Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (162)

Search Parameters:
Keywords = p.Ser2300Pro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2351 KiB  
Article
Associations Between Dietary Amino Acid Intake and Elevated High-Sensitivity C-Reactive Protein in Children: Insights from a Cross-Sectional Machine Learning Study
by Lianlong Yu, Xiaodong Zheng, Jilan Li, Changqing Liu, Yiya Liu, Meina Tian, Qianrang Zhu, Zhenchuang Tang and Maoyu Wu
Nutrients 2025, 17(13), 2235; https://doi.org/10.3390/nu17132235 - 5 Jul 2025
Viewed by 512
Abstract
Background High-sensitivity C-reactive protein (hs-CRP) is a protein that indicates inflammation and the risk of cardiovascular diseases. The intake of dietary amino acids can influence immune and inflammatory reactions. However, studies on the relationship between dietary amino acids and hs-CRP, especially in children, [...] Read more.
Background High-sensitivity C-reactive protein (hs-CRP) is a protein that indicates inflammation and the risk of cardiovascular diseases. The intake of dietary amino acids can influence immune and inflammatory reactions. However, studies on the relationship between dietary amino acids and hs-CRP, especially in children, remain scarce. Methods This cross-sectional study analyzed data from the Nutrition and China Children and Lactating Women Nutrition and Health Survey (2016–2019), focusing on 3514 children (724 with elevated hs-CRP ≥ 3 mg/L and 2790 with normal levels). Dietary information was gathered via a food frequency questionnaire, and hs-CRP levels were obtained from blood samples. Boruta algorithm and propensity scores were used to select and match dietary factors and sample sizes. Machine learning (ML) algorithms and logistic regression models assessed the link between amino acid intake and elevated hs-CRP risk, adjusting for age, sex, BMI, and lifestyle factors. Results The odds ratios (ORs) for elevated hs-CRP were significant for several amino acids, including Ile, Leu, Lys, Ser, Cys, Tyr, His, Pro, SAA, and AAA, with values ranging from 1.10 to 2.07. The LightGBM algorithm was the most effective in predicting elevated hs-CRP risk, achieving an AUC of 0.927. Tyrosine, methionine, cysteine, and proline were identified as important features by SHAP analysis and logistic regression. The intake of Ser, Cys, Tyr, and Pro showed a linear increase in the risk of elevated hs-CRP, especially in individuals with low protein intake and normal weight (p < 0.1). Conclusions Intake of amino acids like Ser, Cys, Tyr, and Pro significantly impacts hs-CRP levels in children, indicating that regulating these could help prevent inflammation-related diseases. This study supports future dietary and health management strategies. This is first large-scale ML study linking amino acids to pediatric inflammation in China. The main limitations are the cross-section design and the use of self-reported dietary data. Full article
Show Figures

Figure 1

15 pages, 1112 KiB  
Article
The Identification of Novel Mutations in ATP-Dependent Protease ClpC1 Assists in the Molecular Diagnosis of Obscured Pyrazinamide-Resistant Tuberculosis Clinical Isolates
by H. M. Adnan Hameed, Cuiting Fang, Zhiyong Liu, Yamin Gao, Shuai Wang, Xinwen Chen, Nanshan Zhong, Htin Lin Aung, Jinxing Hu and Tianyu Zhang
Microorganisms 2025, 13(6), 1401; https://doi.org/10.3390/microorganisms13061401 - 16 Jun 2025
Viewed by 497
Abstract
Pyrazinamide (PZA) is a key component of tuberculosis treatment, with drug resistance (PZAR) primarily related to pncA mutations. However, discordance between phenotypic resistance and conventional pncA-based molecular diagnostics challenges diagnostic accuracy. This study investigates discrepancies between phenotypic and genotypic resistance [...] Read more.
Pyrazinamide (PZA) is a key component of tuberculosis treatment, with drug resistance (PZAR) primarily related to pncA mutations. However, discordance between phenotypic resistance and conventional pncA-based molecular diagnostics challenges diagnostic accuracy. This study investigates discrepancies between phenotypic and genotypic resistance profiles among Mycobacterium tuberculosis (Mtb) clinical isolates. Fifty-three Mtb isolates from Guangzhou Chest Hospital were tested for PZA resistance using the BACTEC MGIT 960 system and PZase activity assay. Thirty-one phenotypically PZAR strains were genetically assessed by Sanger sequencing of PZAR-associated customary genes. Five pncA-wild-type PZAR strains were investigated through whole-genome sequencing. ClpC1P1P2 activity was evaluated by proteolytic degradation assay. Notably, 26/31 of the PZAR strains harbored mutations in pncA and/or its upstream region, aligning PZase activity and phenotypic profiles. However, five PZAR strains lacked pncA mutations. The WGS of five discordant strains revealed four novel mutations (Gly58Ser, Val63Ala, Ala567Val, and Pro796Leu) across ClpC1 domains. Incorporating clpC1 mutations improved molecular diagnostic sensitivity and accuracy from 48.3% and 69.8% (pncA alone) to 100%. This is the first report from southern China that identifies novel clpC1 mutations in wild-type pncA PZAR Mtb isolates. Our findings underscore the limitations of pncA-targeted diagnostics and support the integration of WGS and clpC1 analysis in molecular diagnostics to prevent false-negative diagnoses and improve clinical outcomes. Full article
Show Figures

