Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = peak radiated interference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7287 KB  
Article
Investigating the Spectral Characteristics of High-Temperature Gases in Low-Carbon Chemical Pool Fires and Developing a Spectral Model
by Gengfeng Jiang, Zhili Chen, Yaquan Liang, Peng Li, Qiang Liu and Lv Zhou
Toxics 2025, 13(10), 877; https://doi.org/10.3390/toxics13100877 - 14 Oct 2025
Viewed by 435
Abstract
Low-carbon chemical fires pose significant hazards, and remote sensing of high-temperature gas emissions from these fires is a critical method for identifying and assessing their environmental impact. Analyzing the spectral characteristics of gases produced by low-carbon chemical pool fires and developing spectral radiation [...] Read more.
Low-carbon chemical fires pose significant hazards, and remote sensing of high-temperature gas emissions from these fires is a critical method for identifying and assessing their environmental impact. Analyzing the spectral characteristics of gases produced by low-carbon chemical pool fires and developing spectral radiation models can establish a foundation for remote pollution monitoring. However, such studies remain scarce. Using a custom-built high-temperature gas spectroscopy platform, this study extracts spectral features of gases emitted by low-carbon chemical pool fires. We investigate spectral interference mechanisms among combustion products and develop a high-precision spectral radiation model to support remote fire pollution monitoring. Experimental results reveal distinct spectral bands for key gases: CO2 peaks near 2.7 μm and 4.35 μm, SO2 at 4.05 μm, 7.5 μm, and 9.0 μm, NO at 5.5 μm, and NO2 at 3.6 μm and 6.3 μm. The proposed spectral radiation model accurately simulates the position and shape of spectral peaks. For carbon disulfide and acetonitrile combustion products, the model achieves prediction accuracies of 83.4–96.9% and 79.2–95.3%, respectively. Full article
Show Figures

Graphical abstract

18 pages, 433 KB  
Article
Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration
by Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas and Abdelkader Makhoute
Atoms 2025, 13(7), 63; https://doi.org/10.3390/atoms13070063 - 1 Jul 2025
Viewed by 642
Abstract
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) [...] Read more.
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) radiation in the presence of a strong, synchronized NIR pulse. The theoretical investigation is conducted using an ab initio method to solve the time-dependent Schrödinger equation within the single active electron (SAE) approximation. The simulation results show a sequence of above-threshold ionization (ATI) peaks that shift to lower energies with increasing laser intensity. This behavior reflects the onset of the Stark effect, which modifies atomic energy levels and increases the number of photons required for ionization. An examination of the two-color photoionization spectrum, which includes sideband structures and harmonic peaks, shows how the ionization probability is redistributed between the direct path (single XUV photon absorption) and sideband pathways (XUV ± n × IR) as the intensity of the infrared field increases. Quantum interference between continuum states is further revealed by the photoelectron angular distribution, clearly indicating the control of ionization dynamics by the IR field. Full article
Show Figures

Figure 1

28 pages, 6574 KB  
Article
Design of Segmented Ultra-Wideband TEM Horn Antenna for Calibration of Wideband Electromagnetic Pulse Sensors
by Tianchi Zhang, Yongli Wei, Yuan Wang, Changjiao Duan, Lihua Wang, Zongxiang Li, Xiao Li, Xin Li and Baofeng Cao
Sensors 2025, 25(12), 3599; https://doi.org/10.3390/s25123599 - 7 Jun 2025
Viewed by 926
Abstract
Wideband electromagnetic pulse detection is a crucial method for lightning disaster monitoring. However, the random nature of lightning events presents challenges in fulfilling real-time calibration requirements for electromagnetic pulse sensors. This paper introduces a segmented ultra-wideband TEM horn antenna tailored for portable calibration [...] Read more.
Wideband electromagnetic pulse detection is a crucial method for lightning disaster monitoring. However, the random nature of lightning events presents challenges in fulfilling real-time calibration requirements for electromagnetic pulse sensors. This paper introduces a segmented ultra-wideband TEM horn antenna tailored for portable calibration experiments in electromagnetic pulse detection systems. The radiating plates feature a four-section polygonal design, and an end-loaded metal plate is integrated to reduce reflection signal interference. Rigorous simulation analyses were performed on three key factors impacting antenna radiation performance: aperture impedance, tapering profile, and end loading configuration. Experimental results show that the designed antenna achieves a peak field strength of 48.9 V/m at a 10 m distance, with a rise time of 0.87 ns and a full width at half maximum of 1.75 ns. The operating frequency ranges from 48 MHz to 150 MHz, with main lobe beamwidths of 43° and 83° in the E-plane and H-plane radiation patterns, respectively. These parameters meet the technical requirements for electromagnetic pulse sensor calibration experiments. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

