Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = parallel β-helix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3859 KiB  
Article
Cryo-Electron Microscopy of BfpB Reveals a Type IVb Secretin Multimer Adapted to Accommodate the Exceptionally Wide Bundle-Forming Pilus
by Janay I. Little, Pradip Kumar Singh, Montserrat Samsó and Michael S. Donnenberg
Pathogens 2025, 14(5), 471; https://doi.org/10.3390/pathogens14050471 - 13 May 2025
Viewed by 700
Abstract
Type IV pili (T4Ps) are multifunctional surface fibers essential for bacterial motility, adhesion, and virulence, found across Gram-negative and Gram-positive bacteria and archaea. Detailed descriptions of T4P structural biology are allowing progress in understanding T4P biogenesis. Secretins, large outer membrane channels, are crucial [...] Read more.
Type IV pili (T4Ps) are multifunctional surface fibers essential for bacterial motility, adhesion, and virulence, found across Gram-negative and Gram-positive bacteria and archaea. Detailed descriptions of T4P structural biology are allowing progress in understanding T4P biogenesis. Secretins, large outer membrane channels, are crucial for T4P extrusion in Gram-negative bacteria. Using cryo-EM and AlphaFold, we modeled the structure of BfpB, the secretin of the Bundle-Forming Pilus (BFP) of enteropathogenic Escherichia coli. BfpB exhibits a unique 17-fold symmetry, correlating with the thicker BFP filaments, and diverging from the 12–15 subunits typical of T4P, type 2 secretion (T2S), and type 3 secretion (T3S) systems. Additionally, we identified an extended β-hairpin loop in the N3 domain, resembling features of distantly related T3SS secretins, and an N-terminal helix where a C-terminal S-domain is seen in some T2S and T3S secretins. These findings reveal evolutionary parallels and structural adaptations in secretins, highlighting the link between oligomerization and pilus structure. This work advances our understanding of T4P biogenesis, secretin evolution, and bacterial secretion systems, offering insights into pathogenic diversity and future research directions. Full article
(This article belongs to the Special Issue Structural Biology Applied in the Study of Pathogenic Bacteria)
Show Figures

Figure 1

20 pages, 3408 KiB  
Article
Structural Space of the Duffy Antigen/Receptor for Chemokines’ Intrinsically Disordered Ectodomain 1 Explored by Temperature Replica-Exchange Molecular Dynamics Simulations
by Agata Kranjc, Tarun Jairaj Narwani, Sophie S. Abby and Alexandre G. de Brevern
Int. J. Mol. Sci. 2023, 24(17), 13280; https://doi.org/10.3390/ijms241713280 - 26 Aug 2023
Cited by 2 | Viewed by 1992
Abstract
Plasmodium vivax malaria affects 14 million people each year. Its invasion requires interactions between the parasitic Duffy-binding protein (PvDBP) and the N-terminal extracellular domain (ECD1) of the host’s Duffy antigen/receptor for chemokines (DARC). ECD1 is highly flexible and intrinsically disordered, therefore [...] Read more.
Plasmodium vivax malaria affects 14 million people each year. Its invasion requires interactions between the parasitic Duffy-binding protein (PvDBP) and the N-terminal extracellular domain (ECD1) of the host’s Duffy antigen/receptor for chemokines (DARC). ECD1 is highly flexible and intrinsically disordered, therefore it can adopt different conformations. We computationally modeled the challenging ECD1 local structure. With T-REMD simulations, we sampled its dynamic behavior and collected its most representative conformations. Our results suggest that most of the DARC ECD1 domain remains in a disordered state during the simulated time. Globular local conformations are found in the analyzed local free-energy minima. These globular conformations share an α-helix spanning residues Ser18 to Ser29 and in many cases they comprise an antiparallel β-sheet, whose β-strands are formed around residues Leu10 and Ala49. The formation of a parallel β-sheet is almost negligible. So far, progress in understanding the mechanisms forming the basis of the P. vivax malaria infection of reticulocytes has been hampered by experimental difficulties, along with a lack of DARC structural information. Our collection of the most probable ECD1 structural conformations will help to advance modeling of the DARC structure and to explore DARC–ECD1 interactions with a range of physiological and pathological ligands. Full article
(This article belongs to the Collection Feature Papers in Molecular Informatics)
Show Figures

