Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = passive fan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4148 KiB  
Article
Efficacy of Portable Fugitive Aerosol Mitigation Systems for Nebulizer Therapy During High-Flow Nasal Cannula and Non-Invasive Ventilation
by Adithya Shyamala Pandian, Bhavesh Patel, Karam Abi Karam, Amelia Lowell, Kelly McKay, Sabrina Jimena Mora, Piyush Hota, Gabriel Pyznar, Sandra Batchelor, Charles Peworski, David Rivas, Devang Sanghavi, Ngan Anh Nguyen, Aliaa Eltantawy, Xueqi Li, Xiaojun Xian, Michael Serhan and Erica Forzani
Emerg. Care Med. 2025, 2(3), 36; https://doi.org/10.3390/ecm2030036 - 29 Jul 2025
Viewed by 302
Abstract
Objectives: This study evaluates the efficacy of existing and new aerosol mitigation methods during nebulization (Neb) in combination with high-flow nasal cannula (HFNC) oxygen supplementation and non-invasive ventilation (NIV). Methods: We recorded fugitive aerosol particle concentrations over time and assessed the peak (P) [...] Read more.
Objectives: This study evaluates the efficacy of existing and new aerosol mitigation methods during nebulization (Neb) in combination with high-flow nasal cannula (HFNC) oxygen supplementation and non-invasive ventilation (NIV). Methods: We recorded fugitive aerosol particle concentrations over time and assessed the peak (P) and area (A) efficacy of active and passive mitigation methods, comparing them to a no-mitigation condition. Peak efficacy was measured by the reduction in maximum aerosol concentration, while area efficacy was quantified by the reduction of the area under the aerosol concentration–time curve. Results: For HFNC with Neb, we found that active mitigation using a mask with a biofilter and a fan (referred to as the aerosol barrier mask) significantly outperformed passive mitigation with a face mask. The peak and area efficacy for aerosol reduction were 99.0% and 96.4% for active mitigation and 35.9% and 7.6% for passive mitigation, respectively. For NIV with Neb, the active mitigation method, using a box with a biofilter and fan, also outperformed passive mitigation using only the box. The peak and area efficacy for aerosol reduction were 92.1% and 85.5% for active mitigation and 53.7.0% and 25.4% for passive mitigation, respectively. Conclusion: We concluded that active mitigation set up systems advantageous for effective reduction of airborne aerosols during aerosol generated procedures. Full article
Show Figures

Graphical abstract

15 pages, 6545 KiB  
Article
A X-Band Integrated Passive Device Structure Based on TMV-Embedded FOWLP
by Jiajie Yang, Lixin Xu, Xiangyu Yin and Ke Yang
Micromachines 2025, 16(6), 719; https://doi.org/10.3390/mi16060719 - 17 Jun 2025
Viewed by 342
Abstract
In this paper, the fabrication and testing of an integrated passive device (IPD) structure for X-band FMCW radar based on the fan-out wafer-level packaging (FOWLP) process are discussed. First, a transition line structure is added to the IPD structure to increase the upper [...] Read more.
In this paper, the fabrication and testing of an integrated passive device (IPD) structure for X-band FMCW radar based on the fan-out wafer-level packaging (FOWLP) process are discussed. First, a transition line structure is added to the IPD structure to increase the upper impedance limit of the substrate, so as to reduce the process implementation difficulty and development cost. Second, the vertical soldered SubMiniature Push-On Micro (SMPM) interfaces testing method is proposed, reducing the testing difficulty of the dual-port structure with the antenna. Finally, the process fabrication as well as testing of the IPD structure are completed. The dimensions of the fabricated structure are 16.983 × 24.099 × 0.56 mm3. Test results show that, with a center frequency of 8.5 GHz, the actual operational bandwidth of the structure reaches 7.66% (8.095–8.74 GHz), with a maximum isolation of 33.9 dB. The bandwidth with isolation greater than 20 dB is 1.76% (8.455–8.605 GHz). The maximum gain at the center frequency is 2.02 dBi. Additionally, experimental uncertainty analysis is performed on different IPD structures, and the measurement results are basically consistent. These results validate the feasibility of the FOWLP process in the miniaturization of X-band FMCW radar antenna and other passive devices. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