10 pages, 2671 KB  
Proceeding Paper
Enhancing Solar Radiation Storm Forecasting with Machine Learning and Physics Models at Korea Space Weather Center
by Ji-Hoon Ha, Jae-Hyung Lee, JaeHun Kim, Jong-Yeon Yun, Sang Cheol Han and Wonhyeong Yi
Eng. Proc. 2025, 94(1), 1; https://doi.org/10.3390/engproc2025094001 - 5 May 2025
Viewed by 908
Abstract
Solar radiation storms, caused by high-energy solar energetic particles (SEPs) released during solar flares or coronal mass ejections (CMEs), have a substantial impact on the Earth’s environment. These storms can disrupt satellite operations, interfere with high-frequency (HF) communications, and increase the radiation exposure [...] Read more.
Solar radiation storms, caused by high-energy solar energetic particles (SEPs) released during solar flares or coronal mass ejections (CMEs), have a substantial impact on the Earth’s environment. These storms can disrupt satellite operations, interfere with high-frequency (HF) communications, and increase the radiation exposure of high-altitude flights. To reduce these effects, the Korea Space Weather Center (KSWC) monitors and forecasts solar radiation storms using satellite data and predictive models. This paper introduces the space weather forecasting methods employed by the KSWC and the analysis approach for satellite data from GOES, SDO, the LASCO coronagraph, and STEREO. We introduce a predictive model for solar radiation storms, which is composed of two key components: (1) a machine learning model, which is trained using solar flare and CME data obtained from satellite observations, and (2) a physics-based model that incorporates the mechanisms of SEP generation through CMEs approaching the Earth. The machine learning model primarily forecasts the peak intensity of solar radiation storms based on real-time solar activity data, while the physics-informed model enhances the interpretability and understanding of the machine learning model’s predictions. The effectiveness and operability of this approach have been tested at the KSWC. Full article
Show Figures

Figure 1

15 pages, 8129 KB  
Article
A Peak Absorption Filtering Method for Radiated EMI from a High-Speed PWM Fan
by Jinsheng Yang, Yanhong Wei, Xuan Zhao, Chulin Wang and Pingan Du
Appl. Sci. 2025, 15(8), 4568; https://doi.org/10.3390/app15084568 - 21 Apr 2025
Cited by 1 | Viewed by 722
Abstract
Axial flow fans are widely used for heat dissipation in electronic devices. Due to its frequent speed-regulation to adapt to the change in heat load, a fan can cause significant electromagnetic radiation interference. In this study, a peak absorption filtering method is proposed [...] Read more.
Axial flow fans are widely used for heat dissipation in electronic devices. Due to its frequent speed-regulation to adapt to the change in heat load, a fan can cause significant electromagnetic radiation interference. In this study, a peak absorption filtering method is proposed to address the radiation interference issue in a high-speed PWM axial flow fan. The mechanism and coupling paths of radiation interference were analyzed, and a radiation interference calculation using finite integration technique by a hybrid field-circuit model and experimental measurement were conducted to identify the winding as the main source of radiation in PWM fan. Considering the limited space inside the fan, an integrated, non-inductive filtering circuit was designed to absorb the peak voltage entering the windings and the filter parameters are determined via circuit simulation. The measurement results indicate that the filtering method can reduce overall electromagnetic interference with a maximum peak reduction of 41.9 dB, without affecting the useful signals. Full article
(This article belongs to the Special Issue Trends and Prospects in Applied Electromagnetics)
Show Figures

