Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = p–Pb collisions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 25056 KiB  
Article
Mineral Chemistry and Whole-Rock Analysis of Magnesian and Ferroan Granitic Suites of Magal Gebreel, South Eastern Desert: Clues for Neoproterozoic Syn- and Post-Collisional Felsic Magmatism
by El Saeed R. Lasheen, Gehad M. Saleh, Amira El-Tohamy, Farrage M. Khaleal, Mabrouk Sami, Ioan V. Sanislav and Fathy Abdalla
Minerals 2025, 15(7), 751; https://doi.org/10.3390/min15070751 - 17 Jul 2025
Viewed by 382
Abstract
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian [...] Read more.
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian Nubian Shield is significantly improved by the Neoproterozoic granitic rocks of the seldom studied MGGs in Egypt’s south Eastern Desert. According to detailed field, mineralogical, and geochemical assessments, they comprise syn-collision (granodiorites) and post-collision (monzogranites, syenogranites, and alkali feldspar rocks). Granodiorite has strong positive Pb, notable negative P, Ti, and Nb anomalies, and is magnesian in composition. They have high content of LREEs (light rare-earth elements) compared to HREEs (heavy rare-earth elements) and clear elevation of LFSEs (low-field strength elements; K Rb, and Ba) compared to HFSEs (high-field strength elements; Zr and Nb), which are in accord with the contents of I-type granites from the Eastern Desert. In this context, the granodiorites are indicative of an early magmatic phase that probably resulted from the partial melting of high K-mafic sources in the subduction zone. Conversely, the post-collision rocks have low contents of Mg#, CaO, P2O5, MgO, Fe2O3, Sr, and Ti, and high SiO2, Fe2O3/MgO, Nb, Ce, and Ga/Al, suggesting A-type features with ferroan affinity. Their P, Nb, Sr, Ba, and Ti negative anomalies are in accord with the findings for Eastern Desert granites of the A2-type. Furthermore, they exhibit a prominent negative anomaly in Eu and a small elevation of LREEs in relation to HREEs. The oxygen fugacity (fO2) for the rocks under investigation can be calculated using the biotite chemistry. The narrow Fe/(Fe + Mg) ratio range (0.6–0.75) indicates that they crystallized under moderately oxidizing conditions between ~QFM +0.1 and QFM +1. The A-type rocks were formed by the partial melting of a tonalite source (underplating rocks) in a post-collisional environment during the late period of extension via slab delamination. The lithosphere became somewhat impregnated with particular elements as a result of the interaction between the deeper crust and the upwelling mantle. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

28 pages, 11235 KiB  
Article
Petrogenesis, Tectonic Setting, and Metallogenic Constraints of Tin-Bearing Plutons in the Karamaili Granite Belt of Eastern Junggar, Xinjiang (NW China)
by Shuai Yuan, Qiwei Wang, Bowen Zhang, Xiaoping Gong and Chunmei Su
Minerals 2025, 15(7), 710; https://doi.org/10.3390/min15070710 - 3 Jul 2025
Viewed by 569
Abstract
The Karamaili Granite Belt (KGB) in the southern margin of the Eastern Junggar is the most important tin metallogenic belt in the southwestern Central Asian Orogenic Belt. The plutons in the western part have a close genetic relationship with tin mineralization. The zircon [...] Read more.
The Karamaili Granite Belt (KGB) in the southern margin of the Eastern Junggar is the most important tin metallogenic belt in the southwestern Central Asian Orogenic Belt. The plutons in the western part have a close genetic relationship with tin mineralization. The zircon U-Pb ages of the Kamusite, Laoyaquan, and Beilekuduke plutons are 315.1 ± 3.4 Ma, 313.6 ± 2.9 Ma, and 316.5 ± 4.6 Ma, respectively. The plutons have high silica (SiO2 = 75.53%–77.85%), potassium (K2O = 4.43%–5.42%), and alkalis (K2O + Na2O = 8.17%–8.90%) contents and low ferroan (Fe2O3T = 0.90%–1.48%), calcium, and magnesium contents and are classified as metaluminous–peraluminous, high-potassium, calc-alkaline iron granite. The rocks are enriched in Rb, Th, U, K, Pb, and Sn and strongly depleted in Ba, Sr, P, Eu, and Ti. They have strongly negative Eu anomalies (δEu = 0.01–0.05), 10,000 Ga/Al = 2.87–4.91 (>2.6), showing the geochemical characteristics of A-type granite. The zircon U/Pb ratios indicate that the above granites should be I- or A-type granite, which is generally formed under high-temperature (768–843 °C), low-pressure, and reducing magma conditions. The high Rb/Sr ratio (a mean of 48 > 1.2) and low K/Rb ratio (53.93–169.94) indicate that the tin-bearing plutons have undergone high differentiation. The positive whole-rock εNd(t) values (3.99–5.54) and the relatively young Nd T2DM model ages (616–455 Ma) suggest the magma is derived from partially melted juvenile crust, and the underplating of basic magma containing mantle materials that affected the source area. The results indicate the KGB was formed in the tectonic transition period in the late Carboniferous subduction post-collision environment. Orogenic compression influenced the tin-bearing plutons in the western part of the KGB, forming highly differentiated and reduced I, A-type transition granite. An extensional environment affected the plutons in the eastern sections, creating A-type granite with dark enclaves that suggest magma mixing with little evidence of tin mineralization. Full article
Show Figures