Figure 1

13 pages, 2863 KiB  
Article
Comparison of Physical and Biochemical Characterizations of SARS-CoV-2 Inactivated by Different Treatments
by Shouzhi Yu, Yangyang Wei, Hongyang Liang, Wenheng Ji, Zhen Chang, Siman Xie, Yichuan Wang, Wanli Li, Yingwei Liu, Hao Wu, Jie Li, Hui Wang and Xiaoming Yang
Viruses 2022, 14(9), 1938; https://doi.org/10.3390/v14091938 - 31 Aug 2022
Cited by 11 | Viewed by 3184 | Correction
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused huge social and economic distress. Given its rapid spread and the lack of specific treatment options, SARS-CoV-2 needs to be inactivated according to strict biosafety measures during laboratory diagnostics and vaccine development. The inactivation [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused huge social and economic distress. Given its rapid spread and the lack of specific treatment options, SARS-CoV-2 needs to be inactivated according to strict biosafety measures during laboratory diagnostics and vaccine development. The inactivation method for SARS-CoV-2 affects research related to the natural virus and its immune activity as an antigen in vaccines. In this study, we used size exclusion chromatography, western blotting, ELISA, an electron microscope, dynamic light scattering, circular dichroism, and surface plasmon resonance to evaluate the effects of four different chemical inactivation methods on the physical and biochemical characterization of SARS-CoV-2. Formaldehyde and β-propiolactone (BPL) treatment can completely inactivate the virus and have no significant effects on the morphology of the virus. None of the four tested inactivation methods affected the secondary structure of the virus, including the α-helix, antiparallel β-sheet, parallel β-sheet, β-turn, and random coil. However, formaldehyde and long-term BPL treatment (48 h) resulted in decreased viral S protein content and increased viral particle aggregation, respectively. The BPL treatment for 24 h can completely inactivate SARS-CoV-2 with the maximum retention of the morphology, physical properties, and the biochemical properties of the potential antigens of the virus. In summary, we have established a characterization system for the comprehensive evaluation of virus inactivation technology, which has important guiding significance for the development of vaccines against SARS-CoV-2 variants and research on natural SARS-CoV-2. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

20 pages, 3600 KiB  
Article
Structural and Biochemical Analysis Reveals Catalytic Mechanism of Fucoidan Lyase from Flavobacterium sp. SA-0082
by Juanjuan Wang, Zebin Liu, Xiaowei Pan, Ning Wang, Legong Li, Yuguang Du, Jianjun Li and Mei Li
Mar. Drugs 2022, 20(8), 533; https://doi.org/10.3390/md20080533 - 20 Aug 2022
Cited by 6 | Viewed by 3003
Abstract
Fucoidans represent a type of polyanionic fucose-containing sulfated polysaccharides (FCSPs) that are cleaved by fucoidan-degrading enzymes, producing low-molecular-weight fucoidans with multiple biological activities suitable for pharmacological use. Most of the reported fucoidan-degrading enzymes are glycoside hydrolases, which have been well studied for their [...] Read more.
Fucoidans represent a type of polyanionic fucose-containing sulfated polysaccharides (FCSPs) that are cleaved by fucoidan-degrading enzymes, producing low-molecular-weight fucoidans with multiple biological activities suitable for pharmacological use. Most of the reported fucoidan-degrading enzymes are glycoside hydrolases, which have been well studied for their structures and catalytic mechanisms. Little is known, however, about the rarer fucoidan lyases, primarily due to the lack of structural information. FdlA from Flavobacterium sp. SA-0082 is an endo-type fucoidan-degrading enzyme that cleaves the sulfated fuco-glucuronomannan (SFGM) through a lytic mechanism. Here, we report nine crystal structures of the catalytic N-terminal domain of FdlA (FdlA-NTD), in both its wild type (WT) and mutant forms, at resolutions ranging from 1.30 to 2.25 Å. We show that the FdlA-NTD adopts a right-handed parallel β-helix fold, and possesses a substrate binding site composed of a long groove and a unique alkaline pocket. Our structural, biochemical, and enzymological analyses strongly suggest that FdlA-NTD utilizes catalytic residues different from other β-helix polysaccharide lyases, potentially representing a novel polysaccharide lyase family. Full article
Show Figures