Figure 1

23 pages, 18184 KB  
Article
A Wearable Dual-Band Magnetoelectric Dipole Rectenna for Radio Frequency Energy Harvesting
by Xin Sun, Jingwei Zhang, Wenjun Wang and Daping He
Electronics 2025, 14(7), 1314; https://doi.org/10.3390/electronics14071314 - 26 Mar 2025
Cited by 2 | Viewed by 1161
Abstract
This article presents a novel, compact, and flexible dual-band magnetoelectric dipole rectenna designed for radio frequency (RF) energy harvesting. The rectenna consists of a unique antenna structure, combining electric and magnetic dipoles to create unidirectional radiation patterns, minimizing interference from the human body. [...] Read more.
This article presents a novel, compact, and flexible dual-band magnetoelectric dipole rectenna designed for radio frequency (RF) energy harvesting. The rectenna consists of a unique antenna structure, combining electric and magnetic dipoles to create unidirectional radiation patterns, minimizing interference from the human body. The rectifier is integrated with the antenna through conjugate matching, eliminating the need for additional matching circuits, reducing circuit losses, minimizing design complexity, and improving conversion efficiency. The proposed rectenna utilizes a flexible graphene film as the radiating element, which offers excellent conductivity and corrosion resistance, enabling conformal operation in diverse scenarios. Simulation and experimental results show that the rectenna operates effectively at 3.5 GHz and 4.9 GHz, achieving peak conversion efficiencies of 53.43% and 43.95%, respectively, at an input power of 4 dBm. The simulated and measured results achieved good agreement. The rectenna maintains stable performance under various bending conditions, demonstrating its suitability for flexible, wearable RF energy-harvesting systems. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 3949 KB  
Article
A Simple AMC Antenna for Liquid Monitoring in an Infusion Bag
by Boyu Zhang and Zhijiao Chen
Sensors 2025, 25(6), 1675; https://doi.org/10.3390/s25061675 - 8 Mar 2025
Viewed by 1203
Abstract
Running-out detection of the liquids in an infusion bag is important for medical treatment. This paper proposed a simple low-cost sensing scheme with an artificial magnetic conductor (AMC) antenna for liquid-running-out detection in infusion bags. The proposed antenna consists of a dipole antenna [...] Read more.
Running-out detection of the liquids in an infusion bag is important for medical treatment. This paper proposed a simple low-cost sensing scheme with an artificial magnetic conductor (AMC) antenna for liquid-running-out detection in infusion bags. The proposed antenna consists of a dipole antenna supported by an AMC layer. It operates in the 2.4 GHz ISM band in the without-liquid state, in the 2.0 GHz ISM band in the with-liquid state, and can be used for liquid sensing. The AMC layer isolates interference from the surrounding environment such as the standing pole. It also enhances antenna performance and improves monitoring sensitivity. This gives a peak gain of 6.45 dBi and a radiation efficiency of 98% in the without-liquid state. Meanwhile, the with-liquid state can achieve a peak gain of 4.5 dBi and a radiation efficiency of 93%. The proposed antenna is fabricated and measured, verifying its sensing performance of the liquid in the infusion bag. This antenna’s design is flexible, compact, precise, and suitable for biomedical wireless sensing. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