Figure 1

10 pages, 351 KiB  
Article
Investigating K/π Decay Muon Yields Using K/π Yields and a Fast Simulation Method
by Zuman Zhang, Sha Li, Ning Yu, Hongge Xu, Yuanmeng Xiong and Kun Liu
Particles 2025, 8(2), 59; https://doi.org/10.3390/particles8020059 - 3 Jun 2025
Viewed by 577
Abstract
In ultra-relativistic heavy-ion collisions, the study of muons from kaon (K) and pion (π) decays provides insights into hadron production and propagation in the Quark–Gluon Plasma (QGP). This paper investigates muon yields from K and π decays in Pb–Pb [...] Read more.
In ultra-relativistic heavy-ion collisions, the study of muons from kaon (K) and pion (π) decays provides insights into hadron production and propagation in the Quark–Gluon Plasma (QGP). This paper investigates muon yields from K and π decays in Pb–Pb collisions at sNN=2.76 TeV using a fast simulation method. We employ a fast Monte Carlo procedure to estimate muon yields from charged kaons and pions. The simulation involves generating pions and kaons with uniform pT and y distributions, simulating their decay kinematics via PYTHIA, and reweighting to match the physical spectra. Our results show the transverse momentum distributions of muons from K and π decays at forward rapidity (2.5<y<4.0) for different centrality classes. The systematic uncertainties are primarily from the mid-rapidity charged K/π spectra and rapidity-dependent RAA uncertainties. The muon yields from pion and kaon decays exhibit consistency across centrality classes in the pT range of 3–10 GeV/c. This study contributes to understanding hadronic interactions and decay kinematics in heavy-ion collisions, offering references for investigating pion and kaon decay channels and hot medium effects. Full article
Show Figures

Figure 1

22 pages, 20086 KiB  
Article
Zircon LA-ICP-MS Dating and Geochemical Characteristics of Rhyolites from the Qushi Area, Tengchong Terrane, Yunnan Province
by Xiong Mo, Chen Gong, Yan Shang, Jinglong Wu, Jialin Wu, Ronghui Qi, Xiaofeng Wang, Qi Guan and Xu Kong
Minerals 2025, 15(3), 315; https://doi.org/10.3390/min15030315 - 18 Mar 2025
Viewed by 558
Abstract
The Qushi rhyolites, situated in the eastern sector of the Tengchong terrane, are critical to understanding the Early Cretaceous tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain. Zircon LA-ICP-MS U-Pb geochronology indicates crystallization ages of 118.3–120.5 Ma, with Ti-in-zircon temperatures of 641–816 °C [...] Read more.
The Qushi rhyolites, situated in the eastern sector of the Tengchong terrane, are critical to understanding the Early Cretaceous tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain. Zircon LA-ICP-MS U-Pb geochronology indicates crystallization ages of 118.3–120.5 Ma, with Ti-in-zircon temperatures of 641–816 °C (mean = 716 °C), representing the Early Cretaceous magmatic activity in the Tengchong terrane. Inherited zircons within the rhyolites yield a zircon age of ca. 198.5 Ma, with corresponding Ti-in-zircon temperatures of 615–699 °C (mean = 657 °C), implying the potential presence of an Early Jurassic igneous basement beneath the Qushi region. Geochemically, the rhyolites are classified as calc-alkaline and weakly to moderately peraluminous (A/CNK = 1.07–2.86). These rocks display signatures typical of acidic magmas, marked by significant enrichments in light rare earth elements (LREE: La and Ce) and large ion lithophile elements (LILE: Rb, K, Th and U) while simultaneously exhibiting depletions in high-field-strength elements (HFSE: Nb, Ta, Ti, and P) and heavy rare earth elements (HREE). Trace element signatures further reveal marked depletions in Sr (12.4–244.7 ppm) and Ba while displaying enrichments in Zr and Hf. These geochemical features, including the huge range of the Sr content and A/CNK ratios, suggest both I-type and S-type granite affinities. The Early Cretaceous volcanism of the Qushi rhyolites is likely attributed to the combined effects of subduction and the closure of the Meso-Tethyan Ocean (MTO). This volcanic activity is interpreted to result from subduction-related processes associated with the MTO, potentially involving slab rollback, slab break-off, and subsequent asthenospheric upwelling. The formation of these rhyolites may also be linked to the final closure of the MTO, characterized by the Late Cretaceous collision and amalgamation of the Burma and Tengchong terranes. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

