Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (189)

Search Parameters:
Keywords = pentacyclic triterpenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2509 KiB  
Article
Semi-Synthesis, Anti-Leukemia Activity, and Docking Study of Derivatives from 3α,24-Dihydroxylup-20(29)-en-28-Oic Acid
by Mario J. Noh-Burgos, Sergio García-Sánchez, Fernando J. Tun-Rosado, Antonieta Chávez-González, Sergio R. Peraza-Sánchez and Rosa E. Moo-Puc
Molecules 2025, 30(15), 3193; https://doi.org/10.3390/molecules30153193 - 30 Jul 2025
Viewed by 340
Abstract
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among [...] Read more.
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among the five derivatives obtained, 3α,24-dihydroxy-30-oxolup-20(29)-en-28-oic acid (T1c) exhibited the highest activity, with an IC50 value of 12.90 ± 0.1 µM against THP-1 cells. T1c significantly reduced cell viability in both acute lymphoblastic leukemia (CCRF-CEM, REH, JURKAT, and MOLT-4) and acute myeloid leukemia (THP-1) cell lines, inducing apoptosis after 48 h of treatment, while showing minimal cytotoxicity toward normal mononuclear cells (MNCs). In silico molecular docking studies were conducted against three key protein targets: BCL-2 (B-cell lymphoma 2), EGFR (epidermal growth factor receptor, tyrosine kinase domain), and FLT3 (FMS-like tyrosine kinase 3). The lowest binding energies (kcal/mol) observed were as follows: T1–BCL-2: −10.12, EGFR: −12.75, FLT3: −14.05; T1c–BCL-2: −10.23, EGFR: −14.50, FLT3: −14.07; T2–BCL-2: −11.59, EGFR: −15.00, FLT3: −14.03. These findings highlight T1c as a promising candidate in the search for anti-leukemic drugs which deserves further study. Full article
(This article belongs to the Special Issue Synthesis and Derivatization of Heterocyclic Compounds)
Show Figures

Graphical abstract

17 pages, 2075 KiB  
Article
Chemical Profiles and Nitric Oxide Inhibitory Activities of the Copal Resin and Its Volatile Fraction of Bursera bipinnata
by Silvia Marquina, Mayra Antunez-Mojica, Judith González-Christen, Antonio Romero-Estrada, Fidel Ocampo-Bautista, Ninfa Yaret Nolasco-Quintana, Araceli Guerrero-Alonso and Laura Alvarez
Forests 2025, 16(7), 1144; https://doi.org/10.3390/f16071144 - 11 Jul 2025
Viewed by 381
Abstract
Bursera bipinnata (DC.) Engl. (B. bipinnata), commonly known as “copal chino,” is a widely distributed Mexican tree found in transitional zones between pine-oak and deciduous forests. It is valued for its high-quality copal resin, traditionally used in ceremonies and offerings. Additionally, B. bipinnata [...] Read more.
Bursera bipinnata (DC.) Engl. (B. bipinnata), commonly known as “copal chino,” is a widely distributed Mexican tree found in transitional zones between pine-oak and deciduous forests. It is valued for its high-quality copal resin, traditionally used in ceremonies and offerings. Additionally, B. bipinnata is recognized for its significant value in traditional medicine, particularly in treating ailments associated with inflammation. In this work, the inhibition of nitric oxide (NO) production of the volatile fraction and resin of B. bipinnata in LPS-stimulated RAW 264.7 macrophage cells were demonstrated. In contrast, the volatile fraction exhibited 37.43 ± 7.13% inhibition at a concentration of 40 µg/mL. Chromatographic analyses of the total resin enabled the chemical characterization of eleven pentacyclic triterpenes belonging to the ursane, oleanane, and lupane series, as well as eight monoterpenes. Notably, the structures of compounds 15, 17, and 2935 are reported for the first time from the resin of Bursera bipinnata. The anti-inflammatory activity observed for B. bipinnata resin in this study may be attributed to its high content of the triterpenes α-amyrin (15, 29.7%) and 3-epilupeol (17, 38.1%), both known for their anti-inflammatory properties. These findings support the traditional use of this copal resin. Full article
(This article belongs to the Special Issue Medicinal and Edible Uses of Non-Timber Forest Resources)
Show Figures