Figure 1

26 pages, 3640 KiB  
Article
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure
by Jessica Guillerm, Jean-Marie Frère, Filip Meersman and André Matagne
Biomolecules 2021, 11(8), 1083; https://doi.org/10.3390/biom11081083 - 22 Jul 2021
Cited by 4 | Viewed by 2494
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the [...] Read more.
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner. Full article
Show Figures

Figure 1

17 pages, 2193 KiB  
Article
Assessment of Amyloid Forming Tendency of Peptide Sequences from Amyloid Beta and Tau Proteins Using Force-Field, Semi-Empirical, and Density Functional Theory Calculations
by Charuvaka Muvva, Natarajan Arul Murugan and Venkatesan Subramanian
Int. J. Mol. Sci. 2021, 22(6), 3244; https://doi.org/10.3390/ijms22063244 - 23 Mar 2021
Cited by 4 | Viewed by 3233
Abstract
A wide variety of neurodegenerative diseases are characterized by the accumulation of protein aggregates in intraneuronal or extraneuronal brain regions. In Alzheimer’s disease (AD), the extracellular aggregates originate from amyloid-β proteins, while the intracellular aggregates are formed from microtubule-binding tau proteins. The amyloid [...] Read more.
A wide variety of neurodegenerative diseases are characterized by the accumulation of protein aggregates in intraneuronal or extraneuronal brain regions. In Alzheimer’s disease (AD), the extracellular aggregates originate from amyloid-β proteins, while the intracellular aggregates are formed from microtubule-binding tau proteins. The amyloid forming peptide sequences in the amyloid-β peptides and tau proteins are responsible for aggregate formation. Experimental studies have until the date reported many of such amyloid forming peptide sequences in different proteins, however, there is still limited molecular level understanding about their tendency to form aggregates. In this study, we employed umbrella sampling simulations and subsequent electronic structure theory calculations in order to estimate the energy profiles for interconversion of the helix to β-sheet like secondary structures of sequences from amyloid-β protein (KLVFFA) and tau protein (QVEVKSEKLD and VQIVYKPVD). The study also included a poly-alanine sequence as a reference system. The calculated force-field based free energy profiles predicted a flat minimum for monomers of sequences from amyloid and tau proteins corresponding to an α-helix like secondary structure. For the parallel and anti-parallel dimer of KLVFFA, double well potentials were obtained with the minima corresponding to α-helix and β-sheet like secondary structures. A similar double well-like potential has been found for dimeric forms for the sequences from tau fibril. Complementary semi-empirical and density functional theory calculations displayed similar trends, validating the force-field based free energy profiles obtained for these systems. Full article
(This article belongs to the Special Issue Pathological and Functional Amyloid Fibrils)
Show Figures

