Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = pearlite morphology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13011 KB  
Article
Fabrication and Thermomechanical Processing of a Microalloyed Steel Containing In Situ TiB2 Particles for Automotive Applications
by Sulayman Khan, Yunus Azakli, William Pulfrey, Oliver Naeth, Ralf Rablbauer, Martin Jackson and Eric J. Palmiere
Metals 2025, 15(12), 1322; https://doi.org/10.3390/met15121322 - 30 Nov 2025
Viewed by 288
Abstract
A microalloyed (MA) steel, combined with titanium diboride (TiB2), was utilised to create a unique steel matrix composite (SMC), enhancing the modulus of the MA steel while also improving its strength. Through thermomechanical processing stages, including hot rolling and plane-strain compression [...] Read more.
A microalloyed (MA) steel, combined with titanium diboride (TiB2), was utilised to create a unique steel matrix composite (SMC), enhancing the modulus of the MA steel while also improving its strength. Through thermomechanical processing stages, including hot rolling and plane-strain compression (PSC) testing, followed by various final cooling methods, a cooling rate of 0.1 °C/s was identified as the most effective for achieving a ferrite–pearlite microstructure, which is suitable for toughness and ductility. With TiB2 reinforcement successfully incorporated via Fe-Ti and Fe-B additions during vacuum induction melting (VIM), it was observed that the TiB2 particles were homogeneously dispersed in both 5% and 7.5% nominal volume fraction additions, exhibiting faceted and hexagonal morphology. TiB2 was found to exert a grain-pinning effect on recrystallised austenite at 1050 °C, as evidenced by the retention of grain orientation from hot rolling, in contrast to the MA steel deformed without the composite reinforcement. Increasing the volume fraction of TiB2 improved the stiffness and strength of both composite alloys, verified through mechanical testing. Full article
Show Figures

Figure 1

13 pages, 4531 KB  
Article
Enhancing Automotive Valve Guide Tribomechanical Performance Through Alloy Optimization in Powder Metallurgy
by Fujian Guo, Zhongyuan Yan, Guangyi Lu, Wenle Liu, Pan Zhang and Gengzhe Shen
Metals 2025, 15(12), 1301; https://doi.org/10.3390/met15121301 - 26 Nov 2025
Viewed by 288
Abstract
Given the critical role of valve guides in the performance and lifespan of automotive engines, it is crucial to understand and improve their wear resistance. This study focuses on the wear resistance of powder metallurgy valve guides, aiming to systematically analyze the intrinsic [...] Read more.
Given the critical role of valve guides in the performance and lifespan of automotive engines, it is crucial to understand and improve their wear resistance. This study focuses on the wear resistance of powder metallurgy valve guides, aiming to systematically analyze the intrinsic relationship between their composition, microstructure, and properties. Three powder metallurgy valve guide samples with different compositions—specifically, a high-MoS2 Fe-C-Mo-Cu-S alloy (1.5 wt.% C, 1.9 wt.% Mo, 1.5 wt.% Cu, 1.4 wt.% S), a low-MoS2 Fe-C-Mo-Cu-S alloy (1.2 wt.% C, 0.3 wt.% Mo, 0.8 wt.% Cu, 0.2 wt.% S), and a Mo-free high-C-Cu Fe-C alloy (1.8 wt.% C, 5 wt.% Cu, 0 wt.% Mo, 0.01 wt.% S)—were studied using field emission scanning electron microscopy, metallographic microscopy, a reciprocating friction testing machine, and a 3D optical profilometer. The results show that the friction coefficient of the high-MoS2 Fe-C-Mo-Cu-S alloy is the highest at 0.5, the low-MoS2 Fe-C-Mo-Cu-S alloy is 0.25, and the Mo-free high-C-Cu Fe-C alloy is the lowest at 0.22. Since the minor wear amount cannot be accurately measured by the gravimetric method, the concave area of the wear-induced average roughness curve is employed to qualitatively indicate the magnitude of material loss: the area of the high-MoS2 Fe-C-Mo-Cu-S alloy is 2964 μm2, the low-MoS2 Fe-C-Mo-Cu-S alloy is 1580 μm2, and the Mo-free high-C-Cu Fe-C alloy is 1502 μm2. The hardness results of the material show that the high-MoS2 Fe-C-Mo-Cu-S alloy reaches 154 HB, the low-MoS2 Fe-C-Mo-Cu-S alloy is 134 HB, and the Mo-free high-C-Cu Fe-C alloy is 145 HB. The porosity results show a difference of about 2% among the three alloys. Based on the microstructure characterization results, it can be concluded that the Mo-free high-C-Cu Fe-C alloy—with high carbon (C) and copper (Cu) content and fine pearlite layers—exhibits excellent wear resistance: high C can improve the hardness of the matrix, while Cu can act as a lubricating phase to enhance the material’s wear resistance. In contrast, although the addition of MoS2 is intended to improve wear resistance, the irregular pearlite generated by MoS2 reduces the wear resistance of the high-MoS2 and low-MoS2 Fe-C-Mo-Cu-S alloys; among them, the high-MoS2 Fe-C-Mo-Cu-S alloy contains a higher amount of MoS2, and large chunks appearing in the tissue easily cause abrasive wear and aggravate material wear during friction. This study provides solid theoretical and practical support for the material selection and performance optimization of powder metallurgy engine valve guides: the identified intrinsic relationship between alloy composition (MoS2, C, and Cu contents), microstructure (pearlite morphology and second-phase distribution), and tribological performance establishes a clear theoretical basis for regulating the wear resistance of such components. Full article
Show Figures