Figure 1

10 pages, 973 KiB  
Review
Investigating the Role of B9D1 in Meckel–Gruber Syndrome: A Case Report and Comprehensive Literature Review
by Gianluca Campobasso, Ludovica Mercuri, Francesca De Razza, Antonella Cosentino, Marta Mele, Antonella Monittola, Carmen Congedo, Maria Chiara Calò, Caterina Scalcione, Alessandro D’Amuri, Salvatore Mauro and Serena Lattante
Genes 2025, 16(6), 643; https://doi.org/10.3390/genes16060643 - 27 May 2025
Viewed by 512
Abstract
Meckel–Gruber syndrome (MKS) is a rare autosomal recessive lethal ciliopathy, characterized by occipital encephalocele, cystic kidneys, and postaxial polydactyly, caused by mutations in different genes. Its significant genetic heterogeneity along with its clinical overlap with other ciliopathies makes early diagnosis essential for clinical [...] Read more.
Meckel–Gruber syndrome (MKS) is a rare autosomal recessive lethal ciliopathy, characterized by occipital encephalocele, cystic kidneys, and postaxial polydactyly, caused by mutations in different genes. Its significant genetic heterogeneity along with its clinical overlap with other ciliopathies makes early diagnosis essential for clinical management, accurate genetic counseling, and informing future reproductive decisions. Objectives: This study aims to describe a prenatally diagnosed case carrying a homozygous B9D1 variant and to examine the current literature on all variants reported in this gene associated with MKS. Methods: We comprehensively review the current literature on pathogenic B9D1 variants implicated in this syndrome. Additionally, we describe a case, presenting multiple congenital anomalies suggestive of MKS, genetically diagnosed by clinical exome sequencing on chorionic villi. Results: Occipital encephalocele and polycystic kidneys were revealed via ultrasound, thus suggesting MKS. Genetic testing identified the homozygous c.151T>C (p.Ser51Pro) variant in the B9D1 gene, inherited from healthy parents. Conclusions: This case supports the pathogenicity of the homozygous B9D1 c.151T>C variant and underscores the importance of timely prenatal assessment and targeted genetic testing for the detection of MKS risk in heterozygous subjects, enabling appropriate pregnancy management and informed reproductive choices. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 1347 KiB  
Article
Population-Specific Differences in Pathogenic Variants of Genes Associated with Monogenic Parkinson’s Disease
by Victor Flores-Ocampo, Amanda Wei-Yin Lim, Natalia S. Ogonowski, Luis M. García-Marín, Jue-Sheng Ong, Dennis Yeow, Claudia Gonzaga-Jauregui, Kishore R. Kumar and Miguel E. Rentería
Genes 2025, 16(4), 454; https://doi.org/10.3390/genes16040454 - 15 Apr 2025
Viewed by 1181
Abstract
Background: Parkinson’s disease (PD) is a genetically complex neurodegenerative disorder. Up to 15% of cases are considered monogenic. However, research on monogenic PD has largely focused on populations of European ancestry, leaving gaps in our understanding of genetic variability in other populations. This [...] Read more.
Background: Parkinson’s disease (PD) is a genetically complex neurodegenerative disorder. Up to 15% of cases are considered monogenic. However, research on monogenic PD has largely focused on populations of European ancestry, leaving gaps in our understanding of genetic variability in other populations. This study addresses this gap by analysing the allele frequencies of pathogenic and likely pathogenic variants in known monogenic PD genes across eight global populations, using data from the gnomAD database. Methods: We compiled a list of 27 genes associated with Mendelian PD from the Online Mendelian Inheritance in Man (OMIM) database, and identified pathogenic and likely pathogenic variants using ClinVar. We then performed pairwise comparisons of allele frequencies across populations included in the gnomAD database. Variants with significant frequency differences were further assessed using in silico pathogenicity predictions. Results: We identified 81 variants across 17 genes with statistically significant allele frequency differences between at least two populations. Variants in GBA1 were the most prevalent among monogenic PD-related genes, followed by PLA2G6, ATP13A2, VPS13C, and PRKN. GBA1 exhibited the greatest variability in allele frequencies, particularly the NM_000157.4:c.1226A>G (p.Asn409Ser) variant. Additionally, we observed significant population-specific differences in PD-related variants, such as the NM_032409.3:c.1040T>C (p.Leu347Pro) variant in PINK1, which was most prevalent in East Asian populations. Conclusions: Our findings reveal substantial population-specific differences in the allele frequencies of pathogenic variants linked to monogenic PD, emphasising the need for broader genetic studies beyond European populations. These insights have important implications for PD research, genetic screening, and understanding the pathogenesis of PD in diverse populations. Full article
(This article belongs to the Special Issue Genetics of Parkinson’s Disease Around the World)
Show Figures

