motor PD model. For all brain regions, there was a significant difference in citrullinated protein IDs between the PD model and the controls. Citrullinated protein hits were most abundant in cortex and hippocampus, followed by cerebellum, midbrain, olfactory bulb and striatum. Citrullinome-associated pathway enrichment analysis showed correspondingly considerable differences between the six brain regions; some were overlapping for controls and PD, some were identified for the PD model only, and some were identified in control brains only. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways identified in PD brains only were associated with neurological, metabolic, immune and hormonal functions and included the following: “Axon guidance”; “Spinocerebellar ataxia”; “Hippo signalling pathway”; “NOD-like receptor signalling pathway”; “Phosphatidylinositol signalling system”; “Rap1 signalling pathway”; “Platelet activation”; “Yersinia infection”; “Fc gamma R-mediated phagocytosis”; “Human cytomegalovirus infection”; “Inositol phosphate metabolism”; “Thyroid hormone signalling pathway”; “Progesterone-mediated oocyte maturation”; “Oocyte meiosis”; and “Choline metabolism in cancer”. Some brain-region-specific differences were furthermore observed for the five PAD isozymes (PADs 1, 2, 3, 4 and 6), with most changes in PAD 2, 3 and 4 when comparing control and PD brain regions. Our findings indicate that PAD-mediated protein citrullination plays roles in metabolic, immune, cell signalling and neurodegenerative disease-related pathways across brain regions in early pre-motor stages of PD, highlighting PADs as targets for future therapeutic avenues. Full article
(This article belongs to the Special Issue Molecular Research in Parkinson's Disease)
Show Figures

Figure 1

18 pages, 1603 KiB  
Article
Impaired Periodontitis-Induced Cytokine Production by Peripheral Blood Monocytes and Myeloid Dendritic Cells in Patients with Rheumatoid Arthritis: A Case–Control Study
by Daniela S. Silva, Paula Laranjeira, Ana Silva, Isabel Silva, Marta Kaminska, Piotr Mydel, Charlotte de Vries, Karin Lundberg, José António P. da Silva, Isabel P. Baptista and Artur Paiva
J. Clin. Med. 2024, 13(17), 5297; https://doi.org/10.3390/jcm13175297 - 6 Sep 2024
Cited by 1 | Viewed by 1753
Abstract
Background: Immune cells from rheumatoid arthritis (RA) patients display a reduced in vitro response to Porphyromonas gingivalis (P. gingivalis), which may have functional immune consequences. The aim of this study was to characterize, by flow cytometry, the frequency/activity of monocytes [...] Read more.
Background: Immune cells from rheumatoid arthritis (RA) patients display a reduced in vitro response to Porphyromonas gingivalis (P. gingivalis), which may have functional immune consequences. The aim of this study was to characterize, by flow cytometry, the frequency/activity of monocytes and naturally occurring myeloid dendritic cells (mDCs) in peripheral blood samples from patients with periodontitis and patients with periodontitis and RA. Methods: The relative frequency of monocytes and mDCs in the whole blood, the frequency of these cells producing TNFα or IL-6 and the protein expression levels for each cytokine, before and after stimulation with lipopolysaccharide (LPS) from Escherichia coli plus interferon-γ (IFN-γ), were assessed by flow cytometry, in peripheral blood samples from 10 healthy individuals (HEALTHY), 10 patients with periodontitis (PERIO) and 17 patients with periodontitis and RA (PERIO+RA). Results: The frequency of monocytes and mDCs producing IL-6 or TNF-α and the expression of IL-6 and TNF-α in the PERIO group were generally higher. Within the PERIO+RA group, P. gingivalis and related antibodies were negatively correlated with the monocyte and mDC expression of IL-6. A subgroup of the PERIO+RA patients that displayed statistically significantly lower frequencies of monocytes producing IL-6 after activation presented statistically significantly higher peptidylarginine deiminase (PAD)2/4 activity, anti-arg-gingipain (RgpB) IgG levels, mean probing depth (PD), periodontal inflamed surface area (PISA) and bleeding on probing (BoP). Conclusions: In the patients with PERIO+RA, innate immune cells seemed to produce lower amounts of pro-inflammatory cytokines, which are correlated with worse periodontitis-related clinical and microbiological parameters. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