28 pages, 9029 KiB  
Article
Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet
by Anping Xiang, Hong Liu, Wenxin Fan, Qing Zhou, Hong Wang and Kaizhi Li
Minerals 2025, 15(3), 283; https://doi.org/10.3390/min15030283 - 11 Mar 2025
Viewed by 769
Abstract
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced [...] Read more.
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced an age of 104.15 ± 0.94 Ma (MSWD = 0.98), indicating the Early Cretaceous emplacement of the dykes. The dykes exhibit high silica (SiO2 = 76.22~77.90 wt.%), high potassium (K2O = 4.97~6.21 wt.%), high alkalinity (K2O + Na2O = 8.07~8.98 wt.%), low calcium (CaO = 0.24~0.83 wt.%), low magnesium (MgO = 0.06~0.20 wt.%), and moderate aluminum content (Al2O3 = 11.93~12.45 wt.%). The Rieterman index (σ) ranges from 1.93 to 2.34. A/NK (molar ratio Al2O3/(Na2O + K2O)) and A/CNK (molar ratio Al2O3/(CaO + Na2O + K2O)) values of the dykes range from 1.06 to 1.18 and 0.98 to 1.09, respectively. The dykes are relatively enriched in Rb, Th, U, K, Ta, Ce, Nd, Zr, Hf, Sm, Y, Yb, and Lu, and they show a noticeable relative depletion in Ba, Nb, Sr, P, Eu, and Ti, as well as an average differentiation index (DI) of 96.42. The dykes also exhibit high FeOT/MgO ratios (3.60~10.41), Ga/Al ratios (2.22 × 10−4~3.01 × 10−4), Y/Nb ratios (1.75~2.40), and Rb/Nb ratios (8.36~20.76). Additionally, they have high whole-rock Zr saturation temperatures (884~914 °C), a pronounced Eu negative anomaly (δEu = 0.04~0.23), and a rightward-sloping “V-shaped” rare earth element pattern. These characteristics suggest that the granitic porphyry dykes can be classified as A2-type granites formed in a post-collisional tectonic environment and that they are weakly peraluminous, high-potassium, and Calc-alkaline basaltic rocks. Positive εHf(t) values = 0.43~3.63 and a relatively young Hf crustal model age (TDM2 = 826~1005 Ma, 87Sr/86Sr ratios = 0.7043~0.7064, and εNd(t) = −8.60~−2.95 all indicate lower crust and mantle mixing. The lower crust and mantle mixing model is also supported by (206Pb/204Pb)t = 18.627~18.788, (207Pb/204Pb)t = 15.707~15.719, (208Pb/204Pb)t = 39.038~39.110). Together, the Hf, Sr and Pb isotopic ratios indicate that the Kongco granitic porphyry dykes where derived from juvenile crust formed by the addition of mantle material to the lower crust. From this, we infer that the Kongco granitic porphyry dykes are related to a partial melting of the lower crust induced by subduction slab break-off and asthenospheric upwelling during the collision between the Qiangtang and Lhasa terranes and that they experienced significant fractional crystallization dominated by potassium feldspar and amphibole. These dykes are also accompanied by significant copper mineralization (five samples, copper content 0.2%), suggesting a close relationship between the magmatism associated with these dykes and regional metallogenesis, indicating a high potential for mineral exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

11 pages, 1671 KiB  
Article
Photoproduction of Heavy Meson and Photon Pairs
by Marat Siddikov
Particles 2025, 8(1), 23; https://doi.org/10.3390/particles8010023 - 3 Mar 2025
Viewed by 624
Abstract
The extraction of the Generalized Parton Distributions of the nucleons from phenomenological analyses of experimental data presents a challenging problem which is being actively studied in the literature. Due to theoretical limitations of some of the well-known channels, currently many new processes are [...] Read more.
The extraction of the Generalized Parton Distributions of the nucleons from phenomenological analyses of experimental data presents a challenging problem which is being actively studied in the literature. Due to theoretical limitations of some of the well-known channels, currently many new processes are being analyzed in the literature as potential novel probes. In this proceeding we propose to use the exclusive photoproduction of ηcγ pairs as a new channel for study of the GPDs. Our analysis shows that this process is primarily sensitive to the unpolarized gluon GPDs Hg in the Efremov-Radyushkin-Brodsky-Lepage (ERBL) kinematics. The numerical estimates of the cross-section and the expected counting rates for middle-energy photoproduction experiments show that expected counting rates are sufficiently large for a dedicated experimental study at the future Electron-Ion Collider (EIC) or in ultraperipheral collisions at the LHC. The total (integrated) photoproduction cross-section σtotγpγηcp in this kinematics scales with energy W as σtotγpγηcpW,Mγηc3.5GeV0.48pbW100GeV0.75, and yields a few thousands of events per 100fb1 of the integrated luminosity. Full article
Show Figures

