Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = penicillin–streptomycin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 581 KB  
Article
Antimicrobial Resistance in Chicken Meat: Comparing Salmonella, Escherichia coli, and Enterococcus from Conventional and Antibiotic-Free Productions
by Camila Koutsodontis Cerqueira-Cézar, Aryele Nunes da Cruz Encide Sampaio, Evelyn Fernanda Flores Caron, Thaisy Tino Dellaqua, Lucas Franco Miranda Ribeiro, Leonardo Ereno Tadielo, José Carlos de Figueiredo Pantoja, Gustavo Guimarães Fernandes Viana, Gabriel Augusto Marques Rossi, Carlo Spanu, Fábio Sossai Possebon and Juliano Gonçalves Pereira
Microorganisms 2025, 13(10), 2227; https://doi.org/10.3390/microorganisms13102227 - 23 Sep 2025
Viewed by 448
Abstract
Chicken meat production is a critical component of the global protein supply, significantly influenced by rearing advancements, including the use of antimicrobial agents. However, the pervasive use of antibiotics has raised concerns regarding the occurrence of antimicrobial resistance (AMR). This study examined the [...] Read more.
Chicken meat production is a critical component of the global protein supply, significantly influenced by rearing advancements, including the use of antimicrobial agents. However, the pervasive use of antibiotics has raised concerns regarding the occurrence of antimicrobial resistance (AMR). This study examined the prevalence and AMR profiles of Salmonella spp., Escherichia coli, and Enterococcus spp. in chicken meat from conventional and antibiotic-free (ABF) production chains. A total of 284 samples were analyzed for Salmonella spp. and E. coli, while 164 samples were tested for Enterococcus spp. From that, 143 were from conventional production chains and 141 were from ABF chains. The results indicated a 10.9% prevalence of Salmonella spp., 22.1% for E. coli, and 93.9% for Enterococcus spp. Regarding production chains, the conventional chain had 18.2% of the isolates for Salmonella spp., 20.3% for E. coli, and 91.6% for Enterococcus spp., while the ABF chain had 3.5% of the isolates for Salmonella spp., 24.1% for E. coli, and 96.3% for Enterococcus spp. In terms of AMR, 86.1% of the Salmonella spp. isolates that underwent the disk diffusion test were resistant to at least one antibiotic tested, 95.1% of E. coli, and 88.4% of Enterococcus spp. Notably, carbapenem resistance was detected in Salmonella spp., with 2.3% of isolates being resistant to imipenem, while resistance to vancomycin and linezolid was detected in Enterococcus spp., all of which are critically important antimicrobials. Comparisons between these production chains revealed significant differences in antibiotic resistance patterns in Salmonella spp. for two antibiotics, amoxicillin/clavulanic acid and nitrofurantoin, while no differences were observed in E. coli. For Enterococcus spp., resistance varied for three antibiotics: streptomycin, penicillin, and tetracycline. For all other antibiotics tested, the resistance profiles were consistent across both conventional and ABF production chains. Multidrug resistance (MDR) was observed in 90.7% of Salmonella spp. isolates, 42.9% of E. coli isolates, and 12.0% of Enterococcus spp. isolates. Statistically significant differences were noted in MDR prevalence between production chains, with conventional production systems exhibiting higher levels of MDR isolates compared to ABF systems. These findings underscore the need for targeted AMR control strategies that consider the complexity of resistance dynamics across production systems. Full article
Show Figures

Figure 1

26 pages, 6488 KB  
Article
Electron Beam Irradiation for Efficient Antibiotic Degradation in Aqueous Solutions
by Anastasia Oprunenko, Ulyana Bliznyuk, Victoria Ipatova, Alexander Nikitchenko, Igor Gloriozov, Arcady Braun, Timofey Bolotnik, Polina Borshchegovskaya, Elena Kozlova, Irina Ananieva and Igor Rodin
Antibiotics 2025, 14(8), 833; https://doi.org/10.3390/antibiotics14080833 - 15 Aug 2025
Viewed by 699
Abstract
Background: Recently, extensive use of antibiotics has increased the amount of antibiotic residues in the natural water environment. Methods: This study presents an experimental investigation into the degradation of penicillins, tetracyclines, streptomycin and chloramphenicol in aqueous solutions when exposed to 1 MeV accelerated [...] Read more.
Background: Recently, extensive use of antibiotics has increased the amount of antibiotic residues in the natural water environment. Methods: This study presents an experimental investigation into the degradation of penicillins, tetracyclines, streptomycin and chloramphenicol in aqueous solutions when exposed to 1 MeV accelerated electrons with doses of 0.1, 1, 3 and 7 kGy using HPLC-HRMS analysis. Results: It was found that electron beam irradiation with a dose of 7 kGy ensures 98–99% removal of antibiotics, with the initial concentrations ranging from 15 mg/L to 30 mg/L depending on the class of antibiotic. The mathematical model proposed in the study, which estimates the dose dependencies of the relative concentrations of antibiotics and their degradation products in aqueous solutions, reveals different decomposition rates of antibiotics of different classes due to the different radiosensitivities of antibiotics. It has been found that tetracycline has a considerably higher radiation–chemical yield compared to the other antibiotics when exposed to accelerated electrons. Conclusions: Using density functional theory in combination with the mathematical model, we have developed a novel approach to establishing a quantitative irradiation marker of antibiotic degradation as a result of irradiation, which involves finding the degradation product whose formation requires a minimum number of ionization events. Using such an approach, it is possible to establish the extent of antibiotic degradation in water after irradiation with different doses and find the optimal irradiation doses for industrial water treatment. Full article
Show Figures