Figure 1

20 pages, 2583 KiB  
Article
Effects of Dietary n-3 Polyunsaturated Fatty Acids and Selenomethionine on Meat Quality and Fatty Acid Composition in Finishing Pigs
by Yunju Yin, Hu Zhang, Teng Hui, Ran Li, Hong Chen, Minquan Xia, Bin Feng, Yong Yang, Yaowen Liu and Zhengfeng Fang
Foods 2025, 14(7), 1124; https://doi.org/10.3390/foods14071124 - 24 Mar 2025
Viewed by 666
Abstract
The interaction between selenomethionine (SeMet) and n-3 polyunsaturated fatty acids (n-3 PUFA) in producing n-3 PUFA-enriched pork remains unknown. This study investigates the effect of different n-3 PUFA sources (linseed oil vs. fish oil) and SeMet supplementation on meat quality and fatty acid [...] Read more.
The interaction between selenomethionine (SeMet) and n-3 polyunsaturated fatty acids (n-3 PUFA) in producing n-3 PUFA-enriched pork remains unknown. This study investigates the effect of different n-3 PUFA sources (linseed oil vs. fish oil) and SeMet supplementation on meat quality and fatty acid composition in finishing pigs. Key findings demonstrate that dietary supplementation with 0.3 mg/kg SeMet significantly enhances the L*24h value (lightness) of the longissimus thoracis et lumborum (LTL) tissue compared to 3% linseed oil or fish oil treatments alone (p < 0.05). Pork flavor improvement is further supported by increased serine content (p < 0.05) and a notable tendency toward elevated total sweet amino acids (Thr + Ser + Gly + Ala + Pro) in LTL tissue (p = 0.077). Compared with 3% sunflower oil (control group), 3% linseed oil or fish oil significantly enhances n-3 PUFA content while reducing the n-6/n-3 ratio in both LTL and subcutaneous adipose tissue (p < 0.05). The synergistic interaction between SeMet and oil (linseed oil or fish oil) is observed, increasing α-linolenic acid (ALA; C18:3n-3), eicosatrienoic acid (C20:3n-3), and total n-3 PUFA deposition in subcutaneous fat tissue (p < 0.05). SeMet increases the activities of total superoxide dismutase (T-SOD) and catalase (CAT). Meanwhile, the SeMet-fish oil combination decreases lipids oxidation compared to individual treatments (p < 0.05). Collectively, 3% linseed oil or fish oil effectively enhances unsaturated fatty acid profiles, while concurrent SeMet addition may synergistically enhance certain nutritional attributes (improved oxidative stability) and sensory scores (enhanced L24 h* value and flavor precursors). We, therefore, recommend adding 0.3 mg/kg SeMet to the n-3 PUFA-enriched pork production process. Full article
(This article belongs to the Special Issue Traditional Meat Products: Process, Quality, Safety, Nutrition)
Show Figures

