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Abstract: A β-strand is a component of a β-sheet and is an important structural motif in biomolecules.
An α-helix has clear helicity, while chirality of a β-strand had been discussed on the basis of molecular
twists generated by forming hydrogen bonds in parallel or non-parallel β-sheets. Herein we
describe handedness determination of two-fold helicity in a zig-zag β-strand structure. Left- (M) and
right-handedness (P) of the two-fold helicity was defined by application of two concepts: tilt-chirality
and multi-point approximation. We call the two-fold helicity in a β-strand, whose handedness has
been unrecognized and unclarified, as hidden chirality. Such hidden chirality enables us to clarify
precise chiral characteristics of biopolymers. It is also noteworthy that characterization of chirality of
high dimensional structures like a β-strand and α-helix, referred to as high dimensional chirality
(HDC) in the present study, will contribute to elucidation of the possible origins of chirality and
homochirality in nature because such HDC originates from not only asymmetric centers but also
conformations in a polypeptide chain.

Keywords: β-strand; hidden chirality; two-fold helix; multi-point approximation; tilt-chirality; high
dimensional chirality

1. Introduction

Chirality bestows variety and complexity to functions of substances and is one of the most
important and fundamental properties in nature. In this context, elucidation of the origins of chirality
and homochirality is a challenge of great importance for scientists, and there have been several
theories [1,2] such as mechanical stirring [3] and photo reaction [4]. One of the possible answers
to the challenge is chirality generation by chiral crystallization [5–8] with enantiomeric excess, or
chiral symmetry breaking [9], followed by amplification [10,11] and transcription [12,13] of the
excessed chirality.

In chiral crystallization, chirality is generated by assembling achiral components in chiral
manners and is fixed in crystals. Such a phenomenon is observed in both inorganic [5] and organic
materials [7,14–18]. A two-fold helix is an especially important structural motif [19] because a
large number of chiral crystals belong to P21 and P212121 Sohncke groups having two-fold helices,
according to space group statistics of the Cambridge Structural Database [20]. It is surprising,
however, that a two-fold helix is achiral as a symmetry operation from the viewpoint of ‘mathematical’
crystallography [21]. This fact brought us a question “what is the origin of chirality in two-fold
helix-based crystals?” The supramolecular-tilt-chirality method based on two concepts, tilt chirality
and multi-point approximation, answered the question as described below (Figure 1) [22–26].
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A two-fold helix is a symmetry operation of 180° rotation around a helical axis combined with 
one-half unit translation and is achiral in ‘mathematical’ crystallography (Figure 1a–c) [21]. On the 
other hand, a two-fold helix is chiral and has clear left- and right-handedness in ‘chemical/material’ 
crystallography [18,27] by considering molecular shapes (Figure 1d). This difference is attributed to 
an approximation method of molecules: one-point and multi-point approximation in the former and 
the latter, respectively. We call the chirality, whose handedness cannot be recognized in a general 
way by mathematical crystallography but definitely exists in materials, as hidden chirality. Not only 
clear helices, including three-fold, four-fold, and six-fold helices in crystals as well as α-helices in 
proteins, but also helices having hidden chirality like two-fold helices, may serve as the origin of 
chirality [17,18,28]. 

 
Figure 1. Concepts of supramolecular-tilt-chirality method and multi-point approximation method 
for chirality characterization of two-fold helices. Achiral two-fold helices represented by 
approximating components as (a) one-point (sphere); (b) two-point (line); (c) three-point (face) on a 
mirror plane; (d) Chirality of two-fold helices in two-point and three-point approximation methods. 
The lines or faces in front of the helical axes are tilted to the left or right in the left-(M) or right-handed 
(P) two-fold helices, respectively. 

Inspired by the discovery of hidden chirality in a two-fold helix, we have been seeking for 
further hidden chirality not only in supermolecules [29] but also in a wide range of materials, 
including polymers. Consequently, we noticed the fact that chirality of a β-strand has been discussed 
according to twist of a β-strand generated by forming hydrogen bonds in a β-sheet [30–32], while the 
structure of a β-strand is recognized as a two-fold helix [33]. We can say that the fundamental chirality 
of a β-strand is two-fold helicity rather than the twist, which is a kind of secondary chirality. Herein 
we describe two-fold helicity as hidden chirality in a β-strand, which is a part of a β-sheet in 
biopolymers. Handedness of the two-fold helix is clarified and characterized by applying concepts 
of tilt-chirality, which is handedness determination based on the tilt of molecules, and multi-point 
approximation, which is consideration of molecules as multi-point rather than one-point. The 
unveiled fundamental chirality in a β-strand will give new clues for the origins of chirality generation, 
homochirality, and chiral properties of proteins. 
  