Graphical abstract

14 pages, 1061 KB  
Article
The Probiotic Potential, Safety, and Immunomodulatory Properties of Levilactobacillus brevis ZG2488: A Novel Strain Isolated from Healthy Human Feces
by Zhijie Cao, Mengshan Chen, Yulu Chen and Hui Sun
Fermentation 2025, 11(5), 287; https://doi.org/10.3390/fermentation11050287 - 15 May 2025
Cited by 1 | Viewed by 1216
Abstract
Probiotics exert beneficial effects on health improvement, infection prevention, and disease management. This study investigated the probiotic characteristics and safety parameters of Levilactobacillus brevis ZG2488, a novel strain isolated from healthy human feces. The strain exhibited robust tolerance to simulated gastrointestinal conditions, maintaining [...] Read more.
Probiotics exert beneficial effects on health improvement, infection prevention, and disease management. This study investigated the probiotic characteristics and safety parameters of Levilactobacillus brevis ZG2488, a novel strain isolated from healthy human feces. The strain exhibited robust tolerance to simulated gastrointestinal conditions, maintaining survival rates of 87.20% in artificial gastric juice (pH 3.0; 3 h) and 95.32% in 0.3% bile salt (24 h). Notably, L. brevis ZG2488 displayed superior microbial adhesion properties with high cell surface hydrophobicity (87.32%), auto-aggregation (81.15% at 24 h), and co-aggregation capacities with Escherichia coli ATCC 43895 (63.90%) and Salmonella typhimurium SL1344 (59.28%). Its adhesion to HT-29 cells (7.15%) surpassed that of the reference strain Lactobacillus rhamnosus GG (1.26%). Antimicrobial testing revealed broad-spectrum inhibitory effects against multidrug-resistant Klebsiella pneumoniae NK04152 and other pathogens. Comprehensive safety assessments confirmed the absence of hemolytic or DNase activity, along with appropriate antibiotic susceptibility to most antibiotics, except kanamycin, streptomycin, vancomycin, and penicillin G. Furthermore, L. brevis ZG2488 significantly enhanced nitric oxide production and upregulated the gene expression of nitric oxide synthase (iNOS) and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in RAW264.7 macrophages. These findings underscore L. brevis ZG2488 as a promising probiotic candidate with functionality in pathogen inhibition and immune modulation. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

11 pages, 2319 KB  
Article
A Multidrug-Resistant Escherichia coli Caused the Death of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis)
by Mingyang Xue, Xiaowei Hu, Nan Jiang, Wei Liu, Zidong Xiao, Chunjie Zhang, Yeying Wu, Tianwang Liang, Huixuan Zhang, Yuding Fan, Yan Meng and Yong Zhou
Vet. Sci. 2025, 12(5), 473; https://doi.org/10.3390/vetsci12050473 - 14 May 2025
Viewed by 688
Abstract
The rapid increase in drug resistance in recent years has become a significant global public health concern. Escherichia coli are ubiquitous bacteria, widely distributed in various environments. This study isolated a bacterial strain (HD-593) from diseased Chinese soft-shelled turtles (Pelodiscus sinensis). [...] Read more.
The rapid increase in drug resistance in recent years has become a significant global public health concern. Escherichia coli are ubiquitous bacteria, widely distributed in various environments. This study isolated a bacterial strain (HD-593) from diseased Chinese soft-shelled turtles (Pelodiscus sinensis). The bacterium was identified based on morphology, biochemical tests, and 16S rRNA sequencing, confirming it as E. coli. Drug susceptibility tests revealed that the HD-593 strain was highly resistant to ceftriaxone, enrofloxacin, doxycycline, sulfadiazine, gentamicin, neomycin, florfenicol, carbenicillin, cefradine, erythromycin, penicillin, ampicillin, midecamycin, and streptomycin. Resistance gene analysis confirmed the presence of quinolone resistance genes (oqxA and oqxB), aminoglycoside resistance genes (aac(3)-II and aphA1), a β-lactam resistance gene (blaTEM), and an acylaminol resistance gene (floR) in HD-593. The median lethal dose (LD50) of HD-593 for P. sinensis was 6.53 × 105 CFU/g. Biochemical analysis of serum revealed that HD-593 infection caused a significant reduction in total protein, albumin, and globulin levels, while markedly increasing the levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Histopathological analysis revealed severe intestinal damage characterized by villi detachment and muscle cell necrosis. Additionally, extensive splenocyte necrosis with nuclear marginalization, glomerular swelling, and pronounced hepatic steatosis accompanied by distended sinusoids were observed. This study identified a multidrug-resistant E. coli strain from deceased P. sinensis, suggesting that drug resistance genes may circulate in aquaculture ecosystems, posing potential risks to aquaculture. Full article
Show Figures