Graphical abstract

14 pages, 857 KiB  
Article
Rapid and Effective Recovery of Oleanolic and Maslinic Acids from Olive Leaves Using SFE and pH-Zone Centrifugal Partition Chromatography
by Lemonia Antoniadi, Apostolis Angelis, Theodora Nikou, Dimitris Michailidis and Leandros A. Skaltsounis
Molecules 2025, 30(13), 2709; https://doi.org/10.3390/molecules30132709 - 24 Jun 2025
Viewed by 351
Abstract
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to [...] Read more.
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to develop an efficient methodology for extracting and purifying OA and MA, utilizing Supercritical Fluid Extraction (SFE) and Centrifugal Partition Chromatography (CPC)—two modern, scalable, and green techniques. A total of 21 g of olive leaves were subjected to SFE using supercritical CO2 and ethanol as co-solvent. The extraction employed a step gradient mode, starting with 100% CO2 and incrementally increasing ethanol (0–10% w/w) every 20 min. Fractions rich in OA and MA (500 mg) were further purified via CPC, utilizing pH zone refining to exploit the protonation and deprotonation properties of acidic triterpenes. The biphasic solvent system consisted of n-hexane, ethyl acetate, ethanol, and water (8:2:5:5 v/v/v/v), with trifluoroacetic acid added to the stationary phase and triethylamine added to the mobile phase. This two-step process yielded 89.5 mg of OA and 28.5 mg of MA with over 95% purity, as confirmed by HPLC-ELSD and 1H-NMR. Moreover, purified compounds and SFE fractions exhibited promising elastase and collagenase inhibition, highlighting them as dermocosmetic agents. Full article
(This article belongs to the Special Issue Supercritical Fluid Extraction of Natural Bioactive Compounds)
Show Figures

Figure 1

38 pages, 2216 KiB  
Review
Mediterranean Basin Erica Species: Traditional Uses, Phytochemistry and Pharmacological Properties
by Khadijah A. Jabal, Maria Pigott, Helen Sheridan and John J. Walsh
Molecules 2025, 30(12), 2616; https://doi.org/10.3390/molecules30122616 - 17 Jun 2025
Viewed by 675
Abstract
Erica species native to the Mediterranean basin are the principal Ericas that have found use in traditional medicine. Examples include treatments for urinary tract disorders, inflammatory conditions, gastrointestinal ailments and weight loss. This review critically evaluates the ethnobotanical usage, phytochemical profiles and pharmacological [...] Read more.
Erica species native to the Mediterranean basin are the principal Ericas that have found use in traditional medicine. Examples include treatments for urinary tract disorders, inflammatory conditions, gastrointestinal ailments and weight loss. This review critically evaluates the ethnobotanical usage, phytochemical profiles and pharmacological potential of the Mediterranean Erica species, including Erica arborea L., Erica multiflora L. and Erica manipuliflora Salisb. A wide spectrum of bioactive secondary metabolites has been identified across these species, notably pentacyclic triterpenes (e.g., lupeol, ursolic acid and oleanolic acid) and polyphenolics (e.g., myricetin and quercetin glycosides). Extracts of these species have demonstrated antioxidant, anti-inflammatory, analgesic, antimicrobial and diuretic activities in vitro and/or in vivo, providing pharmacological support for traditional uses. Phytochemical profiles vary by species, plant part, geography and extraction technique. Filsuvez®, comprising pentacyclic triterpenes from birch bark, has clinical approval for the treatment of partial thickness wounds associated with dystrophic and junctional epidermolysis bullosa. The undoubted reservoir of pentacyclic triterpenes and flavonoid glycosides in Mediterranean Erica species warrants further comprehensive mechanistic studies, toxicological evaluations and clinical validation. Full article
Show Figures