Figure 1

22 pages, 8997 KB  
Article
Thermomechanical Processing of Medium-Carbon Boron-Bearing Microalloyed-Steel Forgings Targeting Normalized-like Structure and Properties
by Piotr Skubisz, Piotr Micek and Stanisław Flaga
Materials 2025, 18(21), 4871; https://doi.org/10.3390/ma18214871 - 24 Oct 2025
Viewed by 447
Abstract
The paper presents designing thermomechanical processing routes for medium-carbon boron-bearing microalloyed steel and investigates their effect on microstructure–property characteristics obtained through controlled cooling directly from hot forging temperature. Direct cooling was carried out in situ within the industrial process of hot forging, replacing [...] Read more.
The paper presents designing thermomechanical processing routes for medium-carbon boron-bearing microalloyed steel and investigates their effect on microstructure–property characteristics obtained through controlled cooling directly from hot forging temperature. Direct cooling was carried out in situ within the industrial process of hot forging, replacing conventional heat treatment with slow and accelerated air cooling, realized with a fully automated fan-cooling laboratory conveyor which accommodates the desired cooling strategy. Comparative analysis of conventionally normalized and direct-cooled microstructure and mechanical properties obtained under varied thermo-mechanical conditions is presented to investigate the potential of medium-carbon microalloyed steel with boron addition for producing tailored properties comparable to those of the normalized condition. The obtained microstructure composed of grain-boundary ferrite and pearlite which resulted in tensile properties as good as Re ≈ 610 MPa, Rm ≈ 910 MPa, and elongation A5 ≥ 12%. Although the achieved microstructure–property parameters differ from those achieved through conventional normalizing (Rm ≤ 780 MPa, Re ≤ 460 MPa, and A ≥ 14%), they are considerable in terms of selected machinability aspects. The observed effect of the imposed treatment strategies on interlamellar spacing and morphology of ferrite showed possibilities regarding the control of mechanical properties and application of direct cooling as a beneficial alternative to conventional normalizing, where energy consumption is the main concern in manufacturing high-duty parts made of boron-bearing microalloyed steel 35MnTiB4. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 2334 KB  
Article
Effect of Imposed Shear During Oval-Caliber Rolling on the Properties of Mn–Si Low-Alloy Steel
by Kairosh Nogayev, Maxat Abishkenov, Zhassulan Ashkeyev, Gulzhainat Akhmetova, Saltanat Kydyrbayeva and Ilgar Tavshanov
Eng 2025, 6(10), 265; https://doi.org/10.3390/eng6100265 - 4 Oct 2025
Viewed by 407
Abstract
The present study examines the effect of a modified oval–round rolling scheme incorporating inclined oval calibers on the mechanical behavior and microstructural evolution of Mn–Si low-alloy steel (25G2S). Cylindrical billets were hot rolled through both classical and modified sequences under identical thermal and [...] Read more.
The present study examines the effect of a modified oval–round rolling scheme incorporating inclined oval calibers on the mechanical behavior and microstructural evolution of Mn–Si low-alloy steel (25G2S). Cylindrical billets were hot rolled through both classical and modified sequences under identical thermal and kinematic conditions. Tensile testing demonstrated that, relative to the unrolled condition (σ0.2 ≈ 269 MPa; σᵤ ≈ 494 MPa), the classical route increased yield and ultimate strengths to ~444 MPa and ~584 MPa, respectively, whereas the modified scheme yielded comparable values (~433 MPa and ~572 MPa) while providing superior ductility (δ ≈ 26.8%, ψ ≈ 68.6%). Vickers microhardness decreased systematically from 244 HV (unrolled) to 213 HV (classical) and 184 HV (modified), with the modified scheme exhibiting the lowest scatter (±4.8 HV), confirming enhanced structural uniformity. Scanning electron microscopy revealed ferrite–pearlite refinement under both rolling sequences, with the modified scheme producing finer equiaxed ferrite grains (~3–5 µm) and attenuated longitudinal banding. These features are indicative of shear-assisted dynamic recrystallization, activated by the inclined oval calibers. The findings highlight that the modified rolling strategy achieves a favorable strength–ductility balance and improved homogeneity, suggesting its applicability for advanced thermomechanical processing of low-alloy steels. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