24 pages, 1304 KiB  
Article
Advertising Together for Our K-Pop Idol: The Roles of Trust, Loyalty, and Perceived Value in K-Pop Crowdfunding for Outdoor Advertising
by Seung Chul Yoo, Hua Fan, Diana Piscarac and Sofia Tunas Puentes
J. Theor. Appl. Electron. Commer. Res. 2025, 20(1), 44; https://doi.org/10.3390/jtaer20010044 - 5 Mar 2025
Cited by 2 | Viewed by 3268
Abstract
In the evolving landscape of fandom economics, fan-driven crowdfunding has emerged as a powerful force, transforming audiences from passive consumers into active participants in celebrity branding. This study examines the roles of trust, loyalty, and perceived value in shaping crowdfunding participation within Chinese [...] Read more.
In the evolving landscape of fandom economics, fan-driven crowdfunding has emerged as a powerful force, transforming audiences from passive consumers into active participants in celebrity branding. This study examines the roles of trust, loyalty, and perceived value in shaping crowdfunding participation within Chinese Weibo K-pop communities, where fans collectively finance large-scale public advertisements for their idols. Using structural equation modeling (SEM) on survey data from 260 participants, our findings reveal that trust and loyalty within fan communities significantly enhance engagement in crowdfunding activities, reinforcing perceived idol value and financial commitment to promotional campaigns. These insights position fan crowdfunding as a key driver of digital-era consumer culture, illustrating its impact on idol branding, online community dynamics, and the monetization of fandom engagement. By bridging fandom studies, digital marketing, and behavioral economics, this research provides theoretical advancements and practical strategies for entertainment agencies and celebrity managers seeking to harness the economic power of fan-driven marketing. As fandoms continue to reshape traditional advertising models, understanding the mechanisms behind community-based crowdfunding offers new avenues for brand engagement, audience monetization, and sustainable fan participation in the global entertainment industry. Full article
Show Figures

Figure 1

31 pages, 9973 KiB  
Article
Measuring Airtightness of High-Rise Buildings (Lessons Learned)
by Stefanie Rolfsmeier, Emanuel Mairinger, Johannes Neubig and Thomas Gayer
Buildings 2025, 15(5), 724; https://doi.org/10.3390/buildings15050724 - 24 Feb 2025
Cited by 1 | Viewed by 2144
Abstract
Measuring the airtightness of high-rise buildings presents significant challenges due to the effects of wind and thermal lift (stack effect). Small indoor/outdoor temperature differences, combined with the building’s height, can create substantial natural pressure differences on the building envelope, while winds induce pressure [...] Read more.
Measuring the airtightness of high-rise buildings presents significant challenges due to the effects of wind and thermal lift (stack effect). Small indoor/outdoor temperature differences, combined with the building’s height, can create substantial natural pressure differences on the building envelope, while winds induce pressure fluctuations. The international standard ISO 9972 provides insufficient guidelines for dealing with these high and fluctuating natural pressure differences. In addition, it is crucial to achieve a uniform internal pressure distribution during the test. This paper discusses the airtightness testing of high-rise buildings up to 125 m tall using portable blower door devices, following the “airtightness measurement of high-rise buildings” Passive House guideline. Differential pressure sensors were placed on the ground and top floors to record the effects of wind and thermal lift, and additional sensors helped to achieve a uniform pressure distribution within the building. The readings from the ground and top floors ensured full depressurization and pressurization during testing. The setup of the measuring fans, mainly on the ground floor, was supplemented with additional fans on higher floors to maintain pressure uniformity within a 10% tolerance. To be able to conduct a multi-point regression test, it is recommended to limit the product of the indoor/outdoor temperature difference and building height to ≤1250 mK and to achieve a coefficient of determination of 0.98 or higher, a wind speed ≤ 3 Beaufort. The study concludes that an airtight building envelope and larger internal flow paths, such as stairwells and elevator shafts, simplify the measurement. Full article
(This article belongs to the Special Issue Research on the Airtightness of Buildings)
Show Figures