Figure 1

22 pages, 3576 KiB  
Article
Astrocytes Are More Vulnerable than Neurons to Silicon Dioxide Nanoparticle Toxicity in Vitro
by Jorge Humberto Limón-Pacheco, Natalie Jiménez-Barrios, Alejandro Déciga-Alcaraz, Adriana Martínez-Cuazitl, Mónica Maribel Mata-Miranda, Gustavo Jesús Vázquez-Zapién, Jose Pedraza-Chaverri, Yolanda Irasema Chirino and Marisol Orozco-Ibarra
Toxics 2020, 8(3), 51; https://doi.org/10.3390/toxics8030051 - 29 Jul 2020
Cited by 12 | Viewed by 4224
Abstract
Some studies have shown that silicon dioxide nanoparticles (SiO2-NPs) can reach different regions of the brain and cause toxicity; however, the consequences of SiO2-NPs exposure on the diverse brain cell lineages is limited. We aimed to investigate the neurotoxic [...] Read more.
Some studies have shown that silicon dioxide nanoparticles (SiO2-NPs) can reach different regions of the brain and cause toxicity; however, the consequences of SiO2-NPs exposure on the diverse brain cell lineages is limited. We aimed to investigate the neurotoxic effects of SiO2-NP (0–100 µg/mL) on rat astrocyte-rich cultures or neuron-rich cultures using scanning electron microscopy, Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), FTIR microspectroscopy mapping (IQ mapping), and cell viability tests. SiO2-NPs were amorphous particles and aggregated in saline and culture media. Both astrocytes and neurons treated with SiO2-NPs showed alterations in cell morphology and changes in the IR spectral regions corresponding to nucleic acids, proteins, and lipids. The analysis by the second derivative revealed a significant decrease in the signal of the amide I (α-helix, parallel β-strand, and random coil) at the concentration of 10 µg/mL in astrocytes but not in neurons. IQ mapping confirmed changes in nucleic acids, proteins, and lipids in astrocytes; cell death was higher in astrocytes than in neurons (10–100 µg/mL). We conclude that astrocytes were more vulnerable than neurons to SiO2-NPs toxicity. Therefore, the evaluation of human exposure to SiO2-NPs and possible neurotoxic effects must be followed up. Full article
(This article belongs to the Collection Environmental and Health Risks of Nanotechnology)
Show Figures

Graphical abstract

9 pages, 2517 KiB  
Article
Characterization of Hidden Chirality: Two-Fold Helicity in β-Strands
by Toshiyuki Sasaki and Mikiji Miyata
Symmetry 2019, 11(4), 499; https://doi.org/10.3390/sym11040499 - 5 Apr 2019
Cited by 5 | Viewed by 3787
Abstract
A β-strand is a component of a β-sheet and is an important structural motif in biomolecules. An α-helix has clear helicity, while chirality of a β-strand had been discussed on the basis of molecular twists generated by forming hydrogen bonds in parallel or [...] Read more.
A β-strand is a component of a β-sheet and is an important structural motif in biomolecules. An α-helix has clear helicity, while chirality of a β-strand had been discussed on the basis of molecular twists generated by forming hydrogen bonds in parallel or non-parallel β-sheets. Herein we describe handedness determination of two-fold helicity in a zig-zag β-strand structure. Left- (M) and right-handedness (P) of the two-fold helicity was defined by application of two concepts: tilt-chirality and multi-point approximation. We call the two-fold helicity in a β-strand, whose handedness has been unrecognized and unclarified, as hidden chirality. Such hidden chirality enables us to clarify precise chiral characteristics of biopolymers. It is also noteworthy that characterization of chirality of high dimensional structures like a β-strand and α-helix, referred to as high dimensional chirality (HDC) in the present study, will contribute to elucidation of the possible origins of chirality and homochirality in nature because such HDC originates from not only asymmetric centers but also conformations in a polypeptide chain. Full article
(This article belongs to the Special Issue Possible Scenarios for Homochirality on Earth)
Show Figures