16 pages, 7974 KB  
Article
The Impact of Hydrogen Charging Time on Microstructural Alterations in Pipeline Low-Carbon Ferrite–Pearlite Steel
by Vanya Dyakova, Boris Yanachkov, Kateryna Valuiska, Yana Mourdjeva, Rumen Krastev, Tatiana Simeonova, Krasimir Kolev, Rumyana Lazarova and Ivaylo Katzarov
Metals 2025, 15(10), 1079; https://doi.org/10.3390/met15101079 - 27 Sep 2025
Viewed by 745
Abstract
This study investigates the effect of hydrogen charging time on the mechanical properties and microstructural evolution of low-carbon ferrite–pearlite steel that has been in service for over 30 years in natural gas transmission. Specimens were subjected to in-situ electrochemical hydrogen charging for varying [...] Read more.
This study investigates the effect of hydrogen charging time on the mechanical properties and microstructural evolution of low-carbon ferrite–pearlite steel that has been in service for over 30 years in natural gas transmission. Specimens were subjected to in-situ electrochemical hydrogen charging for varying durations, followed by tensile testing. Detailed microstructural analysis was performed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Despite negligible changes in the overall hydrogen content (CH≈ 4.0 wppm), significant alterations in fracture morphology were observed. Fractographic and TEM analyses revealed a clear transition from ductile fracture in uncharged specimens to a predominance of brittle fracture modes (quasi-cleavage, intergranular, and transgranular) in hydrogen-charged samples. The results show time-dependent microstructural changes, including increased dislocation density and the formation of prismatic loop debris, particularly within the ferrite phase. Prolonged charging leads to localized embrittlement, which is explained by enhanced hydrogen trapping at ferrite-cementite boundaries, grain boundaries, and dislocation cores. TEM investigations further indicated a sequential activation of hydrogen embrittlement mechanisms: initially, Hydrogen-Enhanced Localized Plasticity (HELP) dominates within ferrite grains, followed by Hydrogen-Enhanced Decohesion (HEDE), particularly at ferrite-cementite interfaces in pearlite colonies. These findings demonstrate that extended hydrogen charging promotes defect localization, dislocation pinning, and interface decohesion, ultimately accelerating fracture propagation. The study provides valuable insight into the degradation mechanisms of ferrite-pearlite steels exposed to hydrogen, highlighting the importance of charging time. The results are essential for assessing the reliability of legacy pipeline steels and guiding their safe use in future hydrogen transport infrastructure. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals: Behaviors and Mechanisms)
Show Figures

Figure 1

22 pages, 6208 KB  
Article
Corrosion Behavior of Annealed 20MnCr5 Steel
by Dario Kvrgić, Lovro Liverić, Paweł Nuckowski and Sunčana Smokvina Hanza
Materials 2025, 18(15), 3566; https://doi.org/10.3390/ma18153566 - 30 Jul 2025
Viewed by 683
Abstract
This study investigated the influence of various annealing treatments on the microstructure and corrosion behavior of 20MnCr5 steel in a 3.5% NaCl solution. A combination of microstructural analysis, hardness testing, and electrochemical techniques was used to comprehensively characterize each condition. To enhance data [...] Read more.
This study investigated the influence of various annealing treatments on the microstructure and corrosion behavior of 20MnCr5 steel in a 3.5% NaCl solution. A combination of microstructural analysis, hardness testing, and electrochemical techniques was used to comprehensively characterize each condition. To enhance data interpretability, a correlation analysis was performed and visualized through a correlation diagram, enabling statistical assessment of the relationships between grain features, phase distribution, mechanical properties, and corrosion indicators. The results demonstrated that corrosion resistance in 20MnCr5 steel is not governed by a single parameter but by the interplay between grain size, morphology, and phase balance. Excessive pearlite content or coarse, irregular grains were consistently associated with higher corrosion rates and lower electrochemical stability. In contrast, a moderate phase ratio and equiaxed grain structure, achieved through normalization, resulted in better corrosion resistance, confirmed by the highest polarization resistance and lowest corrosion current density values among all samples. Although increased grain refinement improved the hardness, it did not always correlate with a better corrosion performance, especially when morphological uniformity was lacking. This highlights the importance of balancing mechanical and corrosion properties through carefully controlled thermal processing. Full article
Show Figures

Figure 1

14 pages, 5818 KB  
Article
Impact of Heat Treatment on Microstructure Evolution in Grey Cast Iron EN-GJL-300
by Peter Petruš, Igor Barényi, Jozef Majerík, Michal Krbata, Marcel Kohutiar, Ingrid Kovaříková and Martin Bilka
Metals 2025, 15(5), 530; https://doi.org/10.3390/met15050530 - 8 May 2025
Cited by 1 | Viewed by 4182
Abstract
This work investigated changes in the microstructure and local mechanical properties after the application of selected heat treatments to EN-GJL-300 grey cast iron. The main goal was to optimize heat treatment to achieve increased mechanical properties and subsequently wear resistance. The heat and [...] Read more.
This work investigated changes in the microstructure and local mechanical properties after the application of selected heat treatments to EN-GJL-300 grey cast iron. The main goal was to optimize heat treatment to achieve increased mechanical properties and subsequently wear resistance. The heat and heat–mechanical treatment were investigated by using a dilatometer as a physical simulator of treatment on real samples. Continuous cooling with three different rates and two other non-continuous treatments (austempering and ausforming) were used to treat the experimental samples. The research was focused on modification of the matrix microstructure, initially pearlitic. No change in the shape or morphology of the graphitic lamellae was required to preserve the damping properties. The results showed that, in terms of the specified conditions, heat treatment with continuous cooling at a rate of 10 °C s−1 appeared to be optimal. This variant showed the presence of bainite and martensite in the microstructure with high hardness measured by nanoindentation as well as the optimal value of general Brinell hardness. Full article
Show Figures

Figure 1

10 pages, 5242 KB  
Article
Morphology and Formation of Chrysanthemum-like Pearlite in 100Mn13 Steel During Aging Treatment
by Bo Liang, Jiaoyang Sun, Zhimin Ding, Rujin Tian and Feng Yan
Crystals 2025, 15(1), 65; https://doi.org/10.3390/cryst15010065 - 11 Jan 2025
Cited by 1 | Viewed by 984
Abstract
The morphology and microstructure of pearlite formed in 100Mn13 high-carbon high-manganese steel aged, respectively, at 525 °C and 650 °C after 1050 °C water toughening treatment were observed and analyzed by a scanning electron microscope (SEM) and transmission electron microscope (TEM). The results [...] Read more.
The morphology and microstructure of pearlite formed in 100Mn13 high-carbon high-manganese steel aged, respectively, at 525 °C and 650 °C after 1050 °C water toughening treatment were observed and analyzed by a scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that some pearlite colonies are chrysanthemum-like and are composed of M7C3 lamellae and ferrite lamellae, maintaining an orientation relationship (OR) of (3¯312)M7C3‖(0 2¯ 4)α, [4 0 1]M7C3‖[5 2 1]α. Moreover, the lamellae in pearlite colonies with chrysanthemum-like morphology are distributed in an emanative way, where there are protrusions and branches at the growth frontier. A growth physical model describing the growth process of chrysanthemum-like pearlite is proposed. Full article
Show Figures

Figure 1

13 pages, 29741 KB  
Article
Effect of Initial Intergranular Ferrite Size on Induction Hardening Microstructure of Microalloyed Steel 38MnVS6
by Dequn Kong, Jian Zhou, Weiwei Dong, Li Cai and Chunyu Qu
Crystals 2024, 14(9), 827; https://doi.org/10.3390/cryst14090827 - 22 Sep 2024
Cited by 2 | Viewed by 2487
Abstract
In this study, we investigated the effect of grain size of an initial microstructure (pearlite + ferrite) on a resulting microstructure of induction-hardened microalloyed steel 38MnVS6, which is one topical medium carbon vanadium microalloyed non-quenched and tempered steel used in manufacturing crankshafts for [...] Read more.
In this study, we investigated the effect of grain size of an initial microstructure (pearlite + ferrite) on a resulting microstructure of induction-hardened microalloyed steel 38MnVS6, which is one topical medium carbon vanadium microalloyed non-quenched and tempered steel used in manufacturing crankshafts for high-power engines. The results show that a coarse initial microstructure could contribute to the incomplete transformation of pearlite + ferrite into austenite in reaustenitization transformation by rapid heating, and the undissolved ferrite remains and locates between the neighboring prior austenite grains after the induction-hardening process. As the coarseness level of the initial microstructure increases from 102 μm to 156 μm, the morphology of undissolved ferrite varies as granule, film, semi-network, and network, in sequence. The undissolved ferrite structures have a thickness of 250–500 nm and appear dark under an optical metallographic view field. To achieve better engineering applications, it is not recommended to eliminate the undissolved ferrite by increasing much heating time for samples with coarser initial microstructures. It is better to achieve a fine original microstructure before the induction-hardening process. For example, microalloying addition of vanadium and titanium plays a role of metallurgical grain refinement via intragranular ferrite nucleation on more sites, and the heating temperature and time of the forging process should be strictly controlled to ensure the existence of fine prior austenite grains before subsequent isothermal phase transformation to pearlite + ferrite. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

38 pages, 51686 KB  
Article
Analyzing the Effects of Cr and Mo on the Pearlite Formation in Hypereutectoid Steel Using Experiments and Phase Field Numerical Simulations
by Faisal Qayyum, Ali Cheloee Darabi, Sergey Guk, Vinzenz Guski, Siegfried Schmauder and Ulrich Prahl
Materials 2024, 17(14), 3538; https://doi.org/10.3390/ma17143538 - 17 Jul 2024
Cited by 3 | Viewed by 2688
Abstract
In this study, we quantitatively investigate the impact of 1.4 wt.% chromium and 1.4 wt.% molybdenum additions on pearlitic microstructure characteristics in 1 wt.% carbon steels. The study was carried out using a combination of experimental methods and phase field simulations. We utilized [...] Read more.
In this study, we quantitatively investigate the impact of 1.4 wt.% chromium and 1.4 wt.% molybdenum additions on pearlitic microstructure characteristics in 1 wt.% carbon steels. The study was carried out using a combination of experimental methods and phase field simulations. We utilized MatCalc v5.51 and JMatPro v12 to predict transformation behaviors, and electron microscopy for microstructural examination, focusing on pearlite morphology under varying thermal conditions. Phase field simulations were carried out using MICRESS v7.2 software and, informed by thermodynamic data from MatCalc v5.51 and the literature, were conducted to replicate pearlite formation, demonstrating a good agreement with the experimental observations. In this work, we introduced a semi-automatic reliable microstructural analysis method, quantifying features like lamella dimensions and spacing through image processing by Fiji ImageJ v1.54f. The introduction of Cr resulted in longer, thinner, and more homogeneously distributed cementite lamellae, while Mo led to shorter, thicker lamellae. Phase field simulations accurately predicted these trends and showed that alloying with Cr or Mo increases the density and circularity of the lamellae. Our results demonstrate that Cr stabilizes pearlite formation, promoting a uniform microstructure, whereas Mo affects the morphology without enhancing homogeneity. The phase field model, validated by experimental data, provides insights into the morphological changes induced by these alloying elements, supporting the optimization of steel processing conditions. Full article
Show Figures

Figure 1

20 pages, 23576 KB  
Article
Effect of Coiling Temperature on Microstructures and Precipitates in High-Strength Low-Alloy Pipeline Steel after Heavy Reduction during a Six-Pass Rolling Thermo-Mechanical Controlled Process
by Yicong Lei, Wen Yang, Charles W. Siyasiya and Zhenghua Tang
Metals 2024, 14(2), 249; https://doi.org/10.3390/met14020249 - 18 Feb 2024
Cited by 2 | Viewed by 2366
Abstract
Nb-Ti high-strength low-alloy pipeline steel was subjected to a six-pass rolling process followed by the coiling process at different temperatures between 600 and 650 °C using the thermo-mechanical testing system Gleeble 3500 (Gleeble, New York, NY, USA). This experimental steel was subjected to [...] Read more.
Nb-Ti high-strength low-alloy pipeline steel was subjected to a six-pass rolling process followed by the coiling process at different temperatures between 600 and 650 °C using the thermo-mechanical testing system Gleeble 3500 (Gleeble, New York, NY, USA). This experimental steel was subjected to 72% heavy reduction through a thermos-mechanical controlled process. Thereafter, the microstructures were observed using optical microscopy, scanning electron microscopy, electron backscatter scanning diffraction, and transmission electron microscopy coupled with energy dispersive spectrometry and selected area electron diffraction. For the selected three coiling temperatures of 600, 625, and 650 °C, acicular ferrite, polygonal ferrite, and pearlite were observed, and morphology and statistical analysis were adopted for the study of precipitates. Based on the estimation by the Ashby–Orowan formula, the incremental strength through precipitation strengthening decreases with coiling temperatures and reaches 26.67 Mpa at a coiling temperature of 600 °C. Precipitation-time-temperature curves were obtained to explain the transformation of precipitates. The (Nb, Ti)(C, N) particles tended to precipitate in the acicular ferrite with [011](Nb, Ti)(C, N)//[011]α-Fe orientation. The lower coiling temperature provided enough driving force for the nucleation of precipitates while inhibiting their growth. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