Figure 1

36 pages, 12045 KiB  
Article
Integrated Phase-Change Materials in a Hybrid Windcatcher Ventilation System
by Olamide Eso, Jo Darkwa and John Calautit
Energies 2025, 18(4), 848; https://doi.org/10.3390/en18040848 - 11 Feb 2025
Viewed by 1612
Abstract
Windcatchers are effective passive ventilation systems, but their inability to actively reduce and stabilize supply air temperatures reduces indoor cooling performance. This study addresses this limitation by integrating encapsulated phase-change material tubes (E-PCM-Ts) into a solar fan-assisted, multidirectional windcatcher. The novelty lies in [...] Read more.
Windcatchers are effective passive ventilation systems, but their inability to actively reduce and stabilize supply air temperatures reduces indoor cooling performance. This study addresses this limitation by integrating encapsulated phase-change material tubes (E-PCM-Ts) into a solar fan-assisted, multidirectional windcatcher. The novelty lies in the vertical placement of E-PCM-Ts within the windcatcher’s airstreams, enhancing heat transfer and addressing challenges related to temperature stabilization and cooling. Using computational fluid dynamics (CFD) under hot outdoor conditions, the ventilation, cooling, and PCM thermal storage performance are evaluated based on two different E-PCM-T arrangements. Results showed a maximum air temperature drop of 2.28 °C at a wind speed of 1.88 m/s and wind angle of 0°. This offers an optimal temperature reduction that achieved a 6.5% reduction for up to 7 h of air temperature stabilization. Placing E-PCM-Ts in all airstreams improved the thermal storage performance of the windcatcher. A 50% increase in hybrid ventilation efficiency was also achieved when wind angles increased from 0° to 30°. Overall, the proposed system demonstrated superior performance compared to that of traditional windcatchers, delivering improved thermal energy storage and cooling efficiency and adequate hybrid ventilation with supply air velocities of 0.37–0.60 m/s. Full article
(This article belongs to the Topic Indoor Air Quality and Built Environment)
Show Figures

Figure 1

26 pages, 11358 KiB  
Article
Computational Design of an Energy-Efficient Small Axial-Flow Fan Using Staggered Blades with Winglets
by Mustafa Tutar and Janset Betul Cam
Int. J. Turbomach. Propuls. Power 2025, 10(1), 1; https://doi.org/10.3390/ijtpp10010001 - 9 Jan 2025
Viewed by 2261
Abstract
The present study introduces a conceptual design of a small axial-flow fan. Both individual and combined effects of blade stagger angle and winglet on the performance of the fan design are investigated in design and off-design operating conditions using a computational flow methodology. [...] Read more.
The present study introduces a conceptual design of a small axial-flow fan. Both individual and combined effects of blade stagger angle and winglet on the performance of the fan design are investigated in design and off-design operating conditions using a computational flow methodology. A stepwise solution, in which a proper stagger angle adjustment of a specifically generated blade profile is followed by appending a winglet at the tip of the blade with consideration of different geometrical parameters, is proposed to improve the performance characteristics of the fan. The initial model comparison analysis demonstrates that a three-dimensional, Reynolds-averaged Navier–Stokes (RANS) equation-based renormalization group (RNG) kε turbulence modeling approach coupled with the multiple reference frame (MRF) technique which adapts multi-block topology generation meshing method successfully resolves the rotating flow around the fan. The results suggest that the use of a proper stagger angle with the winglet considerably increases the fan performance and the fan attains the best total efficiency with an additional stagger angle of +10° and a winglet, which has a curvature radius of 6.77 mm and a twist angle of −7° for the investigated dimensioning range. The present study also underlines the effectiveness of passive flow control mechanisms of the stagger angle and winglets for energy-efficient axial-flow fans. Full article
Show Figures