Graphical abstract

29 pages, 3073 KiB  
Article
Harnessing Apple Cell Suspension Cultures in Bioreactors for Triterpene Production: Transcriptomic Insights into Biomass and Triterpene Biosynthesis
by Xuan Xu, Emmanuelle Cocco, Gea Guerriero, Kjell Sergeant, Samuel Jourdan, Jenny Renaut, Jean-Francois Hausman and Sylvain Legay
Int. J. Mol. Sci. 2025, 26(7), 3188; https://doi.org/10.3390/ijms26073188 - 29 Mar 2025
Cited by 1 | Viewed by 849
Abstract
Plant cell suspension cultures offer a sustainable method for producing valuable secondary metabolites, such as bioactive pentacyclic triterpenes. This study established a high-triterpene-yielding cell suspension culture from the apple cultivar “Cox Orange Pippin”. Through transcriptomic analysis and triterpene profiling across growth phases, we [...] Read more.
Plant cell suspension cultures offer a sustainable method for producing valuable secondary metabolites, such as bioactive pentacyclic triterpenes. This study established a high-triterpene-yielding cell suspension culture from the apple cultivar “Cox Orange Pippin”. Through transcriptomic analysis and triterpene profiling across growth phases, we uncovered complex regulatory networks that govern biomass production and triterpene biosynthesis. Key biological processes, including cell cycle regulation, cell wall biosynthesis, lipid metabolism, and stress response mechanisms, play pivotal roles in culture dynamics. Differential gene expression linked to these processes revealed how the culture adapts to growth conditions and nutrient availability at each growth phase. Methyl jasmonate elicitation enhanced phenylpropanoid and flavonoid biosynthesis, along with specific triterpene production pathways, highlighting its potential for optimizing secondary metabolite production. Key enzymes, such as oxidosqualene cyclase 4 and a putative C-2α hydroxylase, were identified as promising targets for future metabolic engineering efforts. This study represents the first in-depth report on the molecular mechanisms underlying plant cell growth in bioreactors, specially focusing on a cell suspension culture derived from a semi-russeted apple cultivar. The findings reveal key regulatory pathways in biomass accumulation and triterpene production, offering valuable insights for optimizing bioreactor cultures for industrial applications. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 7319 KiB  
Review
Current Progress of Hederagenin and Its Derivatives for Disease Therapy (2017–Present)
by Wang Wang, Yan Jin, Meng-Ke Liu, Sai-Yang Zhang, Hong Chen and Jian Song
Molecules 2025, 30(6), 1275; https://doi.org/10.3390/molecules30061275 - 12 Mar 2025
Cited by 2 | Viewed by 856
Abstract
Natural products have emerged as crucial sources of biologically active compounds, holding promise for applications in drug development. Among the extensively researched pentacyclic triterpenes, hederagenin (HG) stands out for its diverse biological activities and serves as a valuable scaffold for synthesizing novel derivatives. [...] Read more.
Natural products have emerged as crucial sources of biologically active compounds, holding promise for applications in drug development. Among the extensively researched pentacyclic triterpenes, hederagenin (HG) stands out for its diverse biological activities and serves as a valuable scaffold for synthesizing novel derivatives. These derivatives hold significant promise for the development of novel therapeutic agents aimed at treating a wide range of diseases. Over the past years, a multitude of HG derivatives with varied bioactivities have been synthesized through chemical modifications. This review article consolidates the most recent findings (since 2017) on HG derivatives, emphasizing their biological effects and mechanisms of action in both in vitro and in vivo models. The objective of this compilation is to offer insights and direct future research endeavors in the realm of HG. Full article
Show Figures