15 pages, 4321 KiB  
Article
Protein Citrullination by Peptidyl Arginine Deiminase/Arginine Deiminase Homologs in Members of the Human Microbiota and Its Recognition by Anti-Citrullinated Protein Antibodies
by María-Elena Pérez-Pérez, Enrique Nieto-Torres, Juan-José Bollain-y-Goytia and Lucía Delgadillo-Ruíz
Int. J. Mol. Sci. 2024, 25(10), 5192; https://doi.org/10.3390/ijms25105192 - 10 May 2024
Cited by 5 | Viewed by 2538
Abstract
The human microbiome exists throughout the body, and it is essential for maintaining various physiological processes, including immunity, and dysbiotic events, which are associated with autoimmunity. Peptidylarginine deiminase (PAD) enzymes can citrullinate self-proteins related to rheumatoid arthritis (RA) that induce the production of [...] Read more.
The human microbiome exists throughout the body, and it is essential for maintaining various physiological processes, including immunity, and dysbiotic events, which are associated with autoimmunity. Peptidylarginine deiminase (PAD) enzymes can citrullinate self-proteins related to rheumatoid arthritis (RA) that induce the production of anti-citrullinated protein antibodies (ACPAs) and lead to inflammation and joint damage. The present investigation was carried out to demonstrate the expression of homologs of PADs or arginine deiminases (ADs) and citrullinated proteins in members of the human microbiota. To achieve the objective, we used 17 microbial strains and specific polyclonal antibodies (pAbs) of the synthetic peptide derived from residues 100–200 of human PAD2 (anti-PAD2 pAb), and the recombinant fragment of amino acids 326 and 611 of human PAD4 (anti-PAD4 pAb), a human anti-citrulline pAb, and affinity ACPAs of an RA patient. Western blot (WB), enzyme-linked immunosorbent assay (ELISA), elution, and a test with Griess reagent were used. This is a cross-sectional case–control study on patients diagnosed with RA and control subjects. Inferential statistics were applied using the non-parametric Kruskal–Wallis test and Mann–Whitney U test generated in the SPSS program. Some members of phyla Firmicutes and Proteobacteria harbor homologs of PADs/ADs and citrullinated antigens that are reactive to the ACPAs of RA patients. Microbial citrullinome and homolog enzymes of PADs/ADs are extensive in the human microbiome and are involved in the production of ACPAs. Our findings suggest a molecular link between microorganisms of a dysbiotic microbiota and RA pathogenesis. Full article
(This article belongs to the Special Issue Advances in Molecular Research on Autoimmune Diseases)
Show Figures

Figure 1

14 pages, 5338 KiB  
Article
Vesicular Messages from Dental Biofilms for Neutrophils
by Ljubomir Vitkov, Jelena Krunić, Johanna Dudek, Madhusudhan Reddy Bobbili, Johannes Grillari, Bernhard Hausegger, Irena Mladenović, Nikola Stojanović, Wolf Dietrich Krautgartner, Hannah Oberthaler, Christine Schauer, Martin Herrmann, Jeeshan Singh, Bernd Minnich and Matthias Hannig
Int. J. Mol. Sci. 2024, 25(6), 3314; https://doi.org/10.3390/ijms25063314 - 14 Mar 2024
Cited by 2 | Viewed by 2257
Abstract
The encounter between dental biofilm and neutrophils in periodontitis remains elusive, although it apparently plays a crucial role in the periodontal pathology and constitutes a key topic of periodontology. Dental biofilm and neutrophils were isolated from orally healthy persons and patients with periodontitis. [...] Read more.
The encounter between dental biofilm and neutrophils in periodontitis remains elusive, although it apparently plays a crucial role in the periodontal pathology and constitutes a key topic of periodontology. Dental biofilm and neutrophils were isolated from orally healthy persons and patients with periodontitis. We investigated biofilm and its particle-shedding phenomenon with electron microscopy and nanoparticle tracking analysis (NTA); biofilm shedding–neutrophil interactions were examined ex vivo with epi-fluorescence microscopy. For this purpose, we used acellular dental biofilm shedding, purified lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA) as activators, and the interleukin 8 receptor beta (CXCR2) inhibitor and the anti-interleukin 8 receptor alpha (CXCR1) antibody as modulators. The shedding of acellular dental biofilms overwhelmingly consists of bacterial extracellular vesicles (BEVs). The latter induced the moderate formation of neutrophil extracellular traps (NETs) in orally healthy subjects and a strong formation in patients with periodontitis. A CXCR2 inhibitor and an anti-CXCR1 antibody had a minor effect on NET formation. Neutrophils from patients with periodontitis exhibited NET hyper-responsiveness. BEVs were stronger inducers of NET formation than purified LPS and PMA. A plateau of neutrophil responsiveness is reached above the age of 40 years, indicating the abrupt switch of maladaptive trained immunity (TI) into the activated modus. Our results suggest that dental biofilms consist of and disseminate immense amounts of outer membrane vesicles (OMVs), which initiate NET formation via a non-canonical cytosolic LPS/caspase-4/11/Gasdermin D pathway. This modus of NET formation is independent of neutrophil elastase (NE), myeloperoxidase (MPO), peptidylarginine deiminase 4 (PAD4), and toll-like receptors (TLR). In periodontitis, the hyper-responsiveness of neutrophils to BEVs and the increased NET formation appear to be a consequence of TI. Full article
Show Figures