Figure 1

14 pages, 5445 KiB  
Article
Project Report: Thermal Performance of FIRSTLIFE House
by Jan Tywoniak, Zdenko Malík, Kamil Staněk and Kateřina Sojková
Buildings 2024, 14(11), 3600; https://doi.org/10.3390/buildings14113600 - 13 Nov 2024
Viewed by 718
Abstract
The paper deals with selected thermal properties of a small building that was built during the international student competition Solar Decathlon 2021/2022 and is now part of the Living Lab in Wuppertal. It summarizes the essential information about the overall design of this [...] Read more.
The paper deals with selected thermal properties of a small building that was built during the international student competition Solar Decathlon 2021/2022 and is now part of the Living Lab in Wuppertal. It summarizes the essential information about the overall design of this wooden building with construction and technologies corresponding to the passive building standard. Built-in sensors and other equipment enable long-term monitoring of thermal parameters. Part of the information comes from the building operation control system. The thermal transmittance value for the perimeter wall matches calculated expectation well, even from a short period of time and not at an achievable perfectly steady state boundary condition. The (positive) difference between the calculated values and the measured ones did not exceed 0.015 W/(m2K). It was proven that even for such a small building with a very small heat demand, the heat transfer coefficient can be estimated alternatively from a co-heating test (measured electricity power for a fan heater) and from energy delivered to underfloor heating (calorimeter in heating system). Differences among both measurement types and calculation matched in the range ± 10%. In the last section, the dynamic response test is briefly described. The measured indoor air temperature curves under periodic dynamic loads (use of fan heater) are compared with the simulation results. The simulation model working with lumped parameters for each element of the building envelope was able to replicate the measured situation well, while its use does not require special knowledge of the user. In the studied case, the differences between measured and simulated air temperatures were less than 1 Kelvin if the first two to three days of the test period are ignored due to large thermal inertia. Finally, the measurement campaign program for the next period is outlined. Full article
(This article belongs to the Special Issue Constructions in Europe: Current Issues and Future Challenges)
Show Figures

Figure 1

15 pages, 2370 KiB  
Article
Design and Optimization of a Fan-Out Wafer-Level Packaging- Based Integrated Passive Device Structure for FMCW Radar Applications
by Jiajie Yang, Lixin Xu and Ke Yang
Micromachines 2024, 15(11), 1311; https://doi.org/10.3390/mi15111311 - 29 Oct 2024
Cited by 1 | Viewed by 1523
Abstract
This paper presents an integrated passive device (IPD) structure based on fan-out wafer-level packaging (FOWLP) for the front end of frequency-modulated continuous wave (FMCW) radar systems, focusing on enhancing the integration efficiency and performance of large passive components like antennas. Additionally, a new [...] Read more.
This paper presents an integrated passive device (IPD) structure based on fan-out wafer-level packaging (FOWLP) for the front end of frequency-modulated continuous wave (FMCW) radar systems, focusing on enhancing the integration efficiency and performance of large passive components like antennas. Additionally, a new metric is introduced to assess this structure’s effect on the average noise figure in FMCW systems. Using this metric as a loss function, we apply the support vector machine (SVM) for electromagnetic simulation and the genetic algorithm (GA) for optimization. The sample fitting variance is 2.42 dB, reducing computation time from 12 min to under 1 millisecond, with the entire optimization completed in less than 100 s. The optimized IPD structure is 0.7 × 0.9 × 0.014 λ03 in size and achieves over 35 dB isolation between the transmitter and receiver. Compared to the IPD model calculated by empirical formulas, the optimized device lowers the average noise figure by 15.2 dB and increases maximum gain by 4.19 dB. Full article
(This article belongs to the Special Issue Advanced Packaging for Microsystem Applications, 3rd Edition)
Show Figures