16 pages, 2045 KB  
Article
An Optimized SVR Algorithm for Pulse Pile-Up Correction in Pulse Shape Discrimination
by Xianghe Liu, Bingqi Liu, Mingzhe Liu, Yufeng Tang, Haonan Li and Yao Huang
Sensors 2024, 24(23), 7545; https://doi.org/10.3390/s24237545 - 26 Nov 2024
Cited by 1 | Viewed by 1393
Abstract
Pulse pile-up presents a significant challenge in nuclear radiation measurements, particularly in neutron-gamma pulse shape discrimination, as it causes pulse distortion and diminishes identification accuracy. To address this, we propose an optimized Support Vector Regression (SVR) algorithm for correcting pulse pile-up. Initially, the [...] Read more.
Pulse pile-up presents a significant challenge in nuclear radiation measurements, particularly in neutron-gamma pulse shape discrimination, as it causes pulse distortion and diminishes identification accuracy. To address this, we propose an optimized Support Vector Regression (SVR) algorithm for correcting pulse pile-up. Initially, the Dung Beetle Optimizer (DBO) and Whale Optimization Algorithm (WOA) are integrated to refine the correction process, with performance evaluated using charge comparison methods (CCM) for pulse shape discrimination. Leveraging prior knowledge from simulated data, we further analyze the relationships between various types of pulse pile-ups, including their combinations, inter-peak distances, and the accuracy of corrections. Extensive experiments conducted in a mixed neutron-gamma radiation field using plastic scintillators demonstrate that the proposed method effectively corrects pulse pile-up and accurately discriminates between neutron and gamma. Moreover, our approach significantly improves the fidelity of pulse shape discrimination and enhances the overall reliability of radiation detection systems in high-interference environments. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

23 pages, 11104 KB  
Article
Research on the Processing of Image and Spectral Information in an Infrared Polarization Snapshot Spectral Imaging System
by Bo Shen, Jinguang Lv, Jingqiu Liang, Baixuan Zhao, Yupeng Chen, Kaifeng Zheng, Yingze Zhao, Yuxin Qin, Weibiao Wang and Guohao Liu
Appl. Sci. 2024, 14(7), 2714; https://doi.org/10.3390/app14072714 - 24 Mar 2024
Cited by 1 | Viewed by 1809
Abstract
In order to solve the problems of a low target recognition rate and poor real-time performance brought about by conventional infrared imaging spectral detection technology under complex background conditions or in the detection of targets of weak radiation or long distance, a kind [...] Read more.
In order to solve the problems of a low target recognition rate and poor real-time performance brought about by conventional infrared imaging spectral detection technology under complex background conditions or in the detection of targets of weak radiation or long distance, a kind of infrared polarization snapshot spectral imaging system (PSIFTIS) and a spectrum information processing method based on micro-optical devices are proposed in this paper, where the synchronous acquisition of polarization spectrum information is realized through the spatial modulation of phase with a rooftop-shaped multi-stage micro-mirror and the modulation of the polarization state of light with a micro-nanowire array. For the polarization interference image information obtained, the infrared polarization spectrum decoupling is realized by image segmentation, optical path difference matching, and image registration methods, the infrared polarization spectrum reconstruction is realized by Fourier transform spectral demodulation, and the infrared polarization image fusion is realized by decomposing and reconstructing the high- and low-frequency components of the polarization image based on the Haar wavelet transform. The maximum spectral peak wavenumber error of the four polarization channels of the polarization spectrum reconstruction is less than 2 cm−1, and the polarization angle error is within 1°. Ultimately, compared with the unprocessed polarization image unit, the peak signal-to-noise ratio is improved by 45.67%, the average gradient is improved by 8.03%, and the information entropy is improved by 56.98%. Full article
(This article belongs to the Special Issue Optical Imaging and Sensing: From Design to Its Practical Use)
Show Figures