11 pages, 7789 KB  
Article
Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of SCM435 Steel
by Jilin Chen, Guanghong Feng, Yaxu Zheng, Peng Lin, Lijun Wang and Yongchao Li
Metals 2024, 14(2), 140; https://doi.org/10.3390/met14020140 - 24 Jan 2024
Cited by 5 | Viewed by 4544
Abstract
The microstructural evolution of SCM435 cold heading steel at different cooling rates was investigated by means of scanning electron microscopy, TEM, XRD, and electron backscatter diffraction. The results show that the cooling rate has a significant effect on the microstructure of the experimental [...] Read more.
The microstructural evolution of SCM435 cold heading steel at different cooling rates was investigated by means of scanning electron microscopy, TEM, XRD, and electron backscatter diffraction. The results show that the cooling rate has a significant effect on the microstructure of the experimental steel. With an acceleration in the cooling, the microstructure of the steel gradually changed from ferrite and pearlite to ferrite, pearlite, and granular bainite; finally, the pearlite disappeared, and the microstructure changed to acicular ferrite, bainite, and martensite. With an increase in the cooling rate, the morphology of the carbide underwent an evolution from sheet carbide to short-rod carbide, granular carbide, and ultimately thin-strip carbide. With the acceleration in cooling, the proportion of large-angle grain boundaries gradually decreased, and the area of small-angle grain boundaries gradually increased. When the cooling rate was 0.1 °C/s, the proportion of large-angle grain boundaries was as high as 52.8%, and the dislocation density was only 1.91 × 1012 cm−2. When the cooling rate was 2.0 °C/s, the proportion of large-angle grain boundaries was only 27.1%, and the dislocation density increased to 5.38 × 1012 cm−2. With the increase in the cooling rate, the depth of the decarbonization layer and the thickness of the scale oxide gradually decreased, the proportion of the FeO phase in the scale phase gradually decreased, and the proportion of the Fe3O4 phase and Fe2O3 phase gradually increased. The tensile strength increased monotonously with the increase in cooling rate, whereas the elongation and area reduction first decreased, then increased, and then decreased. When the cooling rate was 1.0 m/s, the short rod and granular bainite in the material structure endowed the SCM435 steel with excellent strength and toughness matching, and the tensile strength and elongation of the steel reached 895 MPa and 24%, respectively. Full article
(This article belongs to the Special Issue Design and Development of High-Strength Low-Alloy Steels)
Show Figures

Figure 1

14 pages, 5755 KB  
Article
Influence of the Morphology of Eutectoid Steels on Corrosion Resistance in NaCl Aqueous Medium with and without CO2
by Francisco Felipe de M. Fideles, Mauro Andres C. Florez, Maria Veronica G. Rodrigues, Jorge Luiz Cardoso, Clodualdo Aranas, Samuel F. Rodrigues, Marcos Natan da S. Lima, Caio Victor P. Pascoal, Thiago Alves de Moura, Gedeon S. Reis, Eden S. Silva and Hamilton F. Gomes de Abreu
Metals 2023, 13(10), 1782; https://doi.org/10.3390/met13101782 - 20 Oct 2023
Cited by 3 | Viewed by 1821
Abstract
This study conducts a comparative electrochemical evaluation of three types of pearlitic steels used in flexible pipelines for oil transport in marine environments. The steels have been manufactured with chemical composition and geometry variations to optimize operation performance under adverse conditions. Electrochemical tests [...] Read more.
This study conducts a comparative electrochemical evaluation of three types of pearlitic steels used in flexible pipelines for oil transport in marine environments. The steels have been manufactured with chemical composition and geometry variations to optimize operation performance under adverse conditions. Electrochemical tests were conducted using solutions simulating marine environments with NaCl and CO2, and at high temperatures. The results indicated that spheroidized (SC) steel demonstrated the best corrosion resistance under these specific conditions. Additionally, the Raman spectroscopy characterization technique was used to analyze the layers of corrosion products formed during the tests, identifying the presence of FeCO3 (siderite) and other corrosive oxides. These discoveries are valuable for selecting and improving materials in flexible pipelines used in oil production in marine waters. The study highlights the importance of the cementite morphology present in pearlite as a relevant factor in the corrosive behavior of steels, contributing to the development of more efficient and durable solutions for the offshore oil and gas industry. Full article
(This article belongs to the Special Issue Electrochemical Corrosion and Protection of Steels and Alloys)
Show Figures