Figure 1

19 pages, 3948 KiB  
Article
Oleanolic Acid Slows Down Aging Through IGF-1 Affecting the PI3K/AKT/mTOR Signaling Pathway
by Yan Xu, Jianlei Wei, Wang Wang, Zebin Mao, Didi Wang, Tao Zhang and Pengxia Zhang
Molecules 2025, 30(3), 740; https://doi.org/10.3390/molecules30030740 - 6 Feb 2025
Cited by 1 | Viewed by 1809
Abstract
Objective: A pentacyclic triterpene, oleanolic acid (OA), has anti-inflammatory activity. The role of oleanolic acid in aging is poorly understood, and the regulatory mechanism of IGF-1 signaling in aging is still not fully understood. Thus, we hypothesized that OA could delay aging by [...] Read more.
Objective: A pentacyclic triterpene, oleanolic acid (OA), has anti-inflammatory activity. The role of oleanolic acid in aging is poorly understood, and the regulatory mechanism of IGF-1 signaling in aging is still not fully understood. Thus, we hypothesized that OA could delay aging by regulating the PI3K/AKT/mTOR pathway via insulin-like growth factor-1 (IGF-1). Method: This study initially established a replicative aging model and a bleomycin-induced aging model in human dermal fibroblast (HDF) and mouse embryonic fibroblast (MEF) cell lines. On this basis, IGF-1 inhibitors or IGF-1 recombinant proteins were then combined with OA (at a concentration of 20 μM) and treated for 72 h. The project plans to detect the expression of aging-related proteins such as CDKN2A (p16) using Western blot technology, detect the expression of aging-related factors such as Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Enzyme-Linked Immunosorbent Assay (ELISA), and other technologies, and combine Senescence-Associated β-Galactosidase (SA-β-gal) staining to detect changes in aging. Results: The expression of IGF-1, PI3K/AKT/mTOR, aging-related proteins P16, and aging-related secretory factors (SASP) IL-1β, IL-6, and IL-8 was increased in senescent cells. After treatment with jujuboside, the expression of IGF-1, PI3K/AKT/mTOR, aging-related protein P16, and aging-related secretory factors IL-1β, IL-6, and IL-8 were decreased. Conclusion: The findings suggested that OA slowed down aging by inhibiting the PI3K/AKT/mTOR expression through IGF-1. These findings suggest OA as a potential new drug and its mechanisms for anti-aging. Full article
(This article belongs to the Special Issue Effects of Functional Foods and Dietary Bioactives on Human Health)
Show Figures

Figure 1

31 pages, 3784 KiB  
Article
Controlled Release of Madecassoside and Asiaticoside of Centella asiatica L. Origin from Sustainable Cold-Processed Topical Formulations
by Monika Krzyżostan, Agata Wawrzyńczak and Izabela Nowak
Molecules 2024, 29(23), 5583; https://doi.org/10.3390/molecules29235583 - 26 Nov 2024
Viewed by 4539
Abstract
Centella asiatica L. extract is a promising natural agent for the treatment of atopic dermatitis. It significantly reduces inflammation due to its immunomodulatory properties, mainly attributed to the presence of pentacyclic triterpenes, namely madecassoside and asiaticoside. Their incorporation into sustainable cold-processed topical formulations, [...] Read more.
Centella asiatica L. extract is a promising natural agent for the treatment of atopic dermatitis. It significantly reduces inflammation due to its immunomodulatory properties, mainly attributed to the presence of pentacyclic triterpenes, namely madecassoside and asiaticoside. Their incorporation into sustainable cold-processed topical formulations, such as emollient-rich emulsions and cosmetic gel containing natural hydrophilic polymers, should inhibit inflammation in atopic skin. Therefore, the objective of this study is to investigate the controlled release of madecassoside and asiaticoside isolated from Centella asiatica L., loaded into topical formulations, namely emollient-rich O/W and W/O emulsions and cosmetic gel, which could support the treatment of atopic dermatitis. The carriers of active substances have been prepared with sustainable emulsifiers, active substances, and emollients obtained by green technologies from food industry wastes. Low-energy methods during the carrier emulsification process were applied to reduce carbon footprints and preserve the valuable properties of the raw materials used. The influence of the Centella asiatica L. extract on the physicochemical properties of the formulations was studied, showing a satisfactory degree of stability of the formulations obtained. Moreover, factors that may influence the mechanism and kinetics of the release of madecassoside and asiaticoside, such as the concentration of the active substance, the pH of the dissolution medium, and the type of the carrier, have been tested and widely discussed. Full article
(This article belongs to the Special Issue Multifunctional Natural Ingredients in Skin Protection and Care)
Show Figures