Figure 1

8 pages, 2766 KB  
Proceeding Paper
Design Implementation of Trapezoidal Notch Band Monopole Antenna for LTE, ISM, Wi-MAX and WLAN Communication Applications
by Gubbala Kishore Babu, Singam Aruna and Kethavathu Srinivasa Naik
Eng. Proc. 2023, 59(1), 145; https://doi.org/10.3390/engproc2023059145 - 5 Jan 2024
Cited by 2 | Viewed by 1114
Abstract
This article analyses & describes a trapezoidal dual-band monopole antenna. The notch band monopole disables 4.4–5.7 GHz commercial communication equipment. The basic type operates at 2.5–4.4 GHz with a 500 MHz marginal bandwidth and 5.7–7 GHz with a 1000 MHz bandwidth. Present research [...] Read more.
This article analyses & describes a trapezoidal dual-band monopole antenna. The notch band monopole disables 4.4–5.7 GHz commercial communication equipment. The basic type operates at 2.5–4.4 GHz with a 500 MHz marginal bandwidth and 5.7–7 GHz with a 1000 MHz bandwidth. Present research optimises multiband trapezoidal antennas. Trapezoidal antennas improve multi-band wireless antennas. GSM, LTE, Wi-Fi, and 5G frequency bands start design. Inefficient and space-wasting, traditional antennas lack frequency range. Benefits of trapezoids: changing trapezoidal element sizes and angles enables the antenna to transmit many frequencies, sloping trapezium sides allow impedance changes without networks or tuning, numerical calculation and electromagnetic modelling optimise the trapezoidal antenna’s performance throughout the communication band, impedance matching, gain, and radiation efficiency provide transmission reliability, and broadband trapezoidal forms eliminate band-specific antennas & switches. Simplified antenna integration makes modern devices cheaper and simpler. In multiband applications, trapezoidal antennas outperform normal antennas. The antenna fits numerous wireless communication devices and systems due to its modest size and wide band coverage. The redesigned structure with notch increases operating band bandwidth and notches application bands between 4.4–5.7 GHz. By modifying trapezoidal geometry, we generate selective impedance transition notches to target crucial interference frequencies. Modern wireless communication systems with complicated interference situations can trust its careful engineering to provide good efficiency and radiation patterns across a wide frequency band while actively rejecting interfering signal. The peak realized gains obtained at 2.5 GHz is 2.4 dB, at 3.4 GHz it is 3.5 GHz and at 5.8 GHz it is 4.7 dB. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

17 pages, 12824 KB  
Article
Automatic Recognition of Vertical-Line Pulse Train from China Seismo-Electromagnetic Satellite Based on Unsupervised Clustering
by Ying Han, Yalan Li, Jing Yuan, Jianping Huang, Xuhui Shen, Zhong Li, Li Ma, Yanxia Zhang, Xinfang Chen and Yali Wang
Atmosphere 2023, 14(8), 1296; https://doi.org/10.3390/atmos14081296 - 16 Aug 2023
Cited by 5 | Viewed by 1902
Abstract
Pulse signals refer to electromagnetic waveforms with short duration and high peak energy in the time domain. Spatial electromagnetic pulse interference signals can be caused by various factors such as lightning, arc discharge, solar disturbances, and electromagnetic disturbances in space. Pulse disturbance signals [...] Read more.
Pulse signals refer to electromagnetic waveforms with short duration and high peak energy in the time domain. Spatial electromagnetic pulse interference signals can be caused by various factors such as lightning, arc discharge, solar disturbances, and electromagnetic disturbances in space. Pulse disturbance signals appear as instantaneous, high-energy vertical-line pulse trains (VLPTs) on the spectrogram. This paper uses computer vision techniques and unsupervised clustering algorithms to process and analyze VLPT on very-low-frequency (VLF) waveform spectrograms collected by the China Seismo-Electromagnetic Satellite (CSES) electric field detector. First, the waveform data are transformed into time–frequency spectrograms with a duration of 8 s using the short-time Fourier transform. Then, the spectrograms are subjected to grayscale transformation, vertical line feature extraction, and binarization preprocessing. In the third step, the preprocessed data are dimensionally reduced and fed into an unsupervised K-means++ clustering model to achieve automatic recognition and labeling of VLPTs. By recognizing and studying VLPT, not only can interference be recognized, but the temporal and spatial locations of these interferences can also be determined. This lays the foundation for identifying VLPT sources and gaining deeper insights into the generation, propagation, and characteristics of electromagnetic radiation. Full article
Show Figures