Figure 1

21 pages, 15229 KB  
Article
Establishment and Characteristics of the Spermatogonial Stem Cell Line from the Yellow River Carp (Cyprinus carpio haematopterus)
by Huijie Zhou, Tianqi Liu, Tan Zhang, Zhipeng Sun, Huan Xu, Tingting Zhang, Yashan Yin, Na Li, Ting Yan and Youyi Kuang
Biology 2025, 14(5), 536; https://doi.org/10.3390/biology14050536 - 12 May 2025
Viewed by 971
Abstract
To address the growing consumer demands for improved fish meat quality, desirable morphological traits, and sustainable production practices, researchers have intensified efforts in the selective breeding and genetic improvement of carp (Cyprinus carpio) varieties. However, traditional breeding methods are often time-consuming [...] Read more.
To address the growing consumer demands for improved fish meat quality, desirable morphological traits, and sustainable production practices, researchers have intensified efforts in the selective breeding and genetic improvement of carp (Cyprinus carpio) varieties. However, traditional breeding methods are often time-consuming and inefficient, which poses challenges to the sustainable development of the carp aquaculture industry. The establishment of germ stem cell lines offers a crucial tool for the study of germ cells, genetic improvement, and species conservation. In this study, we successfully established a spermatogonial stem cell line (YRSSCs) from Yellow River carp (Cyprinus carpio haematopterus) that can be cultured in vitro for the long term. We optimized the culture conditions to maintain their self-renewal and differentiation capabilities. The results demonstrated that YRSSCs have a diploid karyotype and can stably proliferate for over a year in L-15 medium supplemented with 5 mmol/L HEPES, 50 μmol/L β-mercaptoethanol, 15% FBS, 2 ng/mL bFGF, 2 ng/mL LIF, 1% carp serum, 800 IU/mL penicillin, 0.8 mg/mL streptomycin, 2 μg/mL amphotericin B, 1% zebrafish embryo extract, and 1% glutamine at 30 °C in the absence of CO2. The cells exhibited a typical germ stem cell gene expression profile, with strong expression of the vasa, plzf-a, and Oct4-a genes. Additionally, this study found that YRSSCs possess the ability to differentiate in vitro and functionally colonize in vivo within recipient bodies. This research explored the establishment of YRSSCs and their differentiation potential both in vitro and in vivo, providing a novel strategy for the genetic improvement of aquaculture fish species through germ stem cell-based gene editing and transplantation technologies. Full article
Show Figures

Figure 1

3 pages, 754 KB  
Correction
Correction: Chudobova et al. Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus aureus. Int. J. Environ. Res. Public Health 2014, 11, 3233–3255
by Dagmar Chudobova, Simona Dostalova, Iva Blazkova, Petr Michalek, Branislav Ruttkay-Nedecky, Matej Sklenar, Lukas Nejdl, Jiri Kudr, Jaromir Gumulec, Katerina Tmejova, Marie Konecna, Marketa Vaculovicova, David Hynek, Michal Masarik, Jindrich Kynicky, Rene Kizek and Vojtech Adam
Int. J. Environ. Res. Public Health 2025, 22(5), 744; https://doi.org/10.3390/ijerph22050744 - 9 May 2025
Viewed by 495
Abstract
There was an error in the original publication [...] Full article
Show Figures