Figure 1

18 pages, 321 KiB  
Article
Changes in Vertical Jump Parameters After Training Unit in Relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 Gene Polymorphisms in Volleyball and Basketball Players
by Miroslav Vavak, Iveta Cihova, Katarina Reichwalderova, David Vegh, Ladislava Dolezajova and Miroslava Slaninova
Genes 2025, 16(3), 250; https://doi.org/10.3390/genes16030250 - 21 Feb 2025
Viewed by 918
Abstract
Background/objectives: The study aims to investigate potential differences in vertical jump performance between elite basketball and volleyball players before and after a standard training session, in comparison to a control group from the general population. The analysis focuses on the influence of selected [...] Read more.
Background/objectives: The study aims to investigate potential differences in vertical jump performance between elite basketball and volleyball players before and after a standard training session, in comparison to a control group from the general population. The analysis focuses on the influence of selected gene polymorphisms that may contribute to variations in the assessed performance parameters. Aims: The aim was to investigate the influence of ACE (rs4646994), ACTN3 (rs1815739), PPARA rs4253778, HIF1A (rs11549465), and AMPD1 (rs17602729) genes polymorphisms on the combined effects of post-activation potentiation (PAP), post-activation performance enhancement (PAPE), and general adaptation syndrome (GAS), as reflected in vertical jump performance, in elite basketball and volleyball players compared to a control group from the general population. Methods: The effects of PAP at the beginning of the training load (acute exercise), and the combined influences of PAPE and GAS following the training load were evaluated using parameters measured by the OptoJump Next® system (Microgate, Bolzano, Italy). Results: A statistically significant (h, p < 0.05) negative effect of the CT genotype of the AMPD1 gene on jump height was observed in the group of athletes. The CT genotype of the AMPD1 gene negatively impacted on PAPE and GAS adaptive responses (ΔP, Δh, p < 0.001) also in the control group. A positive effect on the power during the active phase of the vertical jump was identified for the II genotype of the ACE gene and the Pro/Ser genotype of the HIF1A gene, both exclusively in the control group (ΔP, p < 0.05). Conclusion: Our findings demonstrate that different gene polymorphisms exert variable influences on the combined effects of PAPE and GAS, as reflected in vertical jump parameters, depending on the participants’ level of training adaptation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
29 pages, 6205 KiB  
Article
Novel sACE2-Anti-CD16VHH Fusion Protein Surreptitiously Inhibits SARS-CoV-2 Variant Spike Proteins and Macrophage Cytokines, and Activates Natural Killer Cell Cytotoxicity
by Abdolkarim Sheikhi, Leili Baghaie, Fatemeh Rahbarizadeh, Pooria Safarzadeh Kozani, Cobra Moradian, Mohammadreza Davidi, Narges Baharifar, Golnaz Kaboli, Mehdi Sheikhi, Yunfan Li, Mohammadamin Meghdadi, Abdulrahman M. Yaish, Aiden H. Yu, William W. Harless and Myron R. Szewczuk
Vaccines 2025, 13(2), 199; https://doi.org/10.3390/vaccines13020199 - 17 Feb 2025
Cited by 2 | Viewed by 1279
Abstract
Background/Objectives: The SARS-CoV-2’s high mutations and replication rates contribute to its high infectivity and resistance to current vaccinations and treatments. The primary cause of resistance to most current treatments aligns within the coding regions for the spike S protein of SARS-CoV-2 [...] Read more.
Background/Objectives: The SARS-CoV-2’s high mutations and replication rates contribute to its high infectivity and resistance to current vaccinations and treatments. The primary cause of resistance to most current treatments aligns within the coding regions for the spike S protein of SARS-CoV-2 that has mutated. As a potential novel immunotherapy, we generated a novel fusion protein composed of a soluble ACE2 (sACE2) linked to llama-derived anti-CD16 that targets different variants of spike proteins and enhances natural killer cells to target infected cells. Methods: Here, we generated a novel sACE2-AntiCD16VHH fusion protein using a Gly4Ser linker, synthesized and cloned into the pLVX-EF1alpha-IRES-Puro vector, and further expressed in ExpiCHO-S cells and purified using Ni+NTA chromatography. Results: The fusion protein significantly blocked SARS-CoV-2 alpha, beta, delta, gamma, and omicron S-proteins binding and activating angiotensin-converting enzyme receptor-2 (ACE2) on ACE2-expressing RAW-Blue macrophage cells and the secretion of several key inflammatory cytokines, G-CSF, MIP-1A, and MCP-1, implicated in the cytokine release storm (CRS). The sACE2-Anti-CD16VHH fusion protein also bridged NK cells to ACE2-expressing human lung carcinoma A549 cells and significantly activated NK-dependent cytotoxicity. Conclusions: The findings show that a VHH directed against CD16 could be an excellent candidate to be linked to soluble ACE2 to generate a bi-specific molecule (sACE2-AntiCD16VHH) suitable for bridging effector cells and infected target cells to inhibit SARS-CoV-2 variant spike proteins binding to the ACE2 receptor in the RAW-Blue cell line and pro-inflammatory cytokines and to activate natural killer cell cytotoxicity. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