Figure 1

40 pages, 14218 KiB  
Article
Geochemistry and Petrogenesis of Permo–Triassic Silicic Volcanic Rocks from the Circum-Rhodope Belt in the Vardar/Axios Zone, Northern Greece: An Example of a Post-Collision Extensional Tectonic Setting in the Tethyan Realm
by Argyro Asvesta
Geosciences 2025, 15(2), 48; https://doi.org/10.3390/geosciences15020048 - 2 Feb 2025
Viewed by 981
Abstract
The western side of the Vertiskos Unit crystalline basement in northern Greece is fringed by a Permo–Triassic low-grade metamorphic volcano-sedimentary complex that belongs to the Circum-Rhodope Belt (CRB), which is an important part of the Vardar/ Axios oceanic suture zone. The silicic volcanic [...] Read more.
The western side of the Vertiskos Unit crystalline basement in northern Greece is fringed by a Permo–Triassic low-grade metamorphic volcano-sedimentary complex that belongs to the Circum-Rhodope Belt (CRB), which is an important part of the Vardar/ Axios oceanic suture zone. The silicic volcanic rocks from the CRB are mainly rhyolitic to rhyodacitic lavas with aphyric and porphyritic textures as well as pyroclastic deposits. In this study, geochemical data obtained with X-ray fluorescence (XRF) for the CRB silicic volcanic rocks are reported and discussed to constrain their petrogenesis and tectonic setting. The rocks are peraluminous and show enrichment in K, Rb, Th, Zr, Y, and Pb while being depleted in Ba, Sr, Nb, P, and Ti, and they have Zr + Nb + Y + Ce > 350 ppm, which are characteristic features of anorogenic A-type granites. They have a Y/Nb ratio > 1.2 and belong to A2-subtype granitoids, implying crust-derived magma in a post-collisional tectonic setting. The high Rb/Sr ratio (3.45–39.14), the low molar CaO/(MgO + FeOt) ratio, and the CaO/Na2O ratio (<0.5), which they display, indicate that metapelites are the magma sources. Their low Al2O3/TiO2 ratio (<100), consistent with their high zircon saturation temperatures (average TZr = 886 °C), and their low Pb/Ba ratio (average 0.06) reveal that they were generated by biotite dehydration melting. The increased Rb/Sr ratio relative to that of presumable parental metapelites of the Vertiskos Unit, coupled with their low Sr/Y ratio (0.12–1.08), reflects plagioclase and little or no garnet in the source residue, indicating magma derivation at low pressures of 0.4–0.8 GPa that correspond to a depth of ~15–30 km. The nearby tholeiitic basalts and dolerites, interstratified with the Triassic pelagic sediments, indicate bimodal volcanism in the region. They also support a model involving an upwelling asthenosphere that underplated the Vertiskos Unit basement, supplying the heat required for crustal melting at low pressures. The Permo–Triassic magmatism marks the transition from an orogenic to an anorogenic environment during the initial stage of continental breakup of the Variscan basement in a post-collision extensional tectonic framework, leading to the formation of the nascent Mesozoic Neo-Tethyan Maliac–Vardar Ocean. This apparently reveals that the Variscan continental collision between the Gondwana-derived Vertiskos and Pelagonian terranes must have been completed by at least the earliest Late Permian. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

25 pages, 8369 KiB  
Article
Origin of Diorites and Coeval Mafic Microgranular Enclaves in the Liuba Region, South Qinling Orogen, Central China: Insights from Petrography, Zircon U-Pb Geochronology and Geochemistry
by Shan Gao, Xianzhi Pei, Lei Pei, Zuochen Li, Ruibao Li, Shaowei Zhao, Mao Wang, Li Qin and Xiao Wang
Minerals 2025, 15(1), 77; https://doi.org/10.3390/min15010077 - 15 Jan 2025
Viewed by 867
Abstract
The formation of early Mesozoic granitoid plutons in the Qinling Orogen is widely regarded as a result of the collision and accretion between the Yangtze Block and the South Qinling Block during the early Mesozoic, but the specific magmatic process, source composition, tectonic [...] Read more.
The formation of early Mesozoic granitoid plutons in the Qinling Orogen is widely regarded as a result of the collision and accretion between the Yangtze Block and the South Qinling Block during the early Mesozoic, but the specific magmatic process, source composition, tectonic environment and deep dynamic background remain controversial. This study reports the petrology, zircon U–Pb geochronology, and whole-rock geochemistry of diorites from the Liuba and Qingyangyi plutons in the South Qinling, to provide new evidence for understanding the final collision tectonic evolution process of Qinling Orogenic belt. The Liuba and Qingyangyi plutons, located in the central part of the South Qinling region, are primarily composed of quartz diorite and quartz monzodiorite, respectively. The results indicate that the weighted mean crystallization ages of the quartz diorite in the Liuba pluton range from 216.1 ± 0.8 Ma to 217.1 ± 1.3 Ma, with the weighted mean crystallization ages of its MMEs being 215.4 ± 1.0 Ma. The crystallization ages of the quartz monzodiorite in the Qingyangyi pluton range from 214.6 ± 0.9 Ma to 215.4 ± 0.9 Ma, suggesting that both plutons were formed in the late Triassic. The investigated plutons are characterized as right-leaning and have weak negative Eu anomalies on the chondrite-normalized REE patterns diagram. The large ion lithophile elements (LILE) Rb, Ba, Th and K are relatively enriched, while high-field strength elements (HFSE) Nb, Ta, Ti and P are strongly depleted. The formation of numerous MMEs in the Liuba pluton is the product of magmatic mixing. The Liuba and Qingyangyi plutons are the results of crust thickening and partial melting of lower crust caused by the comprehensive late Triassic collision between the Yangtze Block and the North China Block (NCB), and are the manifestation of magmatic intrusion along the South Qinling tectonic belt in the late Triassic period. Full article
Show Figures