Figure 1. Concepts of supramolecular-tilt-chirality method and multi-point approximation method for
chirality characterization of two-fold helices. Achiral two-fold helices represented by approximating
components as (a) one-point (sphere); (b) two-point (line); (c) three-point (face) on a mirror plane; (d)
Chirality of two-fold helices in two-point and three-point approximation methods. The lines or faces
in front of the helical axes are tilted to the left or right in the left-(M) or right-handed (P) two-fold
helices, respectively.

A two-fold helix is a symmetry operation of 180◦ rotation around a helical axis combined with
one-half unit translation and is achiral in ‘mathematical’ crystallography (Figure 1a–c) [21]. On the
other hand, a two-fold helix is chiral and has clear left- and right-handedness in ‘chemical/material’
crystallography [18,27] by considering molecular shapes (Figure 1d). This difference is attributed to
an approximation method of molecules: one-point and multi-point approximation in the former and
the latter, respectively. We call the chirality, whose handedness cannot be recognized in a general
way by mathematical crystallography but definitely exists in materials, as hidden chirality. Not only
clear helices, including three-fold, four-fold, and six-fold helices in crystals as well as α-helices in
proteins, but also helices having hidden chirality like two-fold helices, may serve as the origin of
chirality [17,18,28].

Inspired by the discovery of hidden chirality in a two-fold helix, we have been seeking for further
hidden chirality not only in supermolecules [29] but also in a wide range of materials, including
polymers. Consequently, we noticed the fact that chirality of a β-strand has been discussed according
to twist of a β-strand generated by forming hydrogen bonds in a β-sheet [30–32], while the structure
of a β-strand is recognized as a two-fold helix [33]. We can say that the fundamental chirality of a
β-strand is two-fold helicity rather than the twist, which is a kind of secondary chirality. Herein we
describe two-fold helicity as hidden chirality in a β-strand, which is a part of a β-sheet in biopolymers.
Handedness of the two-fold helix is clarified and characterized by applying concepts of tilt-chirality,
which is handedness determination based on the tilt of molecules, and multi-point approximation,
which is consideration of molecules as multi-point rather than one-point. The unveiled fundamental
chirality in a β-strand will give new clues for the origins of chirality generation, homochirality, and
chiral properties of proteins.
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2. Materials and Methods

Model molecules, pentaglycine and pentaalanine, having various dihedral angles, ϕ and ψ
according to the Ramachandran plot [34], were constructed by using Gauss View5.0.8 [35] and Mercury
CSD 4.0.0 [36].

3. Results

Polypeptides construct high dimensional structures, e.g., α-helices [37] and β-sheets [38], by
changing dihedral angles of ϕ and ψ in the main chain [39]. Due to the simplicity of having no chiral
centers, pentaglycine was firstly focused on as a model polypeptide. In addition, pentaalanine was
also used to clarify effects of chiral centers and side chains by comparing with pentaglycine.

3.1. Two-Fold Helicity of Extended Linear Pentaglycine

Pentaglycine with all trans (ϕ = 180◦ and ψ = −180◦ (or ϕ = −180◦ and ψ = 180◦)) formed an
extended linear structure (Figure 2). The linear structure had two-fold helical symmetry, i.e., a glycine
moiety corresponds to the neighboring one by the operation: 180◦ rotation around the two-fold axis
chain followed by translation along the main chain. Such a two-fold helix was achiral because there
was a mirror plane along the two-fold helical axis.
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Figure 2. A structure of extended linear pentaglycine. Dihedral angles are ϕ = 180◦ and ψ = −180◦ (or
ϕ = −180◦ and ψ = 180◦).

3.2. Two-Fold Helicity of Zig-Zag Pentaglycine

When the dihedral angles became ϕ = 120◦ and ψ = −120◦ (or ϕ = −120◦ and ψ = 120◦), the
linear pentaglycine transformed into a zig-zag structure (Figure 3 left (or right)). Each chain was
a so-called β-strand, which is a substructure of a β-sheet. The β-strand had no mirror plane along
the two-fold helical axis and constituted a two-fold helix having handedness. Handedness of the
two-fold helicity was defined by focusing on lines or faces in the β-strand. Here we defined a face by a
peptide bond, which is a well-known planar structure in polypeptides and neighboring alpha carbons
of glycine residues.
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Handedness of the two-fold helicity in the β-strand was defined by application of the same
concept of the supramolecular-tilt-chirality method, i.e., helical handedness was defined based on tilt
of lines or faces in front of helical axes. Relative positions of the faces against the helical axis, front and
back, were distinguished based on the position of an oxygen atom in the face when the β-strand was
viewed from the direction that was vertical to the helical axis and parallel to the faces. When the faces
in front of the helical axis were tilted to the left, the β-strand was defined as a left-handed (M) two-fold
helix (ϕ = 120◦ and ψ = −120◦, Figure 3 left). Its mirror-imaged one was a right-handed (P) two-fold
helix having faces tilted to the right in front of the helical axis (Figure 3 right). In this case, dihedral
angles of the β-strand were ϕ = −120◦ and ψ = 120◦.
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back are defined based on the relative position of an oxygen atom in each face against the two-fold 
helical axis. 
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shown on the Ramachandran plot in addition to the representative secondary structures: β-strands 
in a parallel β-sheet (↑↑), antiparallel β-sheet (↑↓), α-helix (α), 310-helix (310), and π-helix (π) 
(Figure 4). The blue and red circles are used to distinguish observed structures in real polypeptides 
composed of L-amino acids and their mirror-imaged structures, respectively. In real polypeptides, β-
strands exhibit similar structures to the two-fold helical linear and zig-zag chains. From the viewpoint 
of symmetry, however, β-strands do not correspond to two-fold helices, with the exception of the 
case |φ| = |ψ| (dotted line in Figure 4).  

Instead, they have pseudo-two-fold helicity with twists along the two-fold helical axes. For 
example, a β-strand shows a left- or right-handed twist when its dihedral angles are φ = −150° and ψ 
= 120° or φ = −120° and ψ = 150°, respectively (Figure 4c,d). Handedness of pseudo-two-fold helicity, 
or tilt of the faces, is unchanged by twists of polypeptide chains. Conventionally, on the other hand, 
a zig-zag β-strand having a left- (|φ| > |ψ|) or right-handed twist (|φ| < |ψ|) is defined as P or M 
helices because neighboring amino acid residues in a polypeptide chain are related by less than 180° 
rotation about the helical axis combined with a unit translation [31].  

Figure 3. Left- (M) and right-handed (P) two-fold helicity in a zig-zag β-strand of which dihedral
angles are ϕ = 120◦, ψ = −120◦ and ϕ = −120◦, ψ = 120◦, respectively. Faces are comprised of peptide
bonds and neighboring alpha carbons of glycine residues. Relative positions of the faces, front, and
back are defined based on the relative position of an oxygen atom in each face against the two-fold
helical axis.

4. Discussion

4.1. Two-Fold Helicity and Twists of β-Strands in Real Polypeptides

The ϕ and ψ values of the above mentioned linear structure (Ln) and zig-zag β-strand (Zg) are
shown on the Ramachandran plot in addition to the representative secondary structures: β-strands in
a parallel β-sheet (↑↑), antiparallel β-sheet (↑↓), α-helix (α), 310-helix (310), and π-helix (π) (Figure 4).
The blue and red circles are used to distinguish observed structures in real polypeptides composed
of L-amino acids and their mirror-imaged structures, respectively. In real polypeptides, β-strands
exhibit similar structures to the two-fold helical linear and zig-zag chains. From the viewpoint of
symmetry, however, β-strands do not correspond to two-fold helices, with the exception of the case |ϕ|

= |ψ| (dotted line in Figure 4).
Instead, they have pseudo-two-fold helicity with twists along the two-fold helical axes. For

example, a β-strand shows a left- or right-handed twist when its dihedral angles are ϕ = −150◦ and ψ
= 120◦ or ϕ = −120◦ and ψ = 150◦, respectively (Figure 4c,d). Handedness of pseudo-two-fold helicity,
or tilt of the faces, is unchanged by twists of polypeptide chains. Conventionally, on the other hand, a
zig-zag β-strand having a left- (|ϕ| > |ψ|) or right-handed twist (|ϕ| < |ψ|) is defined as P or M helices
because neighboring amino acid residues in a polypeptide chain are related by less than 180◦ rotation
about the helical axis combined with a unit translation [31].
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and ψ = −45°), 310-helix (310, φ = −49° and ψ = −26°), and π-helix (π, φ = −55° and ψ = −70°). The linear 
pentaglycine (Figure 2) and (M)- or (P)-zig-zag pentaglycine (Figure 3) correspond with Ln and  
(M)- or (P)-Zg, respectively. Blue and red circles are in mirror-imaged relation to each other. (b–d) 
Relationship among dihedral angles (φ, ψ), (pseudo-)two-fold helicity, and twist: (b) (P)-Zg (φ = −120° 
and ψ = 120°) with no twist; (c) a β-strand with P pseudo-two-fold helicity and left-handed twist  
(φ = −150° and ψ = 120°); (d) a β-strand with P pseudo-two-fold helicity and right-handed twist (φ = 
−120° and ψ = 150°). 

4.2. Correlation Between Molecular Chirality and Chirality of High Dimensional Structures. 

In characterization of chiral properties, it is important to consider not only molecular chirality 
(MC) but also high dimensional chiral structures, which we call high dimensional chirality (HDC) in 
the present study, because both of the chirality affect chiral functions. Previously, we succeeded in 
elucidating the linkage between MC and supramolecular chirality (SMC) [40]. At the same time, 

Figure 4. (a) The Ramachandran plot indicatingϕ and ψ values of the linear polypeptide (Ln, ϕ = 180◦

and ψ = −180◦ or ϕ = −180◦ and ψ = 180◦), the zig-zag β-strands ((M)-Zg, ϕ = 120◦ and ψ = −120◦;
(P)-Zg, ϕ = −120◦ and ψ = 120◦), the representative secondary structures: β-strands in a parallel
β-sheet (↑↑, ϕ = −120◦ and ψ = 115◦), antiparallel β-sheet (↑↓, ϕ = −140◦ and ψ = 135◦), α-helix (α, ϕ
= −60◦ and ψ = −45◦), 310-helix (310, ϕ = −49◦ and ψ = −26◦), and π-helix (π, ϕ = −55◦ and ψ = −70◦).
The linear pentaglycine (Figure 2) and (M)- or (P)-zig-zag pentaglycine (Figure 3) correspond with
Ln and (M)- or (P)-Zg, respectively. Blue and red circles are in mirror-imaged relation to each other.
(b–d) Relationship among dihedral angles (ϕ, ψ), (pseudo-)two-fold helicity, and twist: (b) (P)-Zg
(ϕ = −120◦ and ψ = 120◦) with no twist; (c) a β-strand with P pseudo-two-fold helicity and left-handed
twist (ϕ = −150◦ and ψ = 120◦); (d) a β-strand with P pseudo-two-fold helicity and right-handed twist
(ϕ = −120◦ and ψ = 150◦).

4.2. Correlation Between Molecular Chirality and Chirality of High Dimensional Structures

In characterization of chiral properties, it is important to consider not only molecular chirality
(MC) but also high dimensional chiral structures, which we call high dimensional chirality (HDC)
in the present study, because both of the chirality affect chiral functions. Previously, we succeeded
in elucidating the linkage between MC and supramolecular chirality (SMC) [40]. At the same time,
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dependence of chiral characteristics on MC as well as SMC was confirmed by vibrational circular
dichroism spectroscopy, which has been used in characterization of chirality in biopolymers [41–43].
This success demonstrated that geometrical characterization of MC and HDC leads to prediction and
control of HDC. In the same way with the previous study, we investigated the correlation between MC
of each amino acid residue and HDC, helicity in the present case, of β-strands and α-helices.

Structures of pentamers comprised of achiral glycine and chiral alanine were compared with each
other to clarify effects of chiral centers on chiral secondary structures. In the case of pentaglycine
(RCH(NH2)COOH, R = H), M and P two-fold helices are formed almost equally without external chiral
sources. On the other hand, there is clear selectivity between M and P two-fold helices in the other
polypeptides (RCH(NH2)COOH, R,H). The selectivity is attributable to steric hindrance between
the oxygen atom in a peptide bond and neighboring substituent R (Figure 5a). For example, linear
penta-L-alanine (Figure 5a(i)) tends to form a zig-zag β-strand with P two-fold helicity (ϕ = −120◦ and
ψ = 120◦) (Figure 5a(ii)) by letting a methyl group be away from the oxygen atom of a neighboring
peptide bond rather than that with M two-fold helicity (ϕ = 120◦ and ψ = −120◦) (Figure 5a(iii)) by
making a methyl group be close to the oxygen atom of a neighboring peptide bond. This fact suggests a
correlation between MC and HDC, i.e., absolute structures of amino acids and helicity in polypeptides.
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α-helices of penta-D-alanine and penta-L-alanine, respectively. 

In the same way, handedness selectivity of α-helices is explained. A zig-zag β-strand with P  
two-fold helicity can be formed from an extended linear poly-L-amino acid by rotating dihedral 
angles, φ = −180°→−120° (+60°) and ψ = 180°→120° (−60°), in which rotation directions are determined 
by chirality of component amino acid residues as mentioned above. The β-strand then becomes a 
right-handed α-helix by further rotation of the dihedral angles: φ = −120°→−60° (+60°) and ψ = 120°
→−45° (−165°). The rotation directions, clockwise and counterclockwise in φ and ψ, respectively, are 
the same as those in the formation of the β-strand from an extended linear poly-L-amino acid, even 

Figure 5. (a) Selectivity in rotation direction of dihedral angles for transformation of poly-L-alanine:
(i) an extended linear structure to (ii) a favored and (iii) unfavored zig-zag structure (β-strand); (b)
Two-fold helicity of zig-zag pentaalanine β-strands: left-handed (M, ϕ = 120◦ and ψ = −120◦) and
right-handed two-fold helices (P, ϕ = −120◦ and ψ = 120◦) comprised of D-alanine and L-alanine,
respectively; (c) Left-handed (M, ϕ = 60◦ and ψ = 45◦) and right-handed (P, ϕ = −60◦ and ψ = −45◦)
α-helices of penta-D-alanine and penta-L-alanine, respectively.

In the same way, handedness selectivity of α-helices is explained. A zig-zag β-strand with P
two-fold helicity can be formed from an extended linear poly-L-amino acid by rotating dihedral angles,
ϕ = −180◦→−120◦ (+60◦) and ψ = 180◦→120◦ (−60◦), in which rotation directions are determined
by chirality of component amino acid residues as mentioned above. The β-strand then becomes a
right-handed α-helix by further rotation of the dihedral angles: ϕ = −120◦→−60◦ (+60◦) and ψ =

120◦→−45◦ (−165◦). The rotation directions, clockwise and counterclockwise in ϕ and ψ, respectively,
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are the same as those in the formation of the β-strand from an extended linear poly-L-amino acid, even
though the value of rotation angle ψ is relatively large. This coincidence in the rotation directions
suggests a structural relationship, or possibility of an inter-structural transition, between a β-strand
and α-helix. In fact, there is a region, sometimes called the bridge region, which bridges the regions of
β-strand (β-sheet) and α-helix in the Ramachandran plot [39].

5. Conclusions

Two-fold helicity as hidden chirality in a β-strand, which is an important structural motif in
proteins, was successfully clarified and characterized by applying the concepts of tilt-chirality and
multi-point approximation. We suggest that two-fold helicity is fundamental chirality of a β-strand.
The geometric viewpoint brings us a new perspective to explain linkages between handedness of
two-fold helicity and that of molecular chirality of amino acid residues in polypeptides. Helicity of an
α-helix, twists in a β-strand and β-sheet, as well as central chirality of component amino acids are
chiral structures in general polypeptides. The two-fold helicity in a β-strand is also a chiral structure
of great importance observed in most polypeptides. Furthermore, the concepts are also applicable to
chiral structures of other biopolymers, e.g., polysaccharides [44] and nucleic acids [45], and synthetic
crystalline polymers [46] of which chirality is non-negligible. Our findings bring important knowledge
for elucidating origins of chirality and homochirality in nature and chiral properties of proteins
including amyloid fibrils [47] and also give new insights into the transition from prebiotic chemistry to
protobiology [48–50].
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