Figure 1

21 pages, 21508 KiB  
Article
Induction Coil Design Considerations for High-Frequency Domestic Cooktops
by Ahmet Erken and Atiye Hulya Obdan
Appl. Sci. 2024, 14(17), 7996; https://doi.org/10.3390/app14177996 - 7 Sep 2024
Cited by 1 | Viewed by 4040
Abstract
The use of wide band gap (WBG) semiconductor switches in power converters is increasing day by day due to their superior chemical and physical properties, such as electrical field strength, drift speed, and thermal conductivity. These new-generation power switches offer advantages over traditional [...] Read more.
The use of wide band gap (WBG) semiconductor switches in power converters is increasing day by day due to their superior chemical and physical properties, such as electrical field strength, drift speed, and thermal conductivity. These new-generation power switches offer advantages over traditional induction cooker systems, such as fast and environmentally friendly heating. The size of passive components can be reduced, and the decreasing inductance value of induction coils and capacitors with low ESR (equivalent series resistance) values contributes to total efficiency. Other design parameters, such as passive components with lower values, heatsinks with low volumes, cooling fans with low power, and induction coils with fewer turns, can offset the cost of WBG power devices. High-frequency operation can also be effective in heating non-ferromagnetic materials like aluminum and copper, making them suitable for heating these types of pans without complex induction coil and power converter designs. However, the use of these new generation power switches necessitates a re-examination of induction coil design. High switching frequency leads to a high resonance frequency in the power converter, which requires lower-value passive components compared to conventional cookers. The most important component is the induction coil, which requires fewer turns and magnetic cores. This study examines the induction heating equivalent circuit, discusses the general structure and design parameters of the induction coil, and performs FEM (finite element method) analyses using Ansys Maxwell. The results show that the induction coil inductance value in new-generation cookers decreases by 80% compared to traditional cookers, and the number of windings and magnetic cores decreases by 50%. These analyses, performed for high-power applications, are also performed for low-power applications. While the inductance value of the induction coil is 90 μH at low frequencies, it is reduced to the range of 5 μH to 20 μH at high frequencies. The number of windings is reduced by half or a quarter. The new-generation cooker system experimentally verifies the coil design based on the parameters derived from the analysis. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 13080 KiB  
Article
Prediction of Structural Fracture Distribution and Analysis of Controlling Factors in a Passive Continental Margin Basin—An Example of a Clastic Reservoir in Basin A, South America
by Rong Guo, Jinxiong Shi, Shuyu Jiang, Shan Jiang and Jun Cai
Appl. Sci. 2024, 14(16), 7271; https://doi.org/10.3390/app14167271 - 19 Aug 2024
Cited by 2 | Viewed by 1141
Abstract
Structural fracture distribution is essential in oil and gas transportation and development in passive continental margin basins. In this paper, taking as an example the clastic reservoirs in the A-Basin, a passive continental margin in northeastern South America, the paleotectonic stress field of [...] Read more.
Structural fracture distribution is essential in oil and gas transportation and development in passive continental margin basins. In this paper, taking as an example the clastic reservoirs in the A-Basin, a passive continental margin in northeastern South America, the paleotectonic stress field of the Late Cretaceous Maastrichtian formation in Basin A was numerically simulated by finite element technique through the integrated interpretation of seismic total data, logging data and core data, and the distribution of tectonic fractures was later predicted based on rock fracture criterion. The results of the study show that: (1) The distribution of tectonic stress and fractures during the Late Cretaceous Maastrichtian