Figure 5

17 pages, 5229 KB  
Article
Thymoquinone Enhances Doxorubicin Efficacy via RAS/RAF Pathway Modulation in Ovarian Adenocarcinoma
by Veysel Toprak, İlhan Özdemir, Şamil Öztürk, Orhan Yanar, Yusuf Ziya Kizildemir and Mehmet Cudi Tuncer
Pharmaceutics 2025, 17(4), 536; https://doi.org/10.3390/pharmaceutics17040536 - 19 Apr 2025
Cited by 3 | Viewed by 888
Abstract
Background/Objectives: Ovarian cancer remains one of the most commonly diagnosed malignancies among women worldwide. The heterogeneity among tumor subtypes and the emergence of treatment resistance have raised significant concerns regarding the long-term efficacy of chemotherapy, radiotherapy, and immunotherapy. In response to these challenges, [...] Read more.
Background/Objectives: Ovarian cancer remains one of the most commonly diagnosed malignancies among women worldwide. The heterogeneity among tumor subtypes and the emergence of treatment resistance have raised significant concerns regarding the long-term efficacy of chemotherapy, radiotherapy, and immunotherapy. In response to these challenges, drug repurposing strategies—utilizing existing drugs in novel therapeutic contexts—have gained increasing attention. This study aimed to investigate the cytotoxic and apoptotic effects of the combined application of doxorubicin (DX) and thymoquinone (TQ) on ovarian adenocarcinoma cells (OVCAR3). Methods: OVCAR3 cells were cultured in RPMI medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. Cell viability and proliferation were assessed using the MTT assay following treatment with various concentrations of DX and TQ. NucBlue immunofluorescence staining was employed to examine nuclear morphology and to identify apoptosis-associated changes. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) was per-formed to evaluate the expression levels of apoptosis-related and oncogenic pathway genes, including RAF, RAS, Bcl-2, and Bax. Results: The results demonstrated that the combination of DX and TQ significantly reduced OVCAR3 cell viability and induced apoptosis in a dose-dependent manner. qRT-PCR analysis revealed a downregulation of RAS, RAF, and Bcl-2 expression, along with an upregulation of Bax, indicating activation of the intrinsic apoptotic pathway. These findings suggest that thymoquinone exerts an-ti-proliferative and pro-apoptotic effects by modulating the RAS/RAF signaling cascade. Furthermore, the co-administration of thymoquinone with doxorubicin potentiated these effects, suggesting a synergistic interaction between the two agents. Conclusions: Histopathological and molecular evaluations further confirmed the activation of apoptosis and the suppression of key oncogenic pathways. Collectively, these results underscore the therapeutic potential of thymoquinone as both a monotherapy and an adjuvant to conventional chemotherapy, warranting further validation in preclinical and clinical studies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

14 pages, 2464 KB  
Article
Genomic Characterization of Enterococcus casseliflavus Isolated from Beef Cows and Calves
by Sani-e-Zehra Zaidi, Rahat Zaheer, Athanasios Zovoilis, Jayce Fossen, Gary Van Domselaar, Cheryl Waldner and Tim A. McAllister
Microorganisms 2025, 13(4), 907; https://doi.org/10.3390/microorganisms13040907 - 15 Apr 2025
Cited by 2 | Viewed by 949
Abstract
Enterococcus species are used as One Health indicators of antimicrobial resistance (AMR) in humans, animals, and the environment. A surveillance study in beef cows and calves isolated Enterococcus casseliflavus along with E. faecium, E. faecalis, and E. hirae. Given the [...] Read more.
Enterococcus species are used as One Health indicators of antimicrobial resistance (AMR) in humans, animals, and the environment. A surveillance study in beef cows and calves isolated Enterococcus casseliflavus along with E. faecium, E. faecalis, and E. hirae. Given the high prevalence of E. casseliflavus, we elected to characterize this species to better understand its role in the antimicrobial resistance of enterococci in cows and calves. Almost 12% of E. casseliflavus isolates exhibited multidrug resistance with the majority being resistant to lincomycin (99%), followed by quinupristin–dalfopristin (34%), ciprofloxacin (9.6%), tylosin (4.5%), erythromycin (2.7%), tetracycline (1.8%), tigecycline (1.5%), daptomycin (0.6%), streptomycin (0.3%), and kanamycin (0.3%). All E. casseliflavus were susceptible to chloramphenicol, penicillin, streptomycin, nitrofurantoin, gentamicin, and linezolid. Whole genome antimicrobial resistance gene profiling identified vanC-type intrinsic vancomycin resistance genes in all E. casseliflavus, with the vanC4XYT gene cluster being dominant (67%) followed by vanC2XYT (31%) and vanC3XYT (1.5%). Resistance genes for erythromycin (ermB) and tetracycline (tetM) were rarely identified (2.1% and 1.2%, respectively) within E. casseliflavus genomes. No resistance genes were identified to explain either the quinupristin–dalfopristin or ciprofloxacin resistance in these isolates. A core genome phylogenetic tree revealed two clades that exhibited no distinct association with the age of the host, time of sample collection, or the farm sampled. The open nature of the E. casseliflavus pan-genome highlighted its intraspecies diversity. These findings suggest that E. casseliflavus is likely a low-risk species in terms of contributing to antimicrobial resistance in the cow–calf sector. Full article
Show Figures