Figure 1

14 pages, 5872 KB  
Article
Design and Implementation of a Planar MIMO Antenna for Spectrum-Sensing Applications
by Sachin Kumar, Dinesh Kumar Raheja, Sandeep Kumar Palaniswamy, Binod Kumar Kanaujia, Hala Mostafa, Hyun Chul Choi and Kang Wook Kim
Electronics 2023, 12(15), 3311; https://doi.org/10.3390/electronics12153311 - 2 Aug 2023
Cited by 6 | Viewed by 2704
Abstract
Spectrum sensing is an important aspect in cognitive radio (CR) networks as it involves the identification of unused frequency spectra, which saves both bandwidth and energy. The design of a compact super-wideband (SWB) multi-input multi-output (MIMO)/diversity antenna with triple-band-notched features is presented for [...] Read more.
Spectrum sensing is an important aspect in cognitive radio (CR) networks as it involves the identification of unused frequency spectra, which saves both bandwidth and energy. The design of a compact super-wideband (SWB) multi-input multi-output (MIMO)/diversity antenna with triple-band-notched features is presented for spectrum sensing in CR systems. The MIMO antenna comprises four identical semi-elliptical-shaped monopole resonators, which are orthogonally positioned and excited individually via tapered coplanar waveguide feed lines. Also, a mirror-slot analogous to the radiator is etched in the ground conductor of each antenna element to achieve SWB characteristics. In order to avoid interference with the SWB, the antenna radiator is loaded with a staircase-shaped slit and a pair of concentric slits, arranged like a complementary split-ring resonator. The antenna resonates from 1.2 to 43 GHz, exhibiting a bandwidth ratio of 36:1. In the MIMO antenna, the antenna elements are located orthogonally, and the isolation > 18 dB and envelope correlation coefficient < 0.01 are realized in the resonating band. The antenna offers a peak gain of 4 dBi, and a sharp reduction in gain at notch frequencies (3.5 GHz, 5.5 GHz, and 8.5 GHz) is achieved. The size of the MIMO antenna is 52 mm × 52 mm. The proposed compact-size antenna features a high bandwidth ratio and straightforward design procedure, and can be simply integrated into contemporary RF equipment. The presented SWB MIMO antenna outperforms SWB antenna designs reported in the open literature, which featured one or two notched bands, whereas it has three notched bands. Also, the three notches in the SWB are achieved without the use of any filters, which simplifies the antenna development process. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

24 pages, 13244 KB  
Article
Investigation of Parallel and Orthogonal MIMO Antennas with Two-Notched Structures for Ultra-Wideband Application
by Liang Wang, Ziwei Li and Hongxing Zheng
Micromachines 2023, 14(7), 1406; https://doi.org/10.3390/mi14071406 - 11 Jul 2023
Cited by 5 | Viewed by 2087
Abstract
Ultra-wideband (UWB) technology is widely used in many communication scenarios. However, narrowband systems can easily interfere with the UWB system, which generates multipath fading. In order to solve these interferences and meet the design requirements of high isolation of multiple-input multiple-output (MIMO) antennas, [...] Read more.
Ultra-wideband (UWB) technology is widely used in many communication scenarios. However, narrowband systems can easily interfere with the UWB system, which generates multipath fading. In order to solve these interferences and meet the design requirements of high isolation of multiple-input multiple-output (MIMO) antennas, two MIMO antennas with double-notch structures are designed. Firstly, two U-shaped slots are etched on the radiating patch and feeder to achieve notch characteristics in WiMAX and ITU bands. Using this antenna element, a two-element antenna is put symmetrically in parallel, and two rectangular branches are loaded to improve the isolation. The size is 0.57λ × 0.32λ × 0.013λ (at 2.5 GHz). Then, a four-element antenna is designed to meet the requirements for another application; here, each element is placed orthogonally to each other, and the isolation is improved through loading a cross-shaped branch in the middle of these elements. The size is 0.57λ × 0.57λ × 0.013λ. Both antenna samples are tested to verify the design. Measurement results show that the working bandwidth is 2.45–14.88 GHz and 2.14–14.95 GHz, the isolation is greater than 17 and 20 dB, and the peak gain is 5.7 and 5.9 dBi for the two- and four-element MIMO antenna, respectively. Compared to the references, the designed antennas have a wider bandwidth and a higher gain and radiation efficiency. They are well-suited for diverse wireless applications. Full article
Show Figures