formation of Basin A is affected by the fracture zone, mechanical properties of rocks and tectonic stress, regions with extensive fracture development are susceptible to stress concentrations, resulting in significant stress gradients. (2) The development of structural fractures in the study area was predicted using the Griffiths criterion, and the tensile rupture coefficient T was introduced to quantitatively characterise the intensity of fracture development, with larger values reflecting a higher degree of fracture development. The well-developed and relatively well-developed fractures are mainly located in the fracture zones and the interior of submarine fans. (3) Fracture zones and sedimentary phases mainly control structural fractures in Basin A; within 5 km outside the fracture zones, the development of fractures is controlled by the fracture zones, beyond which the regional tectonic stress field controls them; inside the sedimentary fan, the development of fractures is controlled by the sedimentary subphase, which decreases in the order of the upper fan, the middle fan, and the lower fan; inside the subphase, they are controlled by the regional tectonic stress field, and the fractures show the increasing trend in the direction of NW-NE. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 9131 KiB  
Article
Experimental and Numerical Study on Air Cooling System Dedicated to Photovoltaic Panels
by Maksymilian Homa, Krzysztof Sornek and Wojciech Goryl
Energies 2024, 17(16), 3949; https://doi.org/10.3390/en17163949 - 9 Aug 2024
Cited by 4 | Viewed by 1628
Abstract
The efficiency of solar systems, in particular photovoltaic panels, is typically low. Various environmental parameters affect solar panels, including sunlight, the ambient and module surface temperatures, the wind speed, humidity, shading, dust, the installation height, etc. Among others, the key players are indeed [...] Read more.
The efficiency of solar systems, in particular photovoltaic panels, is typically low. Various environmental parameters affect solar panels, including sunlight, the ambient and module surface temperatures, the wind speed, humidity, shading, dust, the installation height, etc. Among others, the key players are indeed solar irradiance and temperature. The higher the temperature is, the higher the short-circuit current is, and the lower the open-circuit voltage is. The negative effect of lowering the open-circuit voltage is dominant, consequently lowering the power of the photovoltaic panels. Passive or active cooling systems can be provided to avoid the negative effect of temperature. This paper presents a prototype of an active cooling system dedicated to photovoltaics. The prototype of such a system was developed at the AGH University of Kraków and tested under laboratory conditions. The proposed system is equipped with air fans mounted on a plate connected to the rear part of a 70 Wp photovoltaic panel. Different configurations of the system were tested, including different numbers of fans and different locations of the fans. The artificial light source generated a irradiation value of 770 W/m2. This value was present for every variant tested in the experiment. As observed, the maximum power generated in the photovoltaic panel under laboratory conditions was approx. 47.31 W. Due to the temperature increase, this power was reduced to 40.09 W (when the temperature of the uncooled panel surface reached 60 °C). On the other hand, the power generated in the photovoltaic panel equipped with the developed cooling system was approx. 44.37 W in the same conditions (i.e., it was higher by 10.7% compared to that of the uncooled one). A mathematical model was developed based on the results obtained, and simulations were carried out using the ANSYS Workbench software. After the validation procedure, several configurations of the air cooling system were developed and analyzed. The most prominent case was chosen for additional parametrical analysis. The optimum fan orientation was recognized: a vertical tilt of 7° and a horizontal tilt of 10°. For the tested module, this modification resulted in a cost-effective system (a net power increase of ~3.1%). Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization)
Show Figures