Figure 1

18 pages, 2811 KiB  
Article
GnRH Induces Citrullination of the Cytoskeleton in Murine Gonadotrope Cells
by Elizabeth B. Quigley, Stanley B. DeVore, Shaihla A. Khan, Zachary M. Geisterfer, Heather M. Rothfuss, Ari O. Sequoia, Paul R. Thompson, Jesse C. Gatlin, Brian D. Cherrington and Amy M. Navratil
Int. J. Mol. Sci. 2024, 25(6), 3181; https://doi.org/10.3390/ijms25063181 - 10 Mar 2024
Cited by 2 | Viewed by 1702
Abstract
Peptidylarginine deiminases (PADs or PADIs) catalyze the conversion of positively charged arginine to neutral citrulline, which alters target protein structure and function. Our previous work established that gonadotropin-releasing hormone agonist (GnRHa) stimulates PAD2-catalyzed histone citrullination to epigenetically regulate gonadotropin gene expression in the [...] Read more.
Peptidylarginine deiminases (PADs or PADIs) catalyze the conversion of positively charged arginine to neutral citrulline, which alters target protein structure and function. Our previous work established that gonadotropin-releasing hormone agonist (GnRHa) stimulates PAD2-catalyzed histone citrullination to epigenetically regulate gonadotropin gene expression in the gonadotrope-derived LβT2 cell line. However, PADs are also found in the cytoplasm. Given this, we used mass spectrometry (MS) to identify additional non-histone proteins that are citrullinated following GnRHa stimulation and characterized the temporal dynamics of this modification. Our results show that actin and tubulin are citrullinated, which led us to hypothesize that GnRHa might induce their citrullination to modulate cytoskeletal dynamics and architecture. The data show that 10 nM GnRHa induces the citrullination of β-actin, with elevated levels occurring at 10 min. The level of β-actin citrullination is reduced in the presence of the pan-PAD inhibitor biphenyl-benzimidazole-Cl-amidine (BB-ClA), which also prevents GnRHa-induced actin reorganization in dispersed murine gonadotrope cells. GnRHa induces the citrullination of β-tubulin, with elevated levels occurring at 30 min, and this response is attenuated in the presence of PAD inhibition. To examine the functional consequence of β-tubulin citrullination, we utilized fluorescently tagged end binding protein 1 (EB1-GFP) to track the growing plus end of microtubules (MT) in real time in transfected LβT2 cells. Time-lapse confocal microscopy of EB1-GFP reveals that the MT average lifetime increases following 30 min of GnRHa treatment, but this increase is attenuated by PAD inhibition. Taken together, our data suggest that GnRHa-induced citrullination alters actin reorganization and MT lifetime in gonadotrope cells. Full article
(This article belongs to the Special Issue Peptide Hormones in Human Diseases and Health)
Show Figures

Figure 1

11 pages, 2262 KiB  
Article
Inhibiting Neutrophil Extracellular Traps Protects against Ultraviolet B-Induced Skin Damage: Effects of Hochu-ekki-to and DNase I
by Issei Inaba, Keiichi Hiramoto, Yurika Yamate, Akihiro Morita, Tomonari Tsutsumi, Hiroyuki Yasuda and Eisuke F. Sato
Int. J. Mol. Sci. 2024, 25(3), 1723; https://doi.org/10.3390/ijms25031723 - 31 Jan 2024
Cited by 2 | Viewed by 2843
Abstract
UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To [...] Read more.
UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice. Full article
(This article belongs to the Special Issue Neutrophil in Cell Biology and Diseases 2.0)
Show Figures

Figure 1

24 pages, 3862 KiB  
Article
The Extracellular Vesicle Citrullinome and Signature in a Piglet Model of Neonatal Seizures
by Subhabrata Mitra, Kelly Harvey-Jones, Igor Kraev, Vinita Verma, Christopher Meehan, Alison Mintoft, Georgina Norris, Ellie Campbell, Katie Tucker, Nicola J. Robertson, Mariya Hristova and Sigrun Lange
Int. J. Mol. Sci. 2023, 24(14), 11529; https://doi.org/10.3390/ijms241411529 - 16 Jul 2023
Cited by 2 | Viewed by 4068
Abstract
Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, [...] Read more.
Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the peptidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma- and CSF-EVs to monitor responses to treatment. Full article
(This article belongs to the Topic Animal Models of Human Disease)
Show Figures

Figure 1

12 pages, 1562 KiB  
Article
Mammalian Glycosylation Patterns Protect Citrullinated Chemokine MCP-1/CCL2 from Partial Degradation
by Olexandr Korchynskyi, Ken Yoshida, Nataliia Korchynska, Justyna Czarnik-Kwaśniak, Paul P. Tak, Ger J. M. Pruijn, Takeo Isozaki, Jeffrey H. Ruth, Phillip L. Campbell, M. Asif Amin and Alisa E. Koch
Int. J. Mol. Sci. 2023, 24(3), 1862; https://doi.org/10.3390/ijms24031862 - 18 Jan 2023
Cited by 3 | Viewed by 3022
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemotactic agent for monocytes, primarily produced by macrophages and endothelial cells. Significantly elevated levels of MCP-1/CCL2 were found in synovial fluids of patients with rheumatoid arthritis (RA), compared to osteoarthritis or other arthritis patients. Several studies [...] Read more.
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemotactic agent for monocytes, primarily produced by macrophages and endothelial cells. Significantly elevated levels of MCP-1/CCL2 were found in synovial fluids of patients with rheumatoid arthritis (RA), compared to osteoarthritis or other arthritis patients. Several studies suggested an important role for MCP-1 in the massive inflammation at the damaged joint, in part due to its chemotactic and angiogenic effects. It is a known fact that the post-translational modifications (PTMs) of proteins have a significant impact on their properties. In mammals, arginine residues within proteins can be converted into citrulline by peptidylarginine deiminase (PAD) enzymes. Anti-citrullinated protein antibodies (ACPA), recognizing these PTMs, have become a hallmark for rheumatoid arthritis (RA) and other autoimmune diseases and are important in diagnostics and prognosis. In previous studies, we found that citrullination converts the neutrophil attracting chemokine neutrophil-activating peptide 78 (ENA-78) into a potent macrophage chemoattractant. Here we report that both commercially available and recombinant bacterially produced MCP-1/CCL2 are rapidly (partially) degraded upon in vitro citrullination. However, properly glycosylated MCP-1/CCL2 produced by mammalian cells is protected against degradation during efficient citrullination. Site-directed mutagenesis of the potential glycosylation site at the asparagine-14 residue within human MCP-1 revealed lower expression levels in mammalian expression systems. The glycosylation-mediated recombinant chemokine stabilization allows the production of citrullinated MCP-1/CCL2, which can be effectively used to calibrate crucial assays, such as modified ELISAs. Full article
(This article belongs to the Special Issue Research of Pathogenesis and Novel Therapeutics in Arthritis 3.0)
Show Figures