14 pages, 2421 KiB  
Case Report
Adult Leigh Syndrome Associated with the m.15635T>C Mitochondrial DNA Variant Affecting the Cytochrome b (MT-CYB) Gene
by Concetta Valentina Tropeano, Chiara La Morgia, Alessandro Achilli, Luisa Iommarini, Gaia Tioli, Leonardo Caporali, Anna Olivieri, Maria Lucia Valentino, Rocco Liguori, Piero Barboni, Andrea Martinuzzi, Caterina Tonon, Raffaele Lodi, Antonio Torroni, Valerio Carelli and Anna Maria Ghelli
Int. J. Mol. Sci. 2025, 26(3), 1116; https://doi.org/10.3390/ijms26031116 - 27 Jan 2025
Viewed by 1070
Abstract
We report on a sporadic patient suffering Leigh syndrome characterized by bilateral lesions in the lenticular nuclei and spastic dystonia, intellectual disability, sensorineural deafness, hypertrophic cardiomyopathy, exercise intolerance, and retinitis pigmentosa. Complete sequencing of mitochondrial DNA revealed the heteroplasmic nucleotide change m.15635T>C affecting [...] Read more.
We report on a sporadic patient suffering Leigh syndrome characterized by bilateral lesions in the lenticular nuclei and spastic dystonia, intellectual disability, sensorineural deafness, hypertrophic cardiomyopathy, exercise intolerance, and retinitis pigmentosa. Complete sequencing of mitochondrial DNA revealed the heteroplasmic nucleotide change m.15635T>C affecting a highly conserved amino acid position (p.Ser297Pro) in the cytochrome b (MT-CYB) gene on a haplogroup K1c1a background, which includes a set of four non-synonymous polymorphisms also present in the same gene. Biochemical studies documented respiratory chain impairment due to complex III defect. This variant fulfils the criteria for being pathogenic and was previously reported in a sporadic case of fatal neonatal polyvisceral failure. Full article
(This article belongs to the Special Issue Mitochondrial Biology and Human Diseases)
Show Figures

Figure 1

23 pages, 4232 KiB  
Article
MYC Overexpression Enhances Sensitivity to MEK Inhibition in Head and Neck Squamous Cell Carcinoma
by Cuicui Yang, Xiaowu Pang, Shaolei Teng, Shamel Wilson, Xinbin Gu and Guiqin Xie
Int. J. Mol. Sci. 2025, 26(2), 588; https://doi.org/10.3390/ijms26020588 - 12 Jan 2025
Viewed by 1094
Abstract
MEK inhibitors, such as trametinib, have shown therapeutic potential in head and neck squamous cell carcinoma (HNSCC). However, the factors influencing cancer cell sensitivity and resistance to MEK inhibition remain poorly understood. In our study, we observed that MEK inhibition significantly reduced the [...] Read more.
MEK inhibitors, such as trametinib, have shown therapeutic potential in head and neck squamous cell carcinoma (HNSCC). However, the factors influencing cancer cell sensitivity and resistance to MEK inhibition remain poorly understood. In our study, we observed that MEK inhibition significantly reduced the expression of MYC, a transcription factor critical for the therapeutic response. MYC overexpression markedly enhanced the sensitivity of HNSCC cells to trametinib, as evidenced by delayed wound healing and reduced colony formation. Cell cycle analysis revealed that trametinib induced a G1 phase arrest, whereas MYC overexpression accelerated cell cycle progression, with a reduced induction of p27 and p21 and diminished decreases in E2F1 and phospho-Ser2/5 levels. Flow cytometry and protein analyses demonstrated that MYC overexpression amplified trametinib-induced apoptosis and DNA damage, as evidenced by elevated levels of pro-apoptotic markers (p53, cleaved PARP, and BIM) and γH2AX. In vivo xenograft models confirmed these findings, showing increased sensitivity to trametinib in MYC-overexpressing tumors. Moreover, MEK inhibition increased autophagy in HNSCC cells, a factor critical for therapeutic resistance. Inhibiting trametinib-induced autophagy further enhanced apoptotic cell death. These findings suggest that MYC expression and autophagy play crucial roles in HNSCC’s response to MEK inhibition. Combining trametinib with autophagy inhibition may improve therapeutic outcomes in HNSCC. Full article
(This article belongs to the Special Issue New Wave of Cancer Therapeutics: Challenges and Opportunities)
Show Figures