Figure 1

20 pages, 3555 KiB  
Article
BTEX Assessment among Informal Charcoal-Burning Food Traders for Cleaner and Sustainable Environment
by Lebogang Phama, Goitsemang Keretetse, Thokozani Mbonane, Phoka Rathebe, Robert Makae and Masilu Daniel Masekameni
Sustainability 2024, 16(8), 3336; https://doi.org/10.3390/su16083336 - 16 Apr 2024
Viewed by 1783
Abstract
This study assessed the cleaner and sustainable environment by measuring emission levels of benzene, toluene, ethylbenzene, and xylene (BTEX) from informal food traders using charcoal as the primary source of energy at a flea market in Fordsburg, Johannesburg. Volatile organic compounds (VOCs) were [...] Read more.
This study assessed the cleaner and sustainable environment by measuring emission levels of benzene, toluene, ethylbenzene, and xylene (BTEX) from informal food traders using charcoal as the primary source of energy at a flea market in Fordsburg, Johannesburg. Volatile organic compounds (VOCs) were measured using a real-time monitor (MiniRae 3000 photoionization detector); an indoor air quality (IAQ) monitor was used to monitor environmental parameters and passive samplers in the form of Radiello badges, which were used to determine BTEX emissions from charcoal used during food preparation. Measurements were taken at 1.5 m above ground assuming the receptor’s breathing circumference using PID and Radiello. PID data were downloaded and analyzed using Microsoft Excel (Version 2019). Radiellos were sent to the laboratory to determine the BTEX levels from the total VOCs. The total volatile organic compound (TVOC) concentration over the combustion cycle was 306.7 ± 62.8 ppm. The flaming phase had the highest VOC concentration (547 ± 110.46 ppm), followed by the ignition phase (339.44 ± 40.6 ppm) and coking with the lowest concentration (24.64 ± 14.3). The average BTEX concentration was 15.7 ± 5.9 µg/m3 corresponding to the entire combustion cycle. BTEX concentrations were highest at the flaming phase (23.6 µg/m3) followed by the ignition (13.4 µg/m3) and coking phase (9.45 µg/m3). Ignition phase versus the flaming phase, there was a significant difference at 95% at a p-value of 0.09; ignition phase versus the coking phase, there was a significant difference at 95% at a p-value of 0.039; and coking phase versus the flaming phase, there was a significant difference at 95% at a p-value of 0.025. When compared to the occupational exposure limits (OELs), none of the exposure concentrations (BTEX) were above the 8 h exposure limit. The findings of this study suggest that charcoal, as a source of energy, can still be a useful and sustainable fuel for informal food traders. Shortening the ignition and flaming phase duration by using a fan to supply sufficient air can further reduce exposure to VOCs. Full article
(This article belongs to the Special Issue Environmental Pollution and Impacts on Human Health)
Show Figures

Figure 1

14 pages, 6833 KiB  
Article
Reducing Automotive Cooling System Complexity through an Adaptive Biomimetic Air Control Valve
by Thomas Thuilot, Moses-Gereon Wullweber, Matthias Fischer, Michael Bennemann and Tobias Seidl
Biomimetics 2024, 9(4), 207; https://doi.org/10.3390/biomimetics9040207 - 29 Mar 2024
Viewed by 1732
Abstract
Future automotive mobility is predominantly electric. Compared to existing systems, the requirements of subsystems change. Air flow for cooling components is needed predominantly when the car is in rest (i.e., charging) or at slow speeds. So far, actively driven fans consuming power and [...] Read more.
Future automotive mobility is predominantly electric. Compared to existing systems, the requirements of subsystems change. Air flow for cooling components is needed predominantly when the car is in rest (i.e., charging) or at slow speeds. So far, actively driven fans consuming power and generating noise are used in this case. Here we propose a passive adaptive system allowing for convection-driven cooling. The developed system is a highly adaptive flat valve derived from the bordered pit. It was developed through an iterative design process including simulations, both structural and thermodynamic. In hardwoods and conifers, bordered pits enable the challenging transport of vertical fluids by locally limiting damage. Depending on the structure, these can close at sudden pressure changes and take the function of valves. The result of the biomimetic abstraction process is a system-integrative, low-profile valve that is cheap to produce, long-lasting, lightweight, maintenance-free, and noise-free. It allows for the passive switching of air flow generation at the heat exchanger of the cooling between natural convection or an active airstream without the need for complex sensing and control systems. The geometric and material design factors allow for the simple tuning of the valve to the desired switching conditions during the design process. Full article
(This article belongs to the Special Issue Biological and Bioinspired Smart Adaptive Structures)
Show Figures