Figure 1

19 pages, 3669 KB  
Article
Dual Delivery of Cells and Bioactive Molecules for Wound Healing Applications
by Petras Winkler and Yong Mao
Molecules 2025, 30(7), 1577; https://doi.org/10.3390/molecules30071577 - 31 Mar 2025
Cited by 1 | Viewed by 987
Abstract
Chronic wounds not only cause significant patient morbidity but also impose a substantial economic burden on the healthcare system. The primary barriers to wound healing include a deficiency of key modulatory factors needed to progress beyond the stalled inflammatory phase and an increased [...] Read more.
Chronic wounds not only cause significant patient morbidity but also impose a substantial economic burden on the healthcare system. The primary barriers to wound healing include a deficiency of key modulatory factors needed to progress beyond the stalled inflammatory phase and an increased susceptibility to infections. While antimicrobial agents have traditionally been used to treat infections, stem cells have recently emerged as a promising therapy due to their regenerative properties, including the secretion of cytokines and immunomodulators that support wound healing. This study aims to develop an advanced dual-delivery system integrating stem cells and antibiotics. Stem cells have previously been delivered by encapsulation in gelatin methacrylate (GelMA) hydrogels. To explore a more effective delivery method, GelMA was processed into microparticles (MP). Compared to a bulk GelMA hydrogel (HG) encapsulation, GelMA MP supported greater cell growth and enhanced in vitro wound healing activity of human mesenchymal stem cells (hMSCs), likely due to a larger surface area for cell attachment and improved nutrient exchange. To incorporate antimicrobial properties, the broad-spectrum antibiotics penicillin/streptomycin (PS) were loaded into a bulk GelMA hydrogel, which was then cryo-milled into MPs to serve as carriers for hMSCs. To achieve a more sustained antibiotic release, gelatin nanoparticles (NP) were used as carriers for PS. PS was either incorporated during NP synthesis (NP+PS(S)) or absorbed into NP after synthesis (NP+PS(A)). MPs containing PS, NP+PS(S), or NP+PS(A) were tested for their cell carrier functions and antibacterial activities. The incorporation of PS did not compromise the cell-carrying function of MP configurations. The anti-S. aureus activity was detected in conditioned media from MPs for up to eight days—four days longer than from bulk HG containing PS. Notably, the presence of hMSCs prolonged the antimicrobial activity of MPs, suggesting a synergistic effect between stem cells and antibiotics. PS loaded via synthesis (NP+PS(S)) exhibited a delayed initial release, whereas PS loaded via absorption (NP+PS(A)) provided a more immediate release, with potential for sustained delivery. This study demonstrates the feasibility of a dual-delivery system integrating thera Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

13 pages, 16003 KB  
Article
Bacterial Pathogens of Bovine Mastitis: Prevalence, Antimicrobial Susceptibility, and Sensitivity to Caesalpinia sappan Both In Vitro and In Vivo Studies
by Phacharaporn Tadee, Wiwat Pattanawong, Apichart Manwicha, Pakasinee Khaodang, Doungporn Amornlerdpison, Sunee Chansakaow, Pramote Tipduangta, Kridda Chukiatsiri and Pakpoom Tadee
Biology 2025, 14(4), 350; https://doi.org/10.3390/biology14040350 - 27 Mar 2025
Viewed by 1449
Abstract
Mastitis is a major infectious disease that causes significant economic losses in the dairy industry. Current control programs primarily rely on antimicrobials, contributing to the growing concerns of the resistance situation and drug residues in milk. This study aimed to identify the bacterial [...] Read more.
Mastitis is a major infectious disease that causes significant economic losses in the dairy industry. Current control programs primarily rely on antimicrobials, contributing to the growing concerns of the resistance situation and drug residues in milk. This study aimed to identify the bacterial pathogens responsible for subclinical/clinical bovine mastitis, assess their antimicrobial resistance profiles, and evaluate the antimicrobial effects of Caesalpinia sappan in treating mastitis through both in vitro and in vivo studies. A total of 138 bacterial isolates, representing 40 species, were identified from 100 milk samples collected from dairy cows under the Maejo Cooperative Group in Chiang Mai, Thailand, between May 2021 and February 2022. The most prevalent species was Escherichia coli (10.87%), followed by Bacillus cereus (9.42%) and Staphylococcus sciuri (7.97%). The highest resistance rates were observed for penicillin (65.21%), followed by streptomycin and lincomycin (61.59%). Nine isolates resisted all 18 antimicrobials tested. The average minimum inhibitory concentration (MIC) of C. sappan against the identified pathogens ranged from 0.63 to 17.68 mg/mL, with the highest MIC observed against Pseudomonas luteola. In the animal experiment, treatment with a prototype of an intramammary infusion compound primarily formulated from C. sappan significantly reduced the total bacterial count and California Mastitis Test (CMT) scores (p < 0.01). These results suggest that C. sappan exhibits antimicrobial efficacy against various mastitis bacteria and could serve as a potential alternative treatment to control bovine mastitis in dairy cattle within the study region. Full article
(This article belongs to the Special Issue Large Animal Experimental and Epidemiological Models for Diseases)
Show Figures