Figure 1

19 pages, 7966 KiB  
Article
Genesis of the Mengshan Granitoid Complex in an Early Mesozoic Intracontinental Subduction Tectonic Setting in South China: Evidence from Zircon U-Pb-Hf Isotopes and Geochemical Composition
by Jin Wei, Yongpeng Ouyang, Jing Zou, Runling Zeng, Xinming Zhang, Tao Zhang, Shenao Sui, Da Zhang, Xiaolong He and Yaoyao Zhang
Minerals 2024, 14(9), 854; https://doi.org/10.3390/min14090854 - 23 Aug 2024
Viewed by 1143
Abstract
The Mengshan granitoid complex is located in the central part of Jiangnan Orogen and belongs to the western part of Jiangxi Province, where several phases of granitic magmatism record the crustal evolution of the late-Indosinian. However, its petrogenesis remains uncertain, largely due to [...] Read more.
The Mengshan granitoid complex is located in the central part of Jiangnan Orogen and belongs to the western part of Jiangxi Province, where several phases of granitic magmatism record the crustal evolution of the late-Indosinian. However, its petrogenesis remains uncertain, largely due to controversies over its origin, evolutionary process and tectonic setting during intrusion. In this study, the lithological features and contact relationships observed in the systematic field geological investigations indicate that the late magmatic phases of the Mengshan granitoid complex are mainly composed of medium–fine-grained biotite monzogranite and fine-grained monzogranite, both of which developed primary fine-grained muscovite. Petrological, petrographic, geochemical and zircon U-Pb-Hf isotopic studies were further carried out on these rocks. Zircon U-Pb isotopic analyses suggest that the medium–fine-grained biotite monzogranite mainly formed at 220.7 ± 1.0 Ma to 218.0 ± 0.8 Ma, and that the fine-grained monzogranite formed at 211.5 ± 2.9 Ma to 212.9 ± 1.0 Ma. Whole-rock geochemical analysis results suggest that these rocks are rich in Cs, Rb, and U, and deficient in Ba, Sr, and Ti, and that they have properties characteristic of rocks with high silica, low P content and high K calc-alkali. Mineralogical and geochemical analysis results suggest that they are S-type granites. The εHf(t) values of the early-stage medium–fine-grained biotite monzogranite and late-stage fine-grained monzogranite range from –4.7 to 0.3 and from –3.2 to 0.7, respectively. Geochemical and isotopic data suggest that these granitoids were derived from the partial melting of Proterozoic continent basement rocks, and that minor mantle materials were involved during their generation. The presence of the early Mesozoic Mengshan granitoid complex reflects a reduplicated far-field converge effect of the collision of the North China and South China blocks and the subduction of the Palaeo-Pacific plate into the South China block. The thickening of the Earth’s crust facilitated crustal delamination, underplating of mantle-derived magma, and crustal heating, triggering intense partial melting of the lithosphere and magma enrichment. Full article
Show Figures