Graphical abstract

18 pages, 3993 KiB  
Article
Compositional Analysis of Grape Berries: Mapping the Global Metabolism of Grapes
by Huanteng Hou, Yufei Li, Shen Zhou, Ran Zhang, Yuanyue Wang, Long Lei, Chenkun Yang, Sishu Huang, Hang Xu, Xianqing Liu, Min Gao and Jie Luo
Foods 2024, 13(23), 3716; https://doi.org/10.3390/foods13233716 - 21 Nov 2024
Cited by 1 | Viewed by 1462
Abstract
To characterize the nutrients and bioactive compounds in grape berries and to explore the real cause of the “French paradox” phenomenon, we performed metabolomic analysis of 66 grape varieties worldwide using liquid chromatography–tandem mass spectrometry (LC-MS). A nontargeted metabolomics approach detected a total [...] Read more.
To characterize the nutrients and bioactive compounds in grape berries and to explore the real cause of the “French paradox” phenomenon, we performed metabolomic analysis of 66 grape varieties worldwide using liquid chromatography–tandem mass spectrometry (LC-MS). A nontargeted metabolomics approach detected a total of 4889 metabolite signals. From these, 964 bioactive and nutrient compounds were identified and quantified, including modified flavonoids, medicinal pentacyclic triterpenoids, vitamins, amino acids, lipids, etc. Interestingly, metabolic variations between varieties are not explained by geography or subspecies but can be significantly distinguished by grapes’ color, even after excluding flavonoids and anthocyanins. In our analysis, we found that purple grape varieties had the highest levels of key bioactive components such as flavonoids, pentacyclic triterpenes, and polyphenols, which are thought to have a variety of health benefits such as antioxidant, anti-inflammatory, and antitumor properties, when compared to grapes of other colors. In addition, we found higher levels of vitamins in red and pink grapes, possibly explaining their role in preventing anemia and scurvy and protecting the skin. These findings may be a major factor in the greater health benefits of wines made from purple grapes. Our study provides comprehensive metabolic profiling data of grape berries that may contribute to future research on the French paradox. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

18 pages, 5556 KiB  
Article
Ascorbic Acid Enhances the Inhibitory Effect of Theasaponins against Candida albicans
by Yuhong Chen, Ying Gao and Junfeng Yin
Int. J. Mol. Sci. 2024, 25(19), 10661; https://doi.org/10.3390/ijms251910661 - 3 Oct 2024
Cited by 4 | Viewed by 1631
Abstract
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our [...] Read more.
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our previous studies prove that theasaponins display inhibitory activity against C. albicans. Ascorbic acid (VC) is a vitamin found in many plants that shows potential in combination therapy. However, whether VC enhances the activity of theasaponins remains unclear. In this study, the checkerboard micro-dilution method was used to assess the effect of VC (0–80 mmol/L) on the anti-C. albicans effect of theasaponins (0–1000 μg/mL). Then, the effects of theasaponins (31.25 μg/mL), VC (80 mmol/L), and theasaponins (31.25 μg/mL) + VC (80 mmol/L) on C. albicans planktonic cells and different stages of biofilm formation were assessed. Transcriptomic analysis was conducted to investigate the molecular mechanisms. According to the results, VC enhanced the anti-planktonic and anti-biofilm effect of theasaponins against C. albicans. The minimum inhibitory concentration of theasaponins was significantly decreased and the fungicidal efficiency was increased with the addition of VC. VC remarkably aggravated the suppression of theasaponins with regard to various virulence factors of C. albicans, including adhesion, early biofilm formation, mature biofilm, cell surface hydrophobicity, and phospholipase activity. Compared with the theasaponins or VC groups, the level of intracellular reactive oxygen species was higher, while the levels of mitochondrial membrane potential and adenosine triphosphate were lower in the combination group, suggesting more severe oxidative stress, mitochondrial injury, and energy deficiency. Transcriptomic analysis revealed that the combination predominantly suppressed the pathways of glycolysis, glycerophospholipid metabolism, glutathione metabolism, and cysteine and methionine metabolism. This implied that energy deficiency and redox imbalance were associated with the anti-C. albicans activity of the combination. These results prove that VC enhances the inhibitory effect of theasaponins against C. albicans and that the combination has the potential to be used as a topical antifungal therapy or disinfectant. Full article
(This article belongs to the Special Issue Antifungal Drug Discovery: Progresses, Challenges, Opportunities)
Show Figures

Figure 1

43 pages, 26730 KiB  
Review
Advances in Research on Semi-Synthesis, Biotransformation and Biological Activities of Novel Derivatives from Maslinic Acid
by Yosra Trabelsi, Mansour Znati, Hichem Ben Jannet and Jalloul Bouajila
Chemistry 2024, 6(5), 1146-1188; https://doi.org/10.3390/chemistry6050067 - 30 Sep 2024
Viewed by 1638
Abstract
Since ancient times, humans have turned to medicinal plants for treating various ailments and curing specific diseases, as these natural plants serve as the primary source of a range of phytochemicals, including triterpenes. Maslinic acid (MA), also known as (2α,3β)-2,3-dihydroxyolean-12-en-28-oic acid, is a [...] Read more.
Since ancient times, humans have turned to medicinal plants for treating various ailments and curing specific diseases, as these natural plants serve as the primary source of a range of phytochemicals, including triterpenes. Maslinic acid (MA), also known as (2α,3β)-2,3-dihydroxyolean-12-en-28-oic acid, is a pentacyclic triterpene acid present in numerous plants including olive, known for its high safety profile in humans. Recent experimental data increasingly suggests that MA exhibits diverse biological properties and therapeutic effects on various organ diseases, highlighting its significant potential for clinical applications due to its diverse potential pharmacological activities that promote health and resist various diseases, such as hypoglycemic, neuroprotective, anti-tumor, anti-inflammatory, antioxidant and multiple other biological activities. However, the undesirable pharmacokinetic properties of MA, such as high lipophilicity, pose a limitation to its application and development, impacting its bioavailability. Consequently, extensive research spanning decades has focused on structurally modifying MA to overcome these limitations and enhance its pharmacokinetic and therapeutic characteristics, leading to the identification of several potential lead compounds. In this review, we focus on the progress of research in recent years on MA with interest to its chemical and enzymatic modifications as well as the relationships between the modified structures or derivatives and their biological activities. Full article
(This article belongs to the Section Biological and Natural Products)
Show Figures

Figure 1

19 pages, 3489 KiB  
Article
Rhododendron luteum Sweet Flower Supercritical CO2 Extracts: Terpenes Composition, Pro-Inflammatory Enzymes Inhibition and Antioxidant Activity
by Lena Łyko, Marta Olech, Urszula Gawlik, Agnieszka Krajewska, Danuta Kalemba, Katarzyna Tyśkiewicz, Narcyz Piórecki, Andriy Prokopiv and Renata Nowak
Int. J. Mol. Sci. 2024, 25(18), 9952; https://doi.org/10.3390/ijms25189952 - 15 Sep 2024
Cited by 3 | Viewed by 1937
Abstract
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical [...] Read more.
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical CO2 (SC-CO2) extracts of Rhododendron luteum Sweet flower (RLF). An LC-APCI-MS/MS analysis showed the presence of eight pentacyclic triterpenes and one phytosterol in the extracts obtained with pure CO2 as well as CO2 with the addition of aqueous ethanol as a co-solvent. Among the compounds detected, oleanolic/ursolic acid, β-sitosterol and 3β-taraxerol were the most abundant. The extract obtained with pure SC-CO2 was additionally subjected to HS-SPME-GC-FID-MS, which revealed more than 100 volatiles, mainly eugenol, β-phenylethanol, dodecane, β-caryophyllene, estragole and (Z)- and (E)-cinnamyl alcohol, followed by δ-cadinene. The extracts demonstrated significant hyaluronidase inhibition and exhibited varying modes of lipoxygenase and xanthine oxidase inhibitory activities. The studies of RLF have shown that their SC-CO2 extracts can be a rich source of triterpenes with anti-inflammatory potential. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role)
Show Figures

Figure 1

18 pages, 2476 KiB  
Article
Study of Pentacyclic Triterpenes from Lyophilised Aguaje: Anti-Inflammatory and Antioxidant Properties
by Luis Apaza Ticona, Javier Sánchez Sánchez-Corral, Natalia Montoto Lozano, Pablo Prieto Ramos and Ángel Rumbero Sánchez
Int. J. Mol. Sci. 2024, 25(17), 9615; https://doi.org/10.3390/ijms25179615 - 5 Sep 2024
Cited by 3 | Viewed by 1461
Abstract
Mauritia flexuosa (M. flexuosa), commonly known as Aguaje or Moriche palm, is traditionally recognised in South America for its medicinal properties, particularly for its anti-inflammatory and antioxidant effects. However, the bioactive compounds responsible for these effects have not been thoroughly investigated. This [...] Read more.
Mauritia flexuosa (M. flexuosa), commonly known as Aguaje or Moriche palm, is traditionally recognised in South America for its medicinal properties, particularly for its anti-inflammatory and antioxidant effects. However, the bioactive compounds responsible for these effects have not been thoroughly investigated. This study aims to isolate and characterise pentacyclic triterpenoid compounds from M. flexuosa and to evaluate their therapeutic potential. Using various chromatographic and spectroscopic techniques including Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS), three pentacyclic triterpenoid compounds were successfully isolated. Among them, compound 1 (3,11-dioxours-12-en-28-oic acid) exhibited notable bioactivity, significantly inhibiting the activation of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) (IC50 = 7.39–8.11 μM) and of Nitric Oxide (NO) (IC50 = 4.75–6.59 μM), both of which are key processes in inflammation. Additionally, compound 1 demonstrated potent antioxidant properties by activating the antioxidant enzyme Superoxide Dismutase (SOD) (EC50 = 1.87 μM) and the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) (EC50 = 243–547.59 nM), thus showing its potential in combating oxidative stress. This study is the first to isolate and characterise the three compounds from M. flexuosa, suggesting that compound 1 could be a promising candidate for the development of safer and more effective therapies for inflammatory and oxidative stress-related diseases. Full article
Show Figures