Figure 1

19 pages, 6699 KB  
Article
Influence of Electron Beam Irradiation and RPMI Immersion on the Development of Magnesium-Doped Hydroxyapatite/Chitosan Composite Bioactive Layers for Biomedical Applications
by Andreea Groza, Maria E. Hurjui, Sasa A. Yehia-Alexe, Cornel Staicu, Coralia Bleotu, Simona L. Iconaru, Carmen S. Ciobanu, Liliana Ghegoiu and Daniela Predoi
Polymers 2025, 17(4), 533; https://doi.org/10.3390/polym17040533 - 18 Feb 2025
Cited by 1 | Viewed by 958
Abstract
Magnesium-doped hydroxyapatite/chitosan composite coatings produced by the radio-frequency magnetron sputtering technique were exposed to 5 MeV electron beams of 8 and 30 Gy radiation doses in a linear electron accelerator. The surfaces of unirradiated layers are smooth, while the irradiated ones exhibit nano-structures [...] Read more.
Magnesium-doped hydroxyapatite/chitosan composite coatings produced by the radio-frequency magnetron sputtering technique were exposed to 5 MeV electron beams of 8 and 30 Gy radiation doses in a linear electron accelerator. The surfaces of unirradiated layers are smooth, while the irradiated ones exhibit nano-structures with sizes that increase from 60 nm at a 8 Gy dose to 200 nm at a 30 Gy dose. Young’s modulus and the stiffness of the layers decrease from 58.9 GPa and 10 µN/nm to 5 GPa and 2.2 µN/nm, respectively, when the radiation doses are increased from 0 to 30 Gy. These data suggest the diminishing of the contribution of the chitosan to the elasticity of the magnesium-doped hydroxyapatite/chitosan composite layers after electron beam irradiation. The biological capabilities of the coatings were assessed before and after their immersion in RPMI-1640 cell culture medium for 7 and 14 days, respectively, and further cultured with a MG63 cell line (ATCC CRL1427) in Dulbecco’s Modified Eagle Medium supplemented with fetal bovine serum, penicillin–streptomycin, and L-glutamine. Thus, 1 µm spherical structures were developed on the surfaces of the layers exposed to a 30 Gy radiation dose and immersed for 14 days in the RPMI-1640 biological medium. The molecular structures of all the RPMI-1640 immersed samples were modified by the growth of a carbonated hydroxyapatite layer characterized by a B-type substitution, as Fourier Transform Infrared Spectroscopy revealed. The biological assay proved the increased biocompatibility of the layers kept in RPMI-1640 medium and enhanced MG63 cell attachment and proliferation. Atomic force microscopy analysis indicated the elongated fibroblastic cell morphology of MG63 cells with minor alteration at 30 Gy irradiation doses as a result of layer biocompatibility modifications. Full article
Show Figures