Graphical abstract

14 pages, 3820 KiB  
Communication
Differential, Stage Dependent Detection of Peptidylarginine Deiminases and Protein Deimination in Lewy Body Diseases—Findings from a Pilot Study
by Audrey Mercer, Zane Jaunmuktane, Mariya Hristova and Sigrun Lange
Int. J. Mol. Sci. 2022, 23(21), 13117; https://doi.org/10.3390/ijms232113117 - 28 Oct 2022
Cited by 3 | Viewed by 2839
Abstract
Over 10 million people worldwide live with Parkinson’s disease (PD) and 4% of affected people are diagnosed before the age of 50. Research on early PD-related pathways is therefore of considerable importance. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that, through [...] Read more.
Over 10 million people worldwide live with Parkinson’s disease (PD) and 4% of affected people are diagnosed before the age of 50. Research on early PD-related pathways is therefore of considerable importance. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that, through post-translational deimination of arginine to citrulline, contribute to changes in protein function, including in pathological processes. Recent studies have highlighted roles for PADs in a range of neurological disorders including PD, but overall, investigations on PADs in Lewy body disease (LBD), including PD, are still scarce. Hence, the current pilot study aimed at performing an immunohistochemistry screen of post-mortem human brain sections from Braak stages 4-6 from PD patients, as well as patients with incidental LBD (ILBD). We assessed differences in PAD isozyme detection (assessing all five PADs), in total protein deimination/citrullination and histone H3 deimination—which is an indicator of epigenetic changes and extracellular trap formation (ETosis), which can elicit immune responses and has involvement in pathogenic conditions. The findings of our pilot study indicate that PADs and deimination are increased in cingulate cortex and hippocampus, particularly in earlier stages of the disease. PAD2 and PAD3 were the most strongly upregulated PAD isozymes, with some elevation also observed for PAD1, while PAD4 and PAD6 increase was less marked in PD brains. Total protein deimination and histone H3 deimination were furthermore increased in PD brains, with a considerable increase at earlier Braak stages, compared with controls. Our findings point to a significant contribution of PADs, which may further aid early disease biomarker discovery, in PD and other LBDs. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

12 pages, 960 KiB  
Review
Are Viral Infections Key Inducers of Autoimmune Diseases? Focus on Epstein–Barr Virus
by Masami Takei, Noboru Kitamura, Yosuke Nagasawa, Hiroshi Tsuzuki, Mitsuhiro Iwata, Yasuko Nagatsuka, Hideki Nakamura, Kenichi Imai and Shigeyoshi Fujiwara
Viruses 2022, 14(9), 1900; https://doi.org/10.3390/v14091900 - 27 Aug 2022
Cited by 17 | Viewed by 3767
Abstract
It is generally accepted that certain viral infections can trigger the development of autoimmune diseases. However, the exact mechanisms by which these viruses induce autoimmunity are still not understood. In this review, we first describe hypothetical mechanisms by which viruses induce some representative [...] Read more.
It is generally accepted that certain viral infections can trigger the development of autoimmune diseases. However, the exact mechanisms by which these viruses induce autoimmunity are still not understood. In this review, we first describe hypothetical mechanisms by which viruses induce some representative autoimmune diseases. Then, we focus on Epstein–Barr virus (EBV) and discuss its role in the pathogenesis of rheumatoid arthritis (RA). The discussion is mainly based on our own previous findings that (A) EBV DNA and its products EBV-encoded small RNA (EBER) and latent membrane protein 1 (LMP1) are present in the synovial lesions of RA, (B) mRNA expression of the signaling lymphocytic activation molecule-associated protein (SAP)/SH2D1A gene that plays a critical role in cellular immune responses to EBV is reduced in the peripheral T cells of patients with RA, and (C) EBV infection of mice reconstituted with human immune system components (humanized mice) induced erosive arthritis that is pathologically similar to RA. Additionally, environmental factors may contribute to EBV reactivation as follows: Porphyromonas gingivalis peptidylarginine deiminase (PAD), an enzyme required for citrullination, engenders antigens leading to the production of citrullinated peptides both in the gingiva and synovium. Anti-citrullinated peptides autoantibody is an important marker for diagnosis and disease activity of RA. These findings, as well as various results obtained by other researchers, strongly suggest that EBV is directly involved in the pathogenesis of RA, a typical autoimmune disease. Full article
(This article belongs to the Special Issue Viral Infection and Autoimmune Diseases)
Show Figures

Figure 1

Back to TopTop