Figure 1

16 pages, 2587 KiB  
Article
Rescue of Mutant CFTR Channel Activity by Investigational Co-Potentiator Therapy
by Mafalda Bacalhau, Filipa C. Ferreira, Marcelo Folhadella M. F. Azevedo, Talita P. Rosa, Camilla D. Buarque and Miquéias Lopes-Pacheco
Biomedicines 2025, 13(1), 82; https://doi.org/10.3390/biomedicines13010082 - 1 Jan 2025
Cited by 1 | Viewed by 2469
Abstract
Background: The potentiator VX-770 (ivacaftor) has been approved as a monotherapy for over 95 cystic fibrosis (CF)-causing variants associated with gating/conductance defects of the CF transmembrane conductance regulator (CFTR) channel. However, despite its therapeutic success, VX-770 only partially restores CFTR activity for many [...] Read more.
Background: The potentiator VX-770 (ivacaftor) has been approved as a monotherapy for over 95 cystic fibrosis (CF)-causing variants associated with gating/conductance defects of the CF transmembrane conductance regulator (CFTR) channel. However, despite its therapeutic success, VX-770 only partially restores CFTR activity for many of these variants, indicating they may benefit from the combination of potentiators exhibiting distinct mechanisms of action (i.e., co-potentiators). We previously identified LSO-24, a hydroxy-1,2,3-triazole-based compound, as a modest potentiator of p.Arg334Trp-CFTR, a variant with a conductance defect for which no modulator therapy is currently approved. Objective/Methods: We synthesized a new set of LSO-24 structure-based compounds, screened their effects on p.Arg334Trp-CFTR activity, and assessed the additivity of hit compounds to VX-770, ABBV-974, ABBV-3067, and apigenin. After validation by electrophysiological assays, the most promising hits were also assessed in cells expressing other variants with defective gating/conductance, namely p.Pro205Ser, p.Ser549Arg, p.Gly551Asp, p.Ser945Leu, and p.Gly1349Asp. Results: We found that five compounds were able to increase p.Arg334Trp-CFTR activity with similar efficacy, but slightly greater potency promoted by LSO-150 and LSO-153 (EC50: 1.01 and 1.26 μM, respectively). These two compounds also displayed a higher rescue of p.Arg334Trp-CFTR activity in combination with VX-770, ABBV-974, and ABBV-3067, but not with apigenin. When tested in cells expressing other CFTR variants, LSO-24 and its derivative LSO-150 increased CFTR activity for the variants p.Ser549Arg, p.Gly551Asp, and p.Ser945Leu with a further effect in combination with VX-770 or ABBV-3067. No potentiator was able to rescue CFTR activity in p.Pro205Ser-expressing cells, while p.Gly1349Asp-CFTR responded to VX-770 and ABBV-3067 but not to LSO-24 or LSO-150. Conclusions: Our data suggest that these new potentiators might share a common mechanism with apigenin, which is conceivably distinct from that of VX-770 and ABBV-3067. The additive rescue of p.Arg334Trp-, p.Ser549Arg-, p.Gly551Asp-, and p.Ser945Leu-CFTR also indicates that these variants could benefit from the development of a co-potentiator therapy. Full article
Show Figures

Figure 1

10 pages, 2264 KiB  
Case Report
Expanding the Clinical Spectrum of CEP290 Variants: A Case Report on Non-Syndromic Retinal Dystrophy with a Mild Phenotype
by Anna Esteve-Garcia, Cristina Sau, Ariadna Padró-Miquel, Jaume Català-Mora, Cinthia Aguilera and Estefania Cobos
Genes 2024, 15(12), 1584; https://doi.org/10.3390/genes15121584 - 9 Dec 2024
Viewed by 1525
Abstract
Background/Objectives: Biallelic pathogenic variants in the CEP290 gene are typically associated with severe, early-onset inherited retinal dystrophies (IRDs) in both syndromic and non-syndromic forms. This study explores the phenotypic variability of non-syndromic IRDs associated with CEP290 variants, focusing on two siblings with [...] Read more.
Background/Objectives: Biallelic pathogenic variants in the CEP290 gene are typically associated with severe, early-onset inherited retinal dystrophies (IRDs) in both syndromic and non-syndromic forms. This study explores the phenotypic variability of non-syndromic IRDs associated with CEP290 variants, focusing on two siblings with biallelic variants, one of whom exhibits a remarkably mild phenotype, thereby expanding the clinical spectrum. Methods: Whole-exome sequencing (WES) and mRNA analysis were performed to identify and characterize CEP290 variants in the siblings. Comprehensive ophthalmologic evaluations assessed retinal function and disease progression. Results: Two CEP290 variants, a frameshift (c.955del, p.(Ser319LeufsTer16)) and a missense (c.5777G>C, p.(Arg1926Pro)), were identified in trans in both siblings. Despite sharing the same genetic variants, the sister exhibited significantly preserved retinal function, while the brother presented with a more severe, progressive retinal dystrophy. Conclusions: This study broadens the phenotypic spectrum of non-syndromic CEP290-related IRDs, demonstrating variability in disease severity ranging from mild to severe. These findings highlight the importance of personalized monitoring and tailored management strategies based on individual clinical presentations of CEP290-related IRDs. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Graphical abstract