Figure 1

24 pages, 4869 KiB  
Review
Comparative Geometrical Analysis of Leucine-Rich Repeat Structures in the Nod-Like and Toll-Like Receptors in Vertebrate Innate Immunity
by Norio Matsushima, Hiroki Miyashita, Purevjav Enkhbayar and Robert H. Kretsinger
Biomolecules 2015, 5(3), 1955-1978; https://doi.org/10.3390/biom5031955 - 18 Aug 2015
Cited by 25 | Viewed by 9242
Abstract
The NOD-like receptors (NLRs) and Toll-like receptors (TLRs) are pattern recognition receptors that are involved in the innate, pathogen pattern recognition system. The TLR and NLR receptors contain leucine-rich repeats (LRRs) that are responsible for ligand interactions. In LRRs short β-strands stack parallel [...] Read more.
The NOD-like receptors (NLRs) and Toll-like receptors (TLRs) are pattern recognition receptors that are involved in the innate, pathogen pattern recognition system. The TLR and NLR receptors contain leucine-rich repeats (LRRs) that are responsible for ligand interactions. In LRRs short β-strands stack parallel and then the LRRs form a super helical arrangement of repeating structural units (called a coil of solenoids). The structures of the LRR domains of NLRC4, NLRP1, and NLRX1 in NLRs and of TLR1-5, TLR6, TLR8, TLR9 in TLRs have been determined. Here we report nine geometrical parameters that characterize the LRR domains; these include four helical parameters from HELFIT analysis. These nine parameters characterize well the LRR structures in NLRs and TLRs; the LRRs of NLR adopts a right-handed helix. In contrast, the TLR LRRs adopt either a left-handed helix or are nearly flat; RP105 and CD14 also adopt a left-handed helix. This geometrical analysis subdivides TLRs into four groups consisting of TLR3/TLR8/TLR9, TLR1/TLR2/TRR6, TLR4, and TLR5; these correspond to the phylogenetic tree based on amino acid sequences. In the TLRs an ascending lateral surface that consists of loops connecting the β-strand at the C-terminal side is involved in protein, protein/ligand interactions, but not the descending lateral surface on the opposite side. Full article
Show Figures

Figure 1

13 pages, 587 KiB  
Article
Antimicrobial Activity of Chemokine CXCL10 for Dermal and Oral Microorganisms
by Grant O. Holdren, David J. Rosenthal, Jianyi Yang, Amber M. Bates, Carol L. Fischer, Yang Zhang, Nicole K. Brogden and Kim A. Brogden
Antibiotics 2014, 3(4), 527-539; https://doi.org/10.3390/antibiotics3040527 - 23 Oct 2014
Cited by 9 | Viewed by 10073
Abstract
CXCL10 (IP-10) is a small 10 kDa chemokine with antimicrobial activity. It is induced by IFN-γ, chemoattracts mononuclear cells, and promotes adhesion of T cells. Recently, we detected CXCL10 on the surface of the skin and in the oral cavity. In the current [...] Read more.
CXCL10 (IP-10) is a small 10 kDa chemokine with antimicrobial activity. It is induced by IFN-γ, chemoattracts mononuclear cells, and promotes adhesion of T cells. Recently, we detected CXCL10 on the surface of the skin and in the oral cavity. In the current study, we used broth microdilution and radial diffusion assays to show that CXCL10 inhibits the growth of Escherichia coli, Staphylococcus aureus, Corynebacterium jeikeium, Corynebacterium striatum, and Candida albicans HMV4C, but not Corynebacterium bovis, Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Poryphromonas gingivalis, or C. albicans ATCC 64124. The reason for the selective antimicrobial activity is not yet known. However, antimicrobial activity of CXCL10 may be related to its composition and structure, as a cationic 98 amino acid residue molecule with 10 lysine residues, 7 arginine residues, a total net charge of +11, and a theoretical pI of 9.93. Modeling studies revealed that CXCL10 contains an α-helix at the N-terminal, three anti-parallel β-strands in the middle, and an α-helix at the C-terminal. Thus, CXCL10, when produced on the surface of the skin or in the oral cavity, likely has antimicrobial activity and may enhance innate antimicrobial and cellular responses to the presence of select commensal or opportunistic microorganisms. Full article
(This article belongs to the Special Issue Antimicrobial Peptides)
Show Figures