Figure 1

17 pages, 20600 KiB  
Article
Design of Sinusoidal Leading Edge for Low-Speed Axial Fans Operating under Inflow Distortion
by Lorenzo Tieghi, Giovanni Delibra, Johan Van der Spuy and Alessandro Corsini
Energies 2024, 17(5), 1150; https://doi.org/10.3390/en17051150 - 28 Feb 2024
Viewed by 1746
Abstract
Axial fans may be equipped with passive flow control devices to enhance rotor efficiency or minimize noise emissions. In this regard, blade designs influenced by biomimicry, such as rotors with sinusoidal leading edges (LEs), have gained popularity in recent years. However, their design [...] Read more.
Axial fans may be equipped with passive flow control devices to enhance rotor efficiency or minimize noise emissions. In this regard, blade designs influenced by biomimicry, such as rotors with sinusoidal leading edges (LEs), have gained popularity in recent years. However, their design is predominantly driven by a trial-and-error approach, with limited systematic studies on the influence of rotor performance. Furthermore, their effectiveness is typically evaluated under controlled conditions that may significantly differ from operations in real installation layouts. In this work, a systematic review of the design process for sinusoidal LE axial fan rotors is provided, aiming to summarize previous design experiences. Then, a modified sinusoidal LE is designed and fitted to a 7.3 m low-speed axial fan for air-cooled condensers (ACCs). These fans operate at environmental conditions, providing a quasi-zero static pressure rise, often with inflow non-uniformities. A series of RANS computations were run to simulate the performance of the baseline fan and that of the sinusoidal leading edge, considering a real installation setup at Stellenbosh University, where the ACC is constrained between buildings and has a channel running on the ground below the fan inlet. The aim is to explore the nonbalanced inflow condition effects in both rotor geometries and to test the effect of the installation layout on fan performance. The results show that the modification to the rotor allows for a more even distribution of flow in the blade-to-blade passages with respect to the baseline geometry. Full article
Show Figures

Figure 1

11 pages, 858 KiB  
Article
Effect of COVID-19 on Key Performance Indicators of Spanish Professional Soccer League
by José Fernández-Cortés, Carlos D. Gómez-Carmona, David Mancha-Triguero, Javier García-Rubio and Sergio J. Ibáñez
J. Funct. Morphol. Kinesiol. 2024, 9(1), 35; https://doi.org/10.3390/jfmk9010035 - 21 Feb 2024
Cited by 1 | Viewed by 2506
Abstract
The unprecedented COVID-19 health crisis severely disrupted global sports in 2020, prompting lengthy suspensions followed by resumed competitions under abnormal behind-closed-doors conditions without fans. These disruptions necessitated tactical adaptations by coaches and teams, attempting to still achieve successful outcomes. This study investigates the [...] Read more.
The unprecedented COVID-19 health crisis severely disrupted global sports in 2020, prompting lengthy suspensions followed by resumed competitions under abnormal behind-closed-doors conditions without fans. These disruptions necessitated tactical adaptations by coaches and teams, attempting to still achieve successful outcomes. This study investigates the pandemic’s impacts on performance metrics and indicators within Spanish professional soccer. Utilizing systematic notational analysis, 760 match cases from the 2019–2020 La Liga season were examined, comprising 27 matchdays from the pre-COVID context and 11 after resumption. Multivariate tests identified significant pre/post differences and interactions for various technical indicators including shots, cards, corners, and offside calls. The pandemic was associated with a reduction from 12 to just 5 identifiable playing styles, suggestive of increased conservatism featuring more passive play, limited attacking depth, and horizontal ball movement. Such tactical changes appear provoked by condensed fixture scheduling post-lockdown, the lack of supportive crowds, and compromised player fitness/recovery. By quantifying these COVID-precipitated changes, the analysis provides tangible evidence for coaches to make informed adjustments in training and preparation for functioning effectively in disrupted environments. The findings emphasize that versatility and flexibility will be vital to optimize performance during times of unprecedented uncertainty. Full article
Show Figures

Figure 1

Back to TopTop