Figure 1

12 pages, 2625 KB  
Article
Evolution of Cementite Substructure of Rails from Hypereutectoid Steel during Operation
by Victor Gromov, Yurii Ivanov, Mikhail Porfiriev and Yulia Shliarova
Metals 2023, 13(10), 1688; https://doi.org/10.3390/met13101688 - 3 Oct 2023
Viewed by 1920
Abstract
Transmission electron microscopy methods were used to analyze the cementite substructure in the head of special-purpose long rails of the DT400IK category, made of hypereutectoid steel, after long-term operation on an experimental track on the Russian Railways ring (the tonnage was 187 million [...] Read more.
Transmission electron microscopy methods were used to analyze the cementite substructure in the head of special-purpose long rails of the DT400IK category, made of hypereutectoid steel, after long-term operation on an experimental track on the Russian Railways ring (the tonnage was 187 million tons). It is noted that the study of various aspects of cementite—its structure, morphology, chemical composition, crystal lattice defects—is relevant. The steel structure is represented by three morphological components at a distance of 10 mm from the sample surface: lamellar perlite, fractured and fragmented perlite. The volume fraction of lamellar perlite in the material is 65%. It is shown that after operation, the cementite plates are bent and separated by ferrite bridges. In the plates of ferrite and cementite, a dislocation substructure is formed, which is of a chaotically distributed and network type in ferrite and of an ordered type in cementite. An increased density of dislocations at the ferrite–cementite interfaces compared to the volume of ferrite plates was noted. Two possible mechanisms of deformation transformation of lamellar perlite grains are indicated: fracture of cementite plates and carbon pulling out from the lattice of the carbide phase. It is indicated that in the dissolution of cementite plates, the interfacial boundaries of “α-phase-cementite” play an important role. The removal of carbon from cementite plates occurs most intensively near defects in ferrite and cementite. The formed nanosized particles of tertiary cementite are unevenly distributed in the ferrite plates; most of them are observed at the locations of ferrite subgrains and interfacial boundaries. This results in non-uniform diffraction contrast in dark-field images of cementite plates. Nanosized particles of cementite can be taken out into the interlamellar space of pearlite colonies in the process of dislocation slip, or they are formed as a result of deformation decomposition, which is less likely. The fragmentation of ferrite and cementite plates is revealed and azimuthal components of total misorientation angles are estimated. The mechanisms of mass transfer of carbon atoms over interstitial sites, deformation vacancies, dislocation tubes, grain boundaries and fragments are considered. According to all the established patterns of the cementite substructure transformation, a comparison with the results for rails made of hypoeutectoid steel was performed. Full article
Show Figures

Figure 1

15 pages, 6332 KB  
Article
Mechanism and Effect Factor of Toughening of High-Speed Train Wheels
by Tuosheng Jia, Cuirong Liu, Zhigang Shen and Zhisheng Wu
Appl. Sci. 2023, 13(14), 8300; https://doi.org/10.3390/app13148300 - 18 Jul 2023
Cited by 1 | Viewed by 2393
Abstract
The wheel of high-speed trains requires high strength and hardness while imposing high demands on plasticity and toughness, resulting from the needs of working conditions. The fracture toughness KQ, as an important indicator of dynamics, often varies in the wheel, which affects the [...] Read more.
The wheel of high-speed trains requires high strength and hardness while imposing high demands on plasticity and toughness, resulting from the needs of working conditions. The fracture toughness KQ, as an important indicator of dynamics, often varies in the wheel, which affects the overall performance of the wheel. This work performs tests and analyses on typical samples with large fracture differences in fracture toughness at the same position and uniformly distributed on the same wheel. The mechanism of fracture toughness fluctuation is investigated, and the factors affecting fracture toughness are identified. The test mainly focuses on macroperformance, microfracture morphology, inclusion category and shape influence, pearlite lamellar spacing, and pearlite block size. Optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and quantitative metallographic technology were employed to investigate the mechanism and influence factors on fracture toughness fluctuation. The analysis shows that the width of the ductile laceration zone is directly correlated with the toughness, and the toughness level is influenced by the cleavage size, pearlite lamellar spacing, and pearlite block uniformity. Full article
Show Figures

Figure 1

Back to TopTop