Figure 1

18 pages, 1822 KiB  
Article
Adsorption and Orientation of Human Islet Amyloid Polypeptide (hIAPP) Monomer at Anionic Lipid Bilayers: Implications for Membrane-Mediated Aggregation
by Yan Jia, Zhenyu Qian, Yun Zhang and Guanghong Wei
Int. J. Mol. Sci. 2013, 14(3), 6241-6258; https://doi.org/10.3390/ijms14036241 - 19 Mar 2013
Cited by 35 | Viewed by 9208
Abstract
Protein misfolding and aggregation cause serious degenerative diseases, such as Alzheimer’s and type II diabetes. Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits found in the pancreas of type II diabetic patients. Increasing evidence suggests that β-cell death is [...] Read more.
Protein misfolding and aggregation cause serious degenerative diseases, such as Alzheimer’s and type II diabetes. Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits found in the pancreas of type II diabetic patients. Increasing evidence suggests that β-cell death is related to the interaction of hIAPP with the cellular membrane, which accelerates peptide aggregation. In this study, as a first step towards understanding the membrane-mediated hIAPP aggregation, we investigate the atomic details of the initial step of hIAPP-membrane interaction, including the adsorption orientation and conformation of hIAPP monomer at an anionic POPG lipid bilayer by performing all-atom molecular dynamics simulations. We found that hIAPP monomer is quickly adsorbed to bilayer surface, and the adsorption is initiated from the N-terminal residues driven by strong electrostatic interactions of the positively-charged residues K1 and R11 with negatively-charged lipid headgroups. hIAPP binds parallel to the lipid bilayer surface as a stable helix through residues 7–22, consistent with previous experimental study. Remarkably, different simulations lead to the same binding orientation stabilized by electrostatic and H-bonding interactions, with residues R11, F15 and S19 oriented towards membrane and hydrophobic residues L12, A13, L16 and V17 exposed to solvent. Implications for membrane-mediated hIAPP aggregation are discussed. Full article
(This article belongs to the Special Issue Protein Folding)
Show Figures

11 pages, 1213 KiB  
Article
Solution NMR Structure of Hypothetical Protein CV_2116 Encoded by a Viral Prophage Element in Chromobacterium violaceum
by Yunhuang Yang, Theresa A. Ramelot, John R. Cort, Maite Garcia, Adelinda Yee, Cheryl H. Arrowsmith and Michael A. Kennedy
Int. J. Mol. Sci. 2012, 13(6), 7354-7364; https://doi.org/10.3390/ijms13067354 - 14 Jun 2012
Cited by 2 | Viewed by 6860
Abstract
CV_2116 is a small hypothetical protein of 82 amino acids from the Gram-negative coccobacillus Chromobacterium violaceum. A PSI-BLAST search using the CV_2116 sequence as a query identified only one hit (E = 2e−07) corresponding to a hypothetical protein OR16_04617 from [...] Read more.
CV_2116 is a small hypothetical protein of 82 amino acids from the Gram-negative coccobacillus Chromobacterium violaceum. A PSI-BLAST search using the CV_2116 sequence as a query identified only one hit (E = 2e−07) corresponding to a hypothetical protein OR16_04617 from Cupriavidus basilensis OR16, which failed to provide insight into the function of CV_2116. The CV_2116 gene was cloned into the p15TvLic expression plasmid, transformed into E. coli, and 13C- and 15N-labeled NMR samples of CV_2116 were overexpressed in E. coli and purified for structure determination using NMR spectroscopy. The resulting high-quality solution NMR structure of CV_2116 revealed a novel α + β fold containing two anti-parallel β -sheets in the N-terminal two-thirds of the protein and one α-helix in the C-terminal third of the protein. CV_2116 does not belong to any known protein sequence family and a Dali search indicated that no similar structures exist in the protein data bank. Although no function of CV_2116 could be derived from either sequence or structural similarity searches, the neighboring genes of CV_2116 encode various proteins annotated as similar to bacteriophage tail assembly proteins. Interestingly, C. violaceum exhibits an extensive network of bacteriophage tail-like structures that likely result from lateral gene transfer by incorporation of viral DNA into its genome (prophages) due to bacteriophage infection. Indeed, C. violaceum has been shown to contain four prophage elements and CV_2116 resides in the fourth of these elements. Analysis of the putative operon in which CV_2116 resides indicates that CV_2116 might be a component of the bacteriophage tail-like assembly that occurs in C. violaceum. Full article
(This article belongs to the Special Issue Hypothetical Proteins)
Show Figures

Back to TopTop