21 pages, 4467 KiB  
Article
The Generation of ROS by Exposure to Trihalomethanes Promotes the IκBα/NF-κB/p65 Complex Dissociation in Human Lung Fibroblast
by Minerva Nájera-Martínez, Israel Lara-Vega, Jhonatan Avilez-Alvarado, Nataraj S. Pagadala, Ricardo Dzul-Caamal, María Lilia Domínguez-López, Jack Tuszynski and Armando Vega-López
Biomedicines 2024, 12(10), 2399; https://doi.org/10.3390/biomedicines12102399 - 20 Oct 2024
Cited by 4 | Viewed by 1790
Abstract
Background: Disinfection by-products used to obtain drinking water, including halomethanes (HMs) such as CH2Cl2, CHCl3, and BrCHCl2, induce cytotoxicity and hyperproliferation in human lung fibroblasts (MRC-5). Enzymes such as superoxide dismutase (SOD), catalase (CAT), and [...] Read more.
Background: Disinfection by-products used to obtain drinking water, including halomethanes (HMs) such as CH2Cl2, CHCl3, and BrCHCl2, induce cytotoxicity and hyperproliferation in human lung fibroblasts (MRC-5). Enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) modulate these damages through their biotransformation processes, potentially generating toxic metabolites. However, the role of the oxidative stress response in cellular hyperproliferation, modulated by nuclear factor-kappa B (NF-κB), remains unclear. Methods: In this study, MRC-5 cells were treated with these compounds to evaluate reactive oxygen species (ROS) production, lipid peroxidation, phospho-NF-κB/p65 (Ser536) levels, and the activities of SOD, CAT, and GPx. Additionally, the interactions between HMs and ROS with the IκBα/NF-κB/p65 complex were analyzed using molecular docking. Results: Correlation analysis among biomarkers revealed positive relationships between pro-oxidant damage and antioxidant responses, particularly in cells treated with CH2Cl2 and BrCHCl2. Conversely, negative relationships were observed between ROS levels and NF-κB/p65 levels in cells treated with CH2Cl2 and CHCl3. The estimated relative free energy of binding using thermodynamic integration with the p65 subunit of NF-κB was −3.3 kcal/mol for BrCHCl2, −3.5 kcal/mol for both CHCl3 and O2, and −3.6 kcal/mol for H2O2. Conclusions: Chloride and bromide atoms were found in close contact with IPT domain residues, particularly in the RHD region involved in DNA binding. Ser281 is located within this domain, facilitating the phosphorylation of this protein. Similarly, both ROS interacted with the IPT domain in the RHD region, with H2O2 forming a side-chain oxygen interaction with Leu280 adjacent to the phosphorylation site of p65. However, the negative correlation between ROS and phospho-NF-κB/p65 suggests that steric hindrance by ROS on the C-terminal domain of NF-κB/p65 may play a role in the antioxidant response. Full article
(This article belongs to the Special Issue Fibroblasts: Insights from Molecular and Pathophysiology Perspectives)
Show Figures

Figure 1

19 pages, 6051 KiB  
Article
Hepatitis B Virus X Protein Induces Reactive Oxygen Species Generation via Activation of p53 in Human Hepatoma Cells
by Seungyeon Kim, Jimin Park, Jiwoo Han and Kyung Lib Jang
Biomolecules 2024, 14(10), 1201; https://doi.org/10.3390/biom14101201 - 24 Sep 2024
Cited by 6 | Viewed by 1674
Abstract
Hepatitis B virus (HBV), particularly through the HBx protein, induces oxidative stress during liver infections. This study reveals that HBx increases reactive oxygen species (ROS) via two distinct mechanisms. The first mechanism is p53-independent, likely involving mitochondrial dysfunction, as demonstrated by elevated ROS [...] Read more.
Hepatitis B virus (HBV), particularly through the HBx protein, induces oxidative stress during liver infections. This study reveals that HBx increases reactive oxygen species (ROS) via two distinct mechanisms. The first mechanism is p53-independent, likely involving mitochondrial dysfunction, as demonstrated by elevated ROS levels in p53-deficient Hep3B cells and p53-knocked-down HepG2 cells after HBx expression or HBV infection. The increase in ROS persisted even when p53 transcriptional activity was inhibited by pifithrin-α (PFT-α), a p53 inhibitor. The second mechanism is p53-dependent, wherein HBx activates p53, which then amplifies ROS production through a feedback loop involving ROS and p53. The ability of HBx to elevate ROS levels was higher in HepG2 than in Hep3B cells. Knocking down p53 in HepG2 cells lowered ROS levels, while ectopic p53 expression in Hep3B cells raised ROS. HBx-activated p53 downregulated catalase and upregulated manganese-dependent superoxide dismutase, contributing to ROS amplification. The transcriptional activity of p53 was crucial for these effects, as cells with a p53 R175H mutation or those treated with PFT-α generated less ROS. Additionally, HBx variants with Ser-101 increased p53 and ROS levels, whereas variants with Pro-101 did not. These dual mechanisms of HBx-induced ROS generation are likely significant in the pathogenesis of HBV and may contribute to liver diseases, including hepatocellular carcinoma. Full article
(This article belongs to the Special Issue Advances in p53 Research)
Show Figures