Figure 1

15 pages, 23531 KB  
Protocol
Wild Birds’ Genetic Resources Bank: Feather Follicle Cell Culture as a Possible Source of Stem Cells
by Yasmin Godoi dos Reis, Maria Eduarda Pralon Guerra, Meline de Paula Coutinho, Sarah Ingrid Pinto Santos, Bruna Dias Mota, Lauriene Luiza de Souza Munhoz, Diogo Pascoal Rossetti and Daniele dos Santos Martins
Methods Protoc. 2025, 8(1), 17; https://doi.org/10.3390/mps8010017 - 8 Feb 2025
Viewed by 1360
Abstract
Follicular cells represent a valuable resource for genetic research, biotechnology and cryopreservation in biobanks, particularly for the conservation of endangered species. They offer a more practical alternative to gametes, embryos and fibroblasts. Collection of these cells can be achieved through feather plucking. Feather [...] Read more.
Follicular cells represent a valuable resource for genetic research, biotechnology and cryopreservation in biobanks, particularly for the conservation of endangered species. They offer a more practical alternative to gametes, embryos and fibroblasts. Collection of these cells can be achieved through feather plucking. Feather samples were opened with a scalpel and the feather pulp was washed with PBS, cut into cubes and digested in collagenase type IV. Cultivation was carried out in DMEM culture medium with 15% fetal bovine serum, 1% penicillin/streptomycin and 0.5% amphotericin, under incubation conditions of 39.5 °C and 5% CO2. Passages were carried out with 5% EDTA for 5 min. The culture was successful, with great cell proliferation, adherence to plastic and aggregation into cell colonies. This method was effective in obtaining feather follicle cells from wild birds, especially when collected up to 6 h after their death, and can serve as a base protocol for research with feather follicle cells aiming to create biobanks. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

13 pages, 1039 KB  
Article
Prevalence and Antibiotic Resistance of Escherichia coli Isolated from Raw Cow’s Milk
by Roxana Ionela Drugea, Mădălina Iulia Siteavu, Elena Pitoiu, Cristina Delcaru, Ecaterina Monica Sârbu, Carmen Postolache and Stelian Bărăităreanu
Microorganisms 2025, 13(1), 209; https://doi.org/10.3390/microorganisms13010209 - 19 Jan 2025
Viewed by 2220
Abstract
Escherichia coli (E. coli) is one of the most common pathogens in both humans and livestock. This study aimed to investigate the prevalence of E. coli isolated from raw cow milk and evaluate its antimicrobial resistance rates. A total of 1696 milk samples were [...] Read more.
Escherichia coli (E. coli) is one of the most common pathogens in both humans and livestock. This study aimed to investigate the prevalence of E. coli isolated from raw cow milk and evaluate its antimicrobial resistance rates. A total of 1696 milk samples were collected from Romanian dairy farms from 2018 to 2022. E. coli was isolated on various selective agar media, such as Cled agar and Columbia Agar with 5% Sheep Blood. The identification of E. coli was performed by MALDI-TOF MS. E. coli isolates were tested for their susceptibility against 18 commonly used antibiotics in a disk diffusion method. The overall prevalence of E. coli was 22.45% of all isolated pathogens. Antibiogram analysis revealed that 27.51% of E. coli isolates from milk were multidrug-resistant. Resistance was highest for penicillin–novobiocin (87.78%), followed by streptomycin (53.7%). Resistance to six drugs (amoxicillin, streptomycin, kanamycin–cephalexin, marbofloxacin, ampicillin) showed a significant increasing trend over time, while for two drugs (penicillin G-framycetin, doxycycline), a significant decrease was observed. Our results suggest that milk can be a reservoir of bacteria with the potential for infection in humans via the food chain. Furthermore, there is a need for surveillance and monitoring to control the increase in resistance to currently used antimicrobials in dairy farms because the occurrence of multidrug-resistant E. coli isolated from milk poses a health hazard to consumers. Full article
(This article belongs to the Special Issue Bacterial Infections and Antibiotic Resistance in Veterinary Medicine)
Show Figures

Figure 1

15 pages, 694 KB  
Article
Subclinical Mastitis in Small-Holder Dairy Herds of Gansu Province, Northwest China: Prevalence, Bacterial Pathogens, Antimicrobial Susceptibility, and Risk Factor Analysis
by Ling Wang, Shahbaz Ul Haq, Muhammad Shoaib, Jiongjie He, Wenzhu Guo, Xiaojuan Wei and Xiaohong Zheng
Microorganisms 2024, 12(12), 2643; https://doi.org/10.3390/microorganisms12122643 - 20 Dec 2024
Cited by 7 | Viewed by 1379
Abstract
This cross-sectional study assessed the prevalence, bacterial distribution, antimicrobial susceptibility, and potential risk factors associated with subclinical mastitis (SCM) in small-holder dairy herds in Gansu Province, Northwest China. Forty small-holder cow farms were randomly selected from eight cities/counties in six districts of Gansu [...] Read more.
This cross-sectional study assessed the prevalence, bacterial distribution, antimicrobial susceptibility, and potential risk factors associated with subclinical mastitis (SCM) in small-holder dairy herds in Gansu Province, Northwest China. Forty small-holder cow farms were randomly selected from eight cities/counties in six districts of Gansu Province, and a total of n = 530 lactating cows were included in this study. SCM prevalence was noted at 38.87% and 9.72% at the cow and quarter levels, respectively, based on the California Mastitis Test (CMT). The prevalence of the recovered bacterial species was noted as follows: S. agalactiae (36.02%), S. aureus (19.43%), coagulase-negative staphylococci (CNS) (16.11%), S. dysgalactiae (12.80%), E. coli (9.00%), and S. uberis (6.64%). All isolated bacteria were 100% multi-drug-resistant (MDR) except S. aureus (87.8% MDR). Antimicrobial susceptibility profiles revealed the increased resistance (>85%) of these pathogens to penicillin, streptomycin, trimethoprim–sulfamethoxazole, vancomycin, and erythromycin. However, these pathogens showed increased susceptibility to ampicillin, amoxicillin–sulbactam, ceftazidime, neomycin, kanamycin, spectinomycin, norfloxacin, ciprofloxacin, and doxycycline. The multivariate regression analysis demonstrated that old age, high parity, late lactation, lesions on teats, previous history of clinical mastitis, higher milk yield, and milking training were found to be potential risk factors (p < 0.001) associated with developing SCM in small-holder dairy cows in Gansu Province, China. These findings highlight the need for routine surveillance, antimicrobial stewardship, and effective preventive strategies to mitigate SCM in small-holder dairy production and their possible impacts, i.e., increased antimicrobial resistance and infection, on public health. Full article
(This article belongs to the Special Issue Antimicrobial Testing (AMT), Third Edition)
Show Figures

Figure 1

16 pages, 8117 KB  
Article
Quantification of Antimicrobial Use on Commercial Broiler Farms in Pakistan
by Qamer Mahmood, Ilias Chantziaras and Jeroen Dewulf
Animals 2024, 14(23), 3510; https://doi.org/10.3390/ani14233510 - 4 Dec 2024
Viewed by 2006
Abstract
Pakistan has a large, intensive broiler production industry, where antimicrobials are extensively used for both therapeutic and prophylactic purposes. Monitoring antimicrobial use (AMU) at the farm level is crucial to guide interventions for antimicrobial stewardship. The objective of this study was to comprehensively [...] Read more.
Pakistan has a large, intensive broiler production industry, where antimicrobials are extensively used for both therapeutic and prophylactic purposes. Monitoring antimicrobial use (AMU) at the farm level is crucial to guide interventions for antimicrobial stewardship. The objective of this study was to comprehensively quantify AMU on commercial broiler farms in Pakistan using different metrics. Data on on-farm AMU (both therapeutic and prophylactic) were collected from intensive commercial broiler farms in Punjab, Pakistan. AMU was quantified using four different metrics: treatment incidence (TI) based on defined daily dose (TIDDDvetPK), TI based on defined course dose (TIDCDvetPK), TI based on used daily dose (TIUDDvetPK), and mg/kg biomass. The median TIDDDvetPK, TIDCDvetPK, TIUDDvetPK, and mg/kg biomass values were 57.7 (7.5–257.9), 13.3 (1.8–52.5), 75.3 (21.1–182.9), and 301 (46.8–1009.6), respectively, based on 741 group treatments given at 100 participating farms with 225 flocks. About 34% treatments were administered for therapeutic purposes, with 66% administered as prophylaxis. A total of 41 active substances, distributed across 17 antimicrobial classes, were identified from 139 commercial antimicrobial products used. The most commonly used active substances (AS), out of total 741 group treatments, were colistin (polymyxins) at 17%, enrofloxacin (quinolones) at 8%, neomycin (aminoglycosides) and amoxicillin (aminopenicillins) at 7% each, and procaine penicillin (NS penicillins) and streptomycin (aminoglycosides) at 6% each. According to the WHO categorization, 57% of the used AS were found to be critically important antimicrobials (CIAs) for human medicine. As many as 30% of treatments were administered in the first week (13% on the first day of production), and the main indication was prophylaxis for early chick mortality, followed by 21% in week 5, with main indication being feed supplements for necrotic enteritis. The average weight at slaughtering was 2.25 kg, gained after an average of 44 days of the production cycle. The alarmingly high AMU in Pakistani broiler production emphasizes the urgent need to reduce AMU, particularly involving CIAs and the prophylactic use of antimicrobials. This can be achieved by improving farm management practices and strengthening regulatory oversight to enable prudent antimicrobial use, eventually reducing the risk of AMR. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

Back to TopTop