Figure 1

15 pages, 5625 KiB  
Article
Pan-African and Early Paleozoic Orogenic Events in Southern Tibet: Evidence from Geochronology and Geochemistry of the Kangbuzhenri Gneissic Granite in the Zhegu Area
by Ming Cheng, Xuming Hu, Yao Tang, Zhao Deng, Yingzi Min, Shiyi Chen, Saijun Sun and Huanzhan Zhou
Minerals 2024, 14(8), 845; https://doi.org/10.3390/min14080845 - 22 Aug 2024
Cited by 2 | Viewed by 1046
Abstract
The Zhegu area in southern Tibet is situated in the central and eastern part of the Tethys Himalayan tectonic belt, with the Kangbuzhenri area being abundant in gneissic granites. This study examines the petrology, chronology, and geochemistry of the Kangbuzhenri gneissic granite, providing [...] Read more.
The Zhegu area in southern Tibet is situated in the central and eastern part of the Tethys Himalayan tectonic belt, with the Kangbuzhenri area being abundant in gneissic granites. This study examines the petrology, chronology, and geochemistry of the Kangbuzhenri gneissic granite, providing insights into its Pan-African and Early Paleozoic geological evolution. The zircon U-Pb chronology indicates an upper intercept age of ~539 Ma, reflecting Pan-African orogenic events in the eastern part of the Tethys Himalayan tectonic belt, and a lower intercept age of ~144 Ma, representing a late tectonic–thermal event. Geochemically, the gneissic granites are calc-alkaline peraluminous rocks with high SiO2 and Al2O3 contents and low TiO2, P2O5, MgO, and FeOT contents. The gneissic granites are enriched in LREE and LILEs (Rb, Pb, Th, U, etc.), but relatively depleted in HREE and HFSEs (Nb, Ti, P, etc.). Most of them show a weak negative δEu anomaly, except for two samples which show a significant negative δEu anomaly due to the crystallization of plagioclase. Based on the above study, most of the gneissic granites exhibited the characteristics of an I-type granite, while two of the samples were a highly differentiated I-type granite with S-type affinities. All the above characteristics indicate that the gneissic granite likely originated from the partial melting of crustal materials and sediments with a minor involvement of mantle-derived materials. Combined with the previous chronological studies, the Kangbuzhenri gneissic granites were formed in an extensional tectonic environment during post-collision orogeny and then they were influenced by the Kerguelen mantle plume tectonic–thermal event around ~144 Ma and the subsequent Southern Tibet Detachment System (STDS). Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

27 pages, 5945 KiB  
Article
Middle Silurian–Middle Devonian Magmatic Rocks in the Eastern Segment of the Northern Margin of the North China Craton: Implications for Regional Tectonics
by Bin Li, Jingsheng Chen, Fan Yang, Miao Liu, Yanqing Zang and Chao Zhang
Minerals 2024, 14(7), 641; https://doi.org/10.3390/min14070641 - 23 Jun 2024
Cited by 1 | Viewed by 1344
Abstract
This paper presents a detailed study including LA-ICP-MS zircon U-Pb dating, geochemical, zircon Hf isotope, and whole rock Sr-Nd isotope analysis of magmatic rocks from the Yitong County, Jilin Province, NE China. These data are used to better constrain the Middle Silurian–Middle Devonian [...] Read more.
This paper presents a detailed study including LA-ICP-MS zircon U-Pb dating, geochemical, zircon Hf isotope, and whole rock Sr-Nd isotope analysis of magmatic rocks from the Yitong County, Jilin Province, NE China. These data are used to better constrain the Middle Silurian–Middle Devonian tectonic evolution in the eastern segment of the northern margin of the North China Craton (NCC). Zircon U-Pb dating results show that the Ximangzhang tonalite formed in the Late Silurian (425 ± 6 Ma); the basalt, andesite, and metamorphic olivine-bearing basalt in the Fangniugou volcanic rocks formed in the Middle Silurian (428 ± 6.6 Ma) and Middle Devonian (388.4 ± 3.9 Ma, and 384.1 ± 4.9 Ma). The Late Silurian tonalites are characterized by high SiO2 and Na2O and low K2O, MgO, FeOT, and TiO2, with an A/CNK ratio of 0.91–1.00, characteristic of calc-alkaline I-type granite. They are enriched in Rb, Ba, Th, U, and K, and depleted in Nb, Sr, P, and Ti, with positive εNd(t) (+0.35) and εHf(t) (+0.44 to +6.31) values, suggesting that they mainly originated from the partial melting of Meso–Neoproterozoic accretionary lower crustal material (basalt). The Middle Silurian basalts are characterized by low SiO2, P2O5, TiO2, and Na2O and high Al2O3, FeOT, and K2O, enriched in Rb, Ba, Th, U, and K and depleted in Nb, Ta, Sr, P, and Ti, indicative of shoshonitic basalt. The Late Silurian tonalites have positive εNd(t) (+4.91 to +6.18) values and primarily originated from depleted mantle magmas metasomatized by subduction fluids, supplemented by a small amount of subducted sediments and crustal materials. The Middle Devonian volcanic rocks exhibit low SiO2, TiO2, and Na2O and high K2O, and MgO, enriched in Rb, K, and LREEs and depleted in Nb, Ta, Sr, and HREEs, characteristic of shoshonitic volcanic rocks. Their εNd(t) (+2.11 to +3.77) and εHf(t) (+5.90 to +11.73) values are positive. These characteristics indicate that the Middle Devonian volcanic rocks primarily originated from depleted mantle magmas metasomatized by subduction fluids, with the addition of crustal materials or subducted sediments during their formation. Based on regional geological data, it is believed that the study area underwent the following evolutionary stages during the Silurian–Devonian period: (1) active continental margin stage of southward subduction of the Paleo–Asian Ocean (PAO) (443–419 Ma); (2) arc-continent collision stage (419–405 Ma); (3) post-collision extension stage (404–375 Ma); (4) active continental margin stage, with the PAO plate subducting southward once again (375–360 Ma). Full article
Show Figures

Figure 1

23 pages, 8354 KiB  
Article
The Discovery of the New UHP Eclogite from the East Kunlun, Northwestern China, and Its Tectonic Significance
by Feng Chang, Guibin Zhang and Lu Xiong
Minerals 2024, 14(6), 582; https://doi.org/10.3390/min14060582 - 31 May 2024
Viewed by 1308
Abstract
The East Kunlun Orogenic Belt (EKOB), northwestern China, recording long-term and multiple accretionary and collisional events of the Tethyan Ocean, belongs to a high-pressure to ultra-high-pressure (HP-UHP) metamorphic belt that underwent complex metamorphic overprinting in the early Paleozoic. In this contribution, we carry [...] Read more.
The East Kunlun Orogenic Belt (EKOB), northwestern China, recording long-term and multiple accretionary and collisional events of the Tethyan Ocean, belongs to a high-pressure to ultra-high-pressure (HP-UHP) metamorphic belt that underwent complex metamorphic overprinting in the early Paleozoic. In this contribution, we carry out an integrated study, including field investigations, petrographic observations, whole-rock analyses, zircon U-Pb dating, and P-T condition modeling using THERMOCALC in the NCKFMASHTO system for the eclogites, especially for the newly discovered UHP eclogite in the eastern part of EKOB. The eclogites exhibit geochemistry ranging from normal mid-ocean ridge basalt (N-MORB) to enriched mid-ocean ridge basalt (E-MORB). Zircons from the eclogites yield metamorphic ages of 416–413 Ma, indicating the eclogite facies metamorphism. Coesite inclusions in garnet and omphacite and quartz exsolution in omphacite and pseudosection calculation suggest that some eclogites experienced UHP eclogite facies metamorphism. The eclogites from the eastern part of EKOB record peak conditions of 29–33 kbar/705–760 °C, first retrograde conditions of 10 kbar at 9.5–12.5 kbar/610–680 °C, and second retrograde conditions at ~6 kbar/<600 °C. New evidence of the early Paleozoic UHP metamorphism in East Kunlun is identified in our study. Thus, we suggest that these eclogites were produced by the oceanic crust subducting to the depth of 100 km and exhumation. The presence of East Gouli and Gazhima eclogites in this study and other eclogites (430–414 Ma) in East Kunlun record the final closure of the local branch ocean of the Proto-Tethys and the evolution from subduction to collision. Full article
(This article belongs to the Special Issue Microbeam Analysis Characterization in Petrogenesis and Ore Deposit)
Show Figures

Figure 1

27 pages, 6175 KiB  
Article
Metabasites from the Central East Kunlun Orogenic Belt Inform a New Suture Model for Subduction and Collision in the Early Paleozoic Proto-Tethys Ocean
by Feng Chang, Guibin Zhang, Lu Xiong, Shuaiqi Liu, Shuzhen Wang and Yixuan Liu
Minerals 2024, 14(5), 449; https://doi.org/10.3390/min14050449 - 24 Apr 2024
Cited by 1 | Viewed by 1446
Abstract
The discovery of eclogite outcrops in the East Kunlun Orogen Belt (EKOB) has confirmed the existence of an Early Paleozoic HP-UHP metamorphic belt. However, the protoliths and metamorphic histories of widespread metabasites remain poorly constrained. We collected three types of metabasites from the [...] Read more.
The discovery of eclogite outcrops in the East Kunlun Orogen Belt (EKOB) has confirmed the existence of an Early Paleozoic HP-UHP metamorphic belt. However, the protoliths and metamorphic histories of widespread metabasites remain poorly constrained. We collected three types of metabasites from the central part of EKOB. We present an integrated study of petrography, whole-rock geochemistry, Sr-Nd isotopes, estimated P–T conditions, and zircon U-Pb isotope ages. The results show that amphibolites and retrograde eclogites have clockwise P–T paths with peak conditions of, respectively, 11–12 kbar and 675–695 °C, and 21.5–22.2 kbar and 715–750 °C. Zircon dating of metabasites from Dagele yields Late Ordovician (~449 Ma) to Early Silurian (~440 Ma) protolith ages and Early Devonian (~414 Ma) amphibolite facies metamorphic ages. Retrograde eclogites from east Nuomuhong have a protolith age of ~902 Ma and metamorphic ages of ~418 Ma, consistent with other eclogites from East Kunlun. Our data suggest that the protoliths of Dagele metabasites represent arc-type magmatism during the subduction of a small back-arc oceanic basin. Instead, the protoliths of retrograde eclogites are Neoproterozoic tholeiitic basalts emplaced into continental crust and subsequently deeply subducted. We develop a new model for Early Paleozoic subduction and collision in the East Kunlun region, emphasizing the role of ‘dominant’ and ‘secondary’ suture boundaries. This model helps explain the ages and metamorphic histories of the metabasites studied here and offers new perspectives on the evolution of the Proto-Tethys Ocean. Full article
(This article belongs to the Special Issue Experimental Petrology: Metamorphic Evolution of Eclogite)
Show Figures

Figure 1

10 pages, 535 KiB  
Review
Multiplicity Dependence of Quarkonium Production
by Zaida Conesa del Valle
Universe 2024, 10(2), 59; https://doi.org/10.3390/universe10020059 - 29 Jan 2024
Viewed by 1320
Abstract
Recent measurements on heavy-flavour production as a function of charged-particle multiplicity at the LHC are discussed. Focus is given to quarkonium results in small (pp or pPb) collision systems. The measurements of relative yields, i.e., the ratio of the particle yields in given [...] Read more.
Recent measurements on heavy-flavour production as a function of charged-particle multiplicity at the LHC are discussed. Focus is given to quarkonium results in small (pp or pPb) collision systems. The measurements of relative yields, i.e., the ratio of the particle yields in given multiplicity intervals to the multiplicity integrated yield are presented and compared to model calculations from Monte Carlo event generators as well as to models considering effects at play in the initial and/or final state of the collision. The absolute inclusive J/ψ yield as a function of the absolute charged-particle multiplicity is evaluated; a smooth behaviour of the absolute yield is observed across collision systems, from pp to pPb and PbPb collisions. Analogous measurements of the excited-to-ground state quarkonium ratios as a function of charged-particle multiplicity are also reviewed. Finally, the study of exotic particle production as a function of charged-particle multiplicity is introduced as a complementary tool to investigate the nature of the χc1(3872) hadron. Full article
(This article belongs to the Special Issue Relativistic Heavy Ion Collision)
Show Figures

Figure 1

28 pages, 29060 KiB  
Article
Metamorphism and P-T Evolution of High-Pressure Granulites from the Fuping Complex, North China Craton
by Zijing Zhang, Changqing Zheng, Chenyue Liang, M. Santosh, Junjie Hao, Lishuai Dong, Jianjun Hou, Feifei Hou and Meihui Li
Minerals 2024, 14(2), 138; https://doi.org/10.3390/min14020138 - 26 Jan 2024
Cited by 1 | Viewed by 2353
Abstract
Granulite facies rocks provide important keys to evaluating collisional metamorphism in orogenic belts. The mafic granulites of Baoding in the Fuping Complex of the North China Craton occur within the Trans-North China Orogen (TNCO), a major Paleoproterozoic collisional orogen. Here, we present results [...] Read more.
Granulite facies rocks provide important keys to evaluating collisional metamorphism in orogenic belts. The mafic granulites of Baoding in the Fuping Complex of the North China Craton occur within the Trans-North China Orogen (TNCO), a major Paleoproterozoic collisional orogen. Here, we present results from detailed investigations on newly discovered garnet pyroxenite, garnet two-pyroxene granulite, and garnet-bearing-plagioclase amphibolite using petrographic, mineralogical, geochemical, and zircon U-Pb dating methods. Our results show that the Fuping Complex metamorphic evolution in this study evolved in four stages: prograde (M1), high-pressure granulite facies (M2), granulite facies (M3), and retrograde (M4) stages. The mineral assemblage of the prograde stage (M1) consists of Amp + Pl + Q within garnet cores. The mineral assemblage of high-pressure granulite facies at the peak stage (M2) consists of Gt + Cpx + Pl + Q ± Amp, forming the garnet pyroxenite. The granulite facies stage M3 is characterized by the occurrence of orthopyroxene, with a mineral assemblage of Gt + Cpx + Opx + Amp+ Pl + Q. The early retrograde stage M4-1 includes clinopyroxenes scattered inside amphiboles, following the breakdown of garnet and clinopyroxene. The mineral assemblage of this stage comprises Amp + Pl + Q + Ilm ± Cpx. Later, in the late retrograde stage M4-2, the composition of amphiboles changed to actinolite, and epidote and chlorite started to appear in the matrix. Traditional geothermobarometry yielded P-T conditions of 700~706 °C and 6.0~6.2 kbar for prograde stage M1, 854~920 °C and 13.0~13.8 kbar for high-pressure granulite facies stage M2, 912~939 °C and 8.1~9.9 kbar for M3, 661~784 °C and 3.1~4.4 kbar for M4-1, and 637~638 °C, 1.1~1.3 kbar for M4-2, along a clockwise P-T path with a nearly isothermal decompression (ITD) and slight heating. Zircon LA-ICP-MS U-Pb dating constrains the timing of the high-pressure granulite facies metamorphic event to be between 1.83 and 1.86 Ga. Geochemical features suggest that the protoliths of the high-pressure granulites may have formed in an island arc environment within a convergent margin setting. Together with results from previous studies, our data suggest that the ~1.85 Ga metamorphic age recorded in the Fuping Complex represents a regional metamorphism in the TNCO, associated with the subduction–collision and assembly of the Eastern and Western Blocks of the NCC. Full article
Show Figures

Figure 1

Back to TopTop