Graphical abstract

15 pages, 14810 KiB  
Article
Improving Water Solubility and Skin Penetration of Ursolic Acid through a Nanofiber Process to Achieve Better In Vitro Anti-Breast Cancer Activity
by Hsuan Fu, Tzu-Hui Wu, Chih-Peng Ma and Feng-Lin Yen
Pharmaceutics 2024, 16(9), 1147; https://doi.org/10.3390/pharmaceutics16091147 - 29 Aug 2024
Cited by 4 | Viewed by 1854
Abstract
Woman’s breast cancer has always been among the top ten causes of cancer death, and nearly 2% to 5% of locally advanced breast cancers develop a fungating breast wound. Fungal breast cancer leads to skin ulcers, wound ruptures, and other bacterial infections in [...] Read more.
Woman’s breast cancer has always been among the top ten causes of cancer death, and nearly 2% to 5% of locally advanced breast cancers develop a fungating breast wound. Fungal breast cancer leads to skin ulcers, wound ruptures, and other bacterial infections in patients. Ursolic acid (UA), a natural pentacyclic triterpene compound, is widely distributed in many fruits. Previous studies demonstrated that UA has anti-breast cancer, antifungal, and improved wound-healing effects. UA, however, had poor water solubility and low bioavailability, restricting its clinical application. Nanofibers have the advantages of rapid dissolution, improved stability, and bioavailability of active ingredients. We had successfully prepared ursolic acid nanofibers (UANFs) and effectively improved their water solubility and skin penetration. UANFs can increase water solubility by improving the physicochemical properties, including increased surface area, intermolecular bonding with excipients, and amorphous transformation. Furthermore, UANFs had better anti-breast cancer activity than raw UA. UANFs inhibited the expression of phospho-signal transducer and activator of transcription 3 (STAT3) and phospho-extracellular regulated protein kinases (ERK)1/2, and induced cleaved caspase-3 protein expression, but had no effect on the raw UA treatment. In summary, UANFs enhanced the skin absorption of UA and improved its anti-breast cancer efficacy. We expect that UANFs can be used as an anti-breast cancer treatment and reduce the discomfort of breast cancer patients during dressing changes, but more detailed efficacy and safety trials still need to be conducted in further studies. Full article
(This article belongs to the Special Issue Topical Drug Carriers: Recent Advances and Future Challenges)
Show Figures

Figure 1

14 pages, 2624 KiB  
Article
Biological Properties of Oleanolic Acid Derivatives Bearing Functionalized Side Chains at C-3
by Gianfranco Fontana, Natale Badalamenti, Maurizio Bruno, Filippo Maggi, Federica Dell’Annunziata, Nicoletta Capuano, Mario Varcamonti and Anna Zanfardino
Int. J. Mol. Sci. 2024, 25(15), 8480; https://doi.org/10.3390/ijms25158480 - 3 Aug 2024
Viewed by 1559
Abstract
Triterpene acids are a class of pentacyclic natural carboxylic compounds endowed with a variety of biological activities including antitumor, antimicrobial, and hepatoprotective effects. In this work, several oleanolic acid derivatives were synthesized by structurally modifying them on the C-3 position. All synthesized derivatives [...] Read more.
Triterpene acids are a class of pentacyclic natural carboxylic compounds endowed with a variety of biological activities including antitumor, antimicrobial, and hepatoprotective effects. In this work, several oleanolic acid derivatives were synthesized by structurally modifying them on the C-3 position. All synthesized derivatives were evaluated for possible antibacterial and antiviral activity, and among all the epimers, 6 and 7 demonstrated the best biological activities. Zone-of-inhibition analyses were conducted against two strains, E. coli as a Gram-negative and S. aureus as a Gram-positive model. Subsequently, experiments were performed using the microdilution method to determine the minimum inhibitory concentration (MIC). The results showed that only the derivative with reduced hydrogen bonding ability on ring A possesses remarkable activity toward E. coli. The conversion from acid to methyl ester implies a loss of activity, probably due to a reduced affinity with the bacterial membrane. Before the antiviral activity, the cytotoxicity of triterpenes was evaluated through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Samples 6 and 7 showed less than 50% cytotoxicity at 0.625 and 1 mg/mL, respectively. The antiviral activity against SARS-CoV-2 and PV-1 did not indicate that triterpene acids had any inhibitory capacity in the sub-toxic concentration range. Full article
Show Figures

Figure 1

Back to TopTop