Figure 1

10 pages, 5302 KB  
Article
Resonant Excitation of the Ferroelectric Soft Mode by a Narrow-Band THz Pulse
by Kirill Brekhov, Vladislav Bilyk, Andrey Ovchinnikov, Oleg Chefonov, Vladimir Mukhortov and Elena Mishina
Nanomaterials 2023, 13(13), 1961; https://doi.org/10.3390/nano13131961 - 28 Jun 2023
Cited by 4 | Viewed by 1878
Abstract
This study investigates the impact of narrow-band terahertz pulses on the ferroelectric order parameter in Ba0.8Sr0.2TiO3 films on various substrates. THz radiation in the range of 1–2 THz with the pulse width of about 0.15 THz was separated [...] Read more.
This study investigates the impact of narrow-band terahertz pulses on the ferroelectric order parameter in Ba0.8Sr0.2TiO3 films on various substrates. THz radiation in the range of 1–2 THz with the pulse width of about 0.15 THz was separated from a broadband pulse with the interference technique. The 375 nm thick BST film on a MgO (001) substrate exhibits enhanced THz-induced second harmonic generation when excited by THz pulses with a central frequency of 1.6 THz, due to the resonant excitation of the soft phonon mode. Conversely, the BST film on a Si (001) substrate shows no enhancement, due to its polycrystalline state. The 800 nm thick BST film on a MgO (111) substrate demonstrates the maximum of a second harmonic generation signal when excited by THz pulses at 1.8 THz, which is close to the soft mode frequency for the (111) orientation. Notably, the frequency spectrum of the BST/MgO (111) film reveals peaks at both the fundamental and doubled frequencies, and their intensities depend, respectively, linearly and quadratically on the THz pulse electric field strength. Full article
Show Figures

Figure 1

18 pages, 8454 KB  
Article
Wireless Battery Chargers Operating at Multiple Switching Frequencies with Improved Performance
by Deniss Stepins, Aleksandrs Sokolovs, Janis Zakis and Ouseph Charles
Energies 2023, 16(9), 3734; https://doi.org/10.3390/en16093734 - 27 Apr 2023
Cited by 2 | Viewed by 2270
Abstract
The operation of wireless battery chargers at multiple switching frequencies may lead to a noticeable suppression of conducted and radiated electromagnetic interference (EMI) at the cost of decreased efficiency (mainly at lower load resistances) and increased peak and root mean square values of [...] Read more.
The operation of wireless battery chargers at multiple switching frequencies may lead to a noticeable suppression of conducted and radiated electromagnetic interference (EMI) at the cost of decreased efficiency (mainly at lower load resistances) and increased peak and root mean square values of currents of power components of the wireless battery charger. Moreover, the reduction in conducted EMI is only moderate (<8.3 dB). Therefore, a novel approach based on modified resonant circuits and a modified control technique to obtain better reduction in the conducted and radiated EMI without significantly compromising other performance characteristics of the wireless battery charger is proposed and validated by using simulations and experiments. It is shown in this paper that the wireless charger operating at multiple switching frequencies with the proposed approach for the performance improvement has a more effective implementation of the four-switching frequency spread-spectrum technique with better conducted and radiated EMI reduction at all load resistances, lower values of peak and RMS currents at all load resistances, and higher efficiency in constant current mode and in the beginning of constant voltage mode (at lower values of the load resistances) than that of the conventional wireless charger operating at multiple switching frequencies. Full article
(This article belongs to the Special Issue Review of Advanced Power Electronics Solutions)
Show Figures

Figure 1

Back to TopTop