Figure 1

13 pages, 2027 KiB  
Article
Escherichia coli Reporter Strains Allow for the In Vivo Evaluation of Recombinant Elongation Factor Protein (EF-P)
by Natalia Trachtmann, Aydar Bikmullin, Shamil Validov and Georg A. Sprenger
Appl. Microbiol. 2024, 4(3), 1335-1347; https://doi.org/10.3390/applmicrobiol4030092 - 18 Sep 2024
Viewed by 1261
Abstract
Background: Elongation factor protein (EF-P) in bacteria helps ribosomes to incorporate contiguous proline residues (xPro) into proteins. In this way, EF-P rescues ribosomes from stalling at these xPro motifs. Whereas EF-P deficiency is lethal for some species, others show reduced virulence or generally [...] Read more.
Background: Elongation factor protein (EF-P) in bacteria helps ribosomes to incorporate contiguous proline residues (xPro) into proteins. In this way, EF-P rescues ribosomes from stalling at these xPro motifs. Whereas EF-P deficiency is lethal for some species, others show reduced virulence or generally lower growth rates, such as Escherichia coli (E. coli). EF-P needs to be post-translationally modified to gain full functionality. Methods: We constructed E. coli K-12 mutant strains with deletion of the serA gene leading to an auxotrophy for L-serine. Then, we engineered a 6xPro motif in the recombinant serA gene, which was then chromosomally inserted under its native promoter. Furthermore, mutant strains which were deleted for efp and/or epmA (encoding the EF-P modification protein EpmA) were engineered. Results: Δefp, ΔepmA, and Δefp/ΔepmA double mutants showed already significantly reduced growth rates in minimal media. ΔserA derivatives of these strains were complemented by the wt serA gene but not by 6xPro-serA. ΔserA mutants with intact efp were complemented by all serA-constructs. Chromosomal expression of the recombinant efp gene from E. coli or from the pathogen, Staphylococcus aureus (S. aureus), restored growth, even without epmA expression. Conclusions: We provide a novel synthetic reporter system for in vivo evaluation of EF-P deficiency. In addition, we demonstrated that both EF-P-E. coli and EF-P-S. aureus restored the growth of a 6xPro-serA: Δefp, ΔepmA strain, which is evidence that modification of EF-P might be dispensable for rescuing of ribosomes stalled during translation of proline repeats. Full article
Show Figures

Figure 1

13 pages, 7824 KiB  
Case Report
The Clinical Heterogeneity of Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1)—A Report of Three Cases, Including Twins
by Alicja Leśniak, Marta Glińska, Michał Patalan, Iwona Ostrowska, Monika Świrska-Sobolewska, Kaja Giżewska-Kacprzak, Agata Kotkowiak, Anna Leśniak, Mieczysław Walczak, Robert Śmigiel and Maria Giżewska
Genes 2024, 15(8), 997; https://doi.org/10.3390/genes15080997 - 30 Jul 2024
Cited by 2 | Viewed by 1941
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1; OMIM #604320, ORPHA:98920) is a rare autosomal recessive congenital motor neuron disease. It is caused by variants in the IGHMBP2 gene. Clinically, it presents with respiratory failure due to diaphragmatic paralysis, progressive muscle weakness [...] Read more.
Spinal muscular atrophy with respiratory distress type 1 (SMARD1; OMIM #604320, ORPHA:98920) is a rare autosomal recessive congenital motor neuron disease. It is caused by variants in the IGHMBP2 gene. Clinically, it presents with respiratory failure due to diaphragmatic paralysis, progressive muscle weakness starting in the distal parts of the limbs, dysphagia, and damage to sensory and autonomic nerves. Unlike spinal muscular atrophy (SMA), SMARD1 has a distinct genetic etiology and is not detected in the population newborn screening programs. Most children with SMARD1 do not survive beyond the first year of life due to progressive respiratory failure. Artificial ventilation can prolong survival, but no specific treatment is available. Therapy focuses on mechanical ventilation and improving the patient’s quality of life. Research into gene therapy is ongoing. We report three female patients with SMARD1, including twins from a triplet pregnancy. In twin sisters (patient no. 1 and patient no. 2), two heterozygous variants in the IGHMBP2 gene were identified: c.595G>C/p.Ala199Pro and c.1615_1623del/p.Ser539_Tyr541del. In patient no. 3, a variant c.1478C>T/p.Thr493Ile and a variant c.439C>T/p.Arg147* in the IGHMBP2 gene were detected. Our findings underscore the variability of clinical presentations, even among patients sharing the same pathogenic variants in the IGHMBP2 gene, and emphasize the importance of early genetic diagnosis in patients presenting with respiratory failure, with or without associated diaphragmatic muscle paralysis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop