Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = oxysterol-binding protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1630 KiB  
Review
Fungicide Resistance Dynamics: Knowledge from Downy Mildew Management in Japanese Vineyards
by Yoshinao Aoki and Shunji Suzuki
Agriculture 2025, 15(7), 714; https://doi.org/10.3390/agriculture15070714 - 27 Mar 2025
Viewed by 546
Abstract
This review summarizes the mechanisms and historical development of fungicides registered for grape downy mildew control in Japan, with a particular focus on their diverse molecular targets, including cell division and mitochondrial respiration. Grapevine downy mildew is one of the most important pathogens [...] Read more.
This review summarizes the mechanisms and historical development of fungicides registered for grape downy mildew control in Japan, with a particular focus on their diverse molecular targets, including cell division and mitochondrial respiration. Grapevine downy mildew is one of the most important pathogens in Japanese grapevine cultivation. Grapevine downy mildew tends to be fungicide-resistant, and in recent years, a quinone outside inhibitor (QoI) fungicide-resistant strain of downy mildew has caused extensive damage in Yamanashi Prefecture, making headlines in newspapers. Although approximately 60 fungicides have been registered for downy mildew management in Japan, many have been withdrawn due to the emergence of resistant pathogen populations. Recent challenges with resistance to quinone outside inhibitors, carboxylic acid amides, and oxysterol-binding protein inhibitors underscore the ongoing importance of resistance management in Japanese viticulture and grape downy mildew control strategies. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

19 pages, 6692 KiB  
Article
Leonurine Inhibits Hepatic Lipid Synthesis to Ameliorate NAFLD via the ADRA1a/AMPK/SCD1 Axis
by Wen Fan, Maoxing Pan, Chuiyang Zheng, Haiyan Shen, Dajin Pi, Qingliang Song, Zheng Liang, Jianwei Zhen, Jinyue Pan, Lianghao Liu, Qinhe Yang and Yupei Zhang
Int. J. Mol. Sci. 2024, 25(19), 10855; https://doi.org/10.3390/ijms251910855 - 9 Oct 2024
Cited by 4 | Viewed by 2481
Abstract
Leonurine is a natural product unique to the Lamiaceae plant Leonurus japonicus Houtt., and it has attracted attention due to its anti-oxidative stress, anti-apoptosis, anti-fibrosis, and metabolic regulation properties. Also, it plays an important role in the prevention and treatment of nonalcoholic [...] Read more.
Leonurine is a natural product unique to the Lamiaceae plant Leonurus japonicus Houtt., and it has attracted attention due to its anti-oxidative stress, anti-apoptosis, anti-fibrosis, and metabolic regulation properties. Also, it plays an important role in the prevention and treatment of nonalcoholic fatty liver disease (NAFLD) through a variety of biological mechanisms, but its mechanism of action remains to be elucidated. Therefore, this study aims to preliminarily explore the mechanisms of action of leonurine in NAFLD. Mice were randomly divided into four groups: the normal control (NC) group, the Model (M) group, the leonurine treatment (LH) group, and the fenofibrate treatment (FB) group. The NAFLD model was induced by a high-fat high-sugar diet (HFHSD) for 12 weeks, and liver pathological changes and biochemical indices were observed after 12 weeks. Transcriptomic analysis results indicated that leonurine intervention reversed the high-fat high-sugar diet-induced changes in lipid metabolism-related genes such as stearoyl-CoA desaturase 1 (Scd1), Spermine Synthase (Sms), AP-1 Transcription Factor Subunit (Fos), Oxysterol Binding Protein Like 5 (Osbpl5), and FK506 binding protein 5 (Fkbp5) in liver tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results suggest that leonurine may exert its lipid-lowering effects through the AMP-activated protein kinase (AMPK) signaling pathway. Liver lipidomic analysis showed that leonurine could alter the abundance of lipid molecules related to fatty acyl (FAs) and glycerophospholipids (GPs) such as TxB3, carnitine C12-OH, carnitine C18:1-OH, and LPC (20:3/0:0). Molecular biology experiments and molecular docking techniques verified that leonurine might improve hepatic lipid metabolism through the alpha-1A adrenergic receptor (ADRA1a)/AMPK/SCD1 axis. In summary, the present study explored the mechanism by which leonurine ameliorated NAFLD by inhibiting hepatic lipid synthesis via the ADRA1a/AMPK/SCD1 axis. Full article
(This article belongs to the Special Issue Natural Products as Multitarget Agents in Human Diseases)
Show Figures

Figure 1

14 pages, 10759 KiB  
Article
Replacing Mancozeb with Alternative Fungicides for the Control of Late Blight in Potato
by Yariv Ben Naim and Yigal Cohen
J. Fungi 2023, 9(11), 1046; https://doi.org/10.3390/jof9111046 - 25 Oct 2023
Cited by 9 | Viewed by 5165
Abstract
Mancozeb (MZ) is a broadly used fungicide for the control of plant diseases, including late blight in potatoes caused by the oomycete Phytophthora infestans (Mont.) De Bary. MZ has been banned for agricultural use by the European Union as of January 2022 due [...] Read more.
Mancozeb (MZ) is a broadly used fungicide for the control of plant diseases, including late blight in potatoes caused by the oomycete Phytophthora infestans (Mont.) De Bary. MZ has been banned for agricultural use by the European Union as of January 2022 due to its hazards to humans and the environment. In a search for replacement fungicides, twenty-seven registered anti-oomycete fungicidal preparations were evaluated for their ability to mitigate the threat of this disease. Fourteen fungicides provided good control (≥75%) of late blight in potted potato and tomato plants in growth chambers. However, in Tunnel Experiment 1, only three fungicides provided effective control of P. infestans in potatoes: Cyazofamid (Ranman, a QiI inhibitor), Mandipropamid (Revus, a CAA inhibitor), and Oxathiapiprolin + Benthiavalicarb (Zorvek Endavia, an OSBP inhibitor + CAA inhibitor). In Tunnel Experiment 2, these three fungicides were applied at the recommended doses at 7-, 9-, and 21-day intervals, respectively, totaling 6, 4, and 2 sprays during the season. At 39 days post-inoculation (dpi), control efficacy increased in the following order: Zorvec Endavia > Ranman > Revus > Mancozeb. Two sprays of Zorvec Endavia were significantly more effective in controlling the blight than six sprays of Ranman or four sprays of Revus. We, therefore, recommend using these three fungicides as replacements for mancozeb for the control of late blight in potatoes. A spray program that alternates between these three fungicides may be effective in controlling the disease and also in avoiding the build-up of resistance in P. infestans to mandipropamid and oxathiapiprolin. Full article
Show Figures

Figure 1

21 pages, 4094 KiB  
Article
Aerobic Exercise Facilitates the Nuclear Translocation of SREBP2 by Activating AKT/SEC24D to Contribute Cholesterol Homeostasis for Improving Cognition in APP/PS1 Mice
by Zelin Hu, Yangqi Yuan, Zhen Tong, Meiqing Liao, Shunling Yuan, Weijia Wu, Yingzhe Tang, Yirong Wang, Changfa Tang and Wenfeng Liu
Int. J. Mol. Sci. 2023, 24(16), 12847; https://doi.org/10.3390/ijms241612847 - 16 Aug 2023
Cited by 8 | Viewed by 2543
Abstract
Impaired cholesterol synthesizing ability is considered a risk factor for the development of Alzheimer’s disease (AD), as evidenced by reduced levels of key proteases in the brain that mediate cholesterol synthesis; however, cholesterol deposition has been found in neurons in tangles in the [...] Read more.
Impaired cholesterol synthesizing ability is considered a risk factor for the development of Alzheimer’s disease (AD), as evidenced by reduced levels of key proteases in the brain that mediate cholesterol synthesis; however, cholesterol deposition has been found in neurons in tangles in the brains of AD patients. Although it has been shown that statins, which inhibit cholesterol synthesis, reduce the incidence of AD, this seems paradoxical for AD patients whose cholesterol synthesizing capacity is already impaired. In this study, we aimed to investigate the effects of aerobic exercise on cholesterol metabolism in the brains of APP/PS1 mice and to reveal the mechanisms by which aerobic exercise improves cognitive function in APP/PS1 mice. Our study demonstrates that the reduction of SEC24D protein, a component of coat protein complex II (COPII), is a key factor in the reduction of cholesterol synthesis in the brain of APP/PS1 mice. 12 weeks of aerobic exercise was able to promote the recovery of SEC24D protein levels in the brain through activation of protein kinase B (AKT), which in turn promoted the expression of mem-brane-bound sterol regulatory element-binding protein 2 (SREBP2) nuclear translocation and the expression of key proteases mediating cholesterol synthesis. Simultaneous aerobic exercise restored cholesterol transport capacity in the brain of APP/PS1 mice with the ability to efflux excess cholesterol from neurons and reduced neuronal lipid rafts, thereby reducing cleavage of the APP amyloid pathway. Our study emphasizes the potential of restoring intracerebral cholesterol homeostasis as a therapeutic strategy to alleviate cognitive impairment in AD patients. Full article
(This article belongs to the Special Issue Neurodegeneration and Countermeasures to Slow Down Its Onset)
Show Figures

Figure 1

13 pages, 2684 KiB  
Article
Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport
by Andrea Eisenreichova, Martin Klima, Midhun Mohan Anila, Alena Koukalova, Jana Humpolickova, Bartosz Różycki and Evzen Boura
Cells 2023, 12(15), 1974; https://doi.org/10.3390/cells12151974 - 31 Jul 2023
Cited by 6 | Viewed by 2587
Abstract
ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8). The ORD8 exhibited [...] Read more.
ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8). The ORD8 exhibited a β-barrel fold composed of anti-parallel β-strands, with three α-helices replacing β-strands on one side. This mixed alpha–beta structure was consistent with previously solved structures of ORP2 and ORP3. A large cavity (≈1860 Å3) within the barrel was identified as the lipid-binding site. Although we were not able to obtain a lipid-bound structure, we used computer simulations based on our crystal structure to dock PS and PI4P molecules into the putative lipid-binding site of the ORD8. Comparative experiments between the short ORD8ΔLid (used for crystallography) and the full-length ORD8 (lid containing) revealed the lid’s importance for stable lipid binding. Fluorescence assays revealed different transport efficiencies for PS and PI4P, with the lid slowing down transport and stabilizing cargo. Coarse-grained simulations highlighted surface-exposed regions and hydrophobic interactions facilitating lipid bilayer insertion. These findings enhance our comprehension of ORD8, its structure, and lipid transport mechanisms, as well as provide a structural basis for the design of potential inhibitors. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

20 pages, 3112 KiB  
Article
Liver X Receptor Activation Attenuates Oxysterol-Induced Inflammatory Responses in Fetoplacental Endothelial Cells
by Meekha George, Magdalena Lang, Chaitanya Chakravarthi Gali, Joshua Adekunle Babalola, Carmen Tam-Amersdorfer, Anika Stracke, Herbert Strobl, Robert Zimmermann, Ute Panzenboeck and Christian Wadsack
Cells 2023, 12(8), 1186; https://doi.org/10.3390/cells12081186 - 19 Apr 2023
Cited by 4 | Viewed by 3288
Abstract
Oxysterols are oxidized cholesterol derivatives whose systemic levels are found elevated in pregnancy disorders such as gestational diabetes mellitus (GDM). Oxysterols act through various cellular receptors and serve as a key metabolic signal, coordinating inflammation. GDM is a condition of low-grade chronic inflammation [...] Read more.
Oxysterols are oxidized cholesterol derivatives whose systemic levels are found elevated in pregnancy disorders such as gestational diabetes mellitus (GDM). Oxysterols act through various cellular receptors and serve as a key metabolic signal, coordinating inflammation. GDM is a condition of low-grade chronic inflammation accompanied by altered inflammatory profiles in the mother, placenta and fetus. Higher levels of two oxysterols, namely 7-ketocholesterol (7-ketoC) and 7β-hydroxycholesterol (7β-OHC), were observed in fetoplacental endothelial cells (fpEC) and cord blood of GDM offspring. In this study, we tested the effects of 7-ketoC and 7β-OHC on inflammation and investigated the underlying mechanisms involved. Primary fpEC in culture treated with 7-ketoC or 7β-OHC, induced the activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NFκB) signaling, which resulted in the expression of pro-inflammatory cytokines (IL-6, IL-8) and intercellular cell adhesion molecule-1 (ICAM-1). Liver-X receptor (LXR) activation is known to repress inflammation. Treatment with LXR synthetic agonist T0901317 dampened oxysterol-induced inflammatory responses. Probucol, an inhibitor of LXR target gene ATP-binding cassette transporter A-1 (ABCA-1), antagonized the protective effects of T0901317, suggesting a potential involvement of ABCA-1 in LXR-mediated repression of inflammatory signaling in fpEC. TLR-4 inhibitor Tak-242 attenuated pro-inflammatory signaling induced by oxysterols downstream of the TLR-4 inflammatory signaling cascade. Taken together, our findings suggest that 7-ketoC and 7β-OHC contribute to placental inflammation through the activation of TLR-4. Pharmacologic activation of LXR in fpEC decelerates its shift to a pro-inflammatory phenotype in the presence of oxysterols. Full article
Show Figures

Figure 1

14 pages, 2897 KiB  
Article
Elucidation of OSW-1-Induced Stress Responses in Neuro2a Cells
by Kentaro Oh-hashi, Hibiki Nakamura, Hirotaka Ogawa, Yoko Hirata and Kaori Sakurai
Int. J. Mol. Sci. 2023, 24(6), 5787; https://doi.org/10.3390/ijms24065787 - 17 Mar 2023
Cited by 6 | Viewed by 3036
Abstract
OSW-1, a steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, is a promising compound for an anticancer drug; however, its cytotoxic mechanisms have not been fully elucidated. Therefore, we analyzed the stress responses triggered by OSW-1 in the mouse neuroblastoma cell line [...] Read more.
OSW-1, a steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, is a promising compound for an anticancer drug; however, its cytotoxic mechanisms have not been fully elucidated. Therefore, we analyzed the stress responses triggered by OSW-1 in the mouse neuroblastoma cell line Neuro2a by comparing it with brefeldin A (BFA), a Golgi apparatus-disrupting reagent. Among the Golgi stress sensors TFE3/TFEB and CREB3, OSW-1 induced dephosphorylation of TFE3/TFEB but not cleavage of CREB3, and induction of the ER stress-inducible genes GADD153 and GADD34 was slight. On the other hand, the induction of LC3-II, an autophagy marker, was more pronounced than the BFA stimulation. To elucidate OSW-1-induced gene expression, we performed a comprehensive gene analysis using a microarray method and observed changes in numerous genes involved in lipid metabolism, such as cholesterol, and in the regulation of the ER–Golgi apparatus. Abnormalities in ER–Golgi transport were also evident in the examination of secretory activity using NanoLuc-tag genes. Finally, we established Neuro2a cells lacking oxysterol-binding protein (OSBP), which were severely reduced by OSW-1, but found OSBP deficiency had little effect on OSW-1-induced cell death and the LC3-II/LC3-I ratio in Neuro2a cells. Future work to elucidate the relationship between OSW-1-induced atypical Golgi stress responses and autophagy induction may lead to the development of new anticancer agents. Full article
(This article belongs to the Special Issue Stress Signaling and Programmed Cell Death)
Show Figures

Figure 1

15 pages, 1337 KiB  
Article
Hypercholesterolemia in the Malaysian Cohort Participants: Genetic and Non-Genetic Risk Factors
by Nor Azian Abdul Murad, Yusuf Mohammad Noor, Zam Zureena Mohd. Rani, Siti Aishah Sulaiman, Yock Ping Chow, Noraidatulakma Abdullah, Norfazilah Ahmad, Norliza Ismail, Nazihah Abdul Jalal, Mohd. Arman Kamaruddin, Amalia Afzan Saperi and Rahman Jamal
Genes 2023, 14(3), 721; https://doi.org/10.3390/genes14030721 - 15 Mar 2023
Cited by 4 | Viewed by 3789
Abstract
Hypercholesterolemia was prevalent in 44.9% of The Malaysian Cohort participants, of which 51% were Malay. This study aimed to identify the variants involved in hypercholesterolemia among Malays and to determine the association between genetic and non-genetic risk factors. This nested case–control study included [...] Read more.
Hypercholesterolemia was prevalent in 44.9% of The Malaysian Cohort participants, of which 51% were Malay. This study aimed to identify the variants involved in hypercholesterolemia among Malays and to determine the association between genetic and non-genetic risk factors. This nested case–control study included 25 Malay participants with the highest low-density lipoprotein cholesterol (LDL-C, >4.9 mmol/L) and total cholesterol (TC, >7.5 mmol/L) and 25 participants with the lowest LDL-C/TC. Genomic DNA was extracted, and whole-exome sequencing was performed using the Ion ProtonTM system. All variants were annotated, filtered, and cross-referenced against publicly available databases. Forty-five selected variants were genotyped in 677 TMC Malay participants using the MassARRAY® System. The association between genetic and non-genetic risk factors was determined using logistic regression analysis. Age, fasting blood glucose, tobacco use, and family history of hyperlipidemia were significantly associated with hypercholesterolemia. Participants with the novel OSBPL7 (oxysterol-binding protein-like 7) c.651_652del variant had 17 times higher odds for hypercholesterolemia. Type 2 diabetes patients on medication and those with PCSK9 (proprotein convertase subtilisin/kexin type 9) rs151193009 had low odds for hypercholesterolemia. Genetic predisposition can interact with non-genetic factors to increase hypercholesterolemia risk in Malaysian Malays. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

11 pages, 1528 KiB  
Communication
Essential Domains of Oxysterol-Binding Protein Required for Poliovirus Replication
by Minetaro Arita
Viruses 2022, 14(12), 2672; https://doi.org/10.3390/v14122672 - 29 Nov 2022
Cited by 4 | Viewed by 2407
Abstract
Oxysterol-binding protein (OSBP) is a host factor required for enterovirus (EV) replication. OSBP locates at membrane contact site and acts as a lipid exchanger of cholesterol and phosphatidylinositol 4-phosphate (PI4P) between cellular organelles; however, the essential domains required for the viral replication remain [...] Read more.
Oxysterol-binding protein (OSBP) is a host factor required for enterovirus (EV) replication. OSBP locates at membrane contact site and acts as a lipid exchanger of cholesterol and phosphatidylinositol 4-phosphate (PI4P) between cellular organelles; however, the essential domains required for the viral replication remain unknown. In this study, we define essential domains of OSBP for poliovirus (PV) replication by a functional dominance assay with a series of deletion variants of OSBP. We show that the pleckstrin homology domain (PHD) and the ligand-binding domain, but not the N-terminal intrinsically disordered domain, coiled-coil region, or the FFAT motif, are essential for PV replication. The PHD serves as the primary determinant of OSBP targeting to the replication organelle in the infected cells. These results suggest that not all the domains that support important biological functions of OSBP are essential for the viral replication. Full article
(This article belongs to the Special Issue Viral-Host Cell Interactions of Animal Viruses)
Show Figures

Figure 1

14 pages, 7341 KiB  
Article
Diverse Sphingolipid Species Harbor Different Effects on Ire1 Clustering
by Mark A. Bieniawski, Kofi L. P. Stevens, Christopher M. Witham, Robert F. L. Steuart, Vytas A. Bankaitis and Carl J. Mousley
Int. J. Mol. Sci. 2022, 23(20), 12130; https://doi.org/10.3390/ijms232012130 - 12 Oct 2022
Cited by 3 | Viewed by 1868
Abstract
Endoplasmic reticulum (ER) function is dedicated to multiple essential processes in eukaryotes, including the processing of secretory proteins and the biogenesis of most membrane lipids. These roles implicate a heavy burden to the organelle, and it is thus prone to fluctuations in the [...] Read more.
Endoplasmic reticulum (ER) function is dedicated to multiple essential processes in eukaryotes, including the processing of secretory proteins and the biogenesis of most membrane lipids. These roles implicate a heavy burden to the organelle, and it is thus prone to fluctuations in the homeostasis of molecules which govern these processes. The unfolded protein response (UPR) is a general ER stress response tasked with maintaining the ER for optimal function, mediated by the master activator Ire1. Ire1 is an ER transmembrane protein that initiates the UPR, forming characteristic oligomers in response to irregularities in luminal protein folding and in the membrane lipid environment. The role of lipids in regulating the UPR remains relatively obscure; however, recent research has revealed a potent role for sphingolipids in its activity. Here, we identify a major role for the oxysterol-binding protein Kes1, whose activity is of consequence to the sphingolipid profile in cells resulting in an inhibition of UPR activity. Using an mCherry-tagged derivative of Ire1, we observe that this occurs due to inhibition of Ire1 to form oligomers. Furthermore, we identify that a sphingolipid presence is required for Ire1 activity, and that specific sphingolipid profiles are of major consequence to Ire1 function. In addition, we highlight cases where Ire1 oligomerization is absent despite an active UPR, revealing a potential mechanism for UPR induction where Ire1 oligomerization is not necessary. This work provides a basis for the role of sphingolipids in controlling the UPR, where their metabolism harbors a crucial role in regulating its onset. Full article
Show Figures

Figure 1

19 pages, 4248 KiB  
Article
Hepatocyte-Derived Prostaglandin E2-Modulated Macrophage M1-Type Polarization via mTOR-NPC1 Axis-Regulated Cholesterol Transport from Lysosomes to the Endoplasmic Reticulum in Hepatitis B Virus x Protein-Related Nonalcoholic Steatohepatitis
by You Lan, Bo Qian, Hai-Yan Huang, Pan Wang, Ting Li, Qi Yuan, Han-Yu Zhang, Yu-Chun Lin and Zhong-Ning Lin
Int. J. Mol. Sci. 2022, 23(19), 11660; https://doi.org/10.3390/ijms231911660 - 1 Oct 2022
Cited by 11 | Viewed by 4314
Abstract
Lipid metabolic dysregulation and liver inflammation have been reported to be associated with nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unclear. Hepatitis B virus x protein (HBx) is a risk factor for NASH. Based on metabolomic and transcriptomic screens and public database [...] Read more.
Lipid metabolic dysregulation and liver inflammation have been reported to be associated with nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unclear. Hepatitis B virus x protein (HBx) is a risk factor for NASH. Based on metabolomic and transcriptomic screens and public database analysis, we found that HBx-expressing hepatocyte-derived prostaglandin E2 (PGE2) induced macrophage polarization imbalance via prostaglandin E2 receptor 4 (EP4) through in vitro, ex vivo, and in vivo models. Here, we revealed that the M1-type polarization of macrophages induced by endoplasmic reticulum oxidoreductase-1-like protein α (ERO1α)-dependent endoplasmic reticulum stress was associated with the HBx-related hepatic NASH phenotype. Mechanistically, HBx promoted Niemann–Pick type C1 (NPC1)/oxysterol-binding protein-related protein 5 (ORP5)-mediated cholesterol transport from the lysosome to the endoplasmic reticulum via mammalian target of rapamycin (mTOR) activation. This study provides a novel basis for screening potential biomarkers in the macrophage mTOR–cholesterol homeostasis–polarization regulatory signaling pathway and evaluating targeted interventions for HBx-associated NASH. Full article
(This article belongs to the Special Issue Study of Endoplasmic Reticulum Stress and Unfolded Protein Response)
Show Figures

Figure 1

27 pages, 1222 KiB  
Review
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance
by Mai K. L. Nguyen, Jaimy Jose, Mohamed Wahba, Marc Bernaus-Esqué, Andrew J. Hoy, Carlos Enrich, Carles Rentero and Thomas Grewal
Int. J. Mol. Sci. 2022, 23(13), 7206; https://doi.org/10.3390/ijms23137206 - 29 Jun 2022
Cited by 21 | Viewed by 5240
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. [...] Read more.
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance. Full article
(This article belongs to the Special Issue Attacking Cancer Progression and Metastasis 3.0)
Show Figures

Figure 1

14 pages, 3225 KiB  
Article
Interleukin-1 Induces the Release of Lubricating Phospholipids from Human Osteoarthritic Fibroblast-like Synoviocytes
by Vishnu Thottakkattumana Parameswaran, Christiane Hild, Gerrit Eichner, Bernd Ishaque, Markus Rickert and Juergen Steinmeyer
Int. J. Mol. Sci. 2022, 23(5), 2409; https://doi.org/10.3390/ijms23052409 - 22 Feb 2022
Cited by 8 | Viewed by 2964
Abstract
(1) Background: Synovial fluid (SF) from knee joints with osteoarthritis (OA) has increased levels of phospholipids (PL). We have reported earlier that TGF-ß and IGF-1 stimulate fibroblast-like synoviocytes (FLS) to synthesize increased amounts of PLs. The current study examined whether IL-1ß induces the [...] Read more.
(1) Background: Synovial fluid (SF) from knee joints with osteoarthritis (OA) has increased levels of phospholipids (PL). We have reported earlier that TGF-ß and IGF-1 stimulate fibroblast-like synoviocytes (FLS) to synthesize increased amounts of PLs. The current study examined whether IL-1ß induces the release of PLs in FLS and the underlying mechanism. (2) Methods: Cultured human OA FLS were treated with IL-1ß alone and with pathway inhibitors or with synthetic liver X receptor (LXR) agonists. Cholesterol hydroxylases, ABC transporters, apolipoproteins (APO), LXR, sterol regulatory binding proteins (SREBPs), and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) were analyzed by RT-PCR, Western blot, and ELISA. The release of radiolabeled PLs from FLS was determined, and statistical analysis was performed using R (N = 5–9). (3) Results: Like synthetic LXR agonists, IL-1ß induced a 1.4-fold greater release of PLs from FLS. Simultaneously, IL-1ß upregulated the level of the PL transporter ABCA1 and of cholesterol hydroxylases CH25H and CYP7B1. IL-1ß and T0901317 stimulated the expression of SREBP1c, whereas only T0901317 enhanced SREBP2, HMGCR, APOE, LXRα, and ABCG1 additionally. (4) Conclusions: IL-1ß partially controls PL levels in OA-SF by affecting the release of PLs from FLS. Our data show that IL-1ß upregulates cholesterol hydroxylases and thus the formation of oxysterols, which, as natural agonists of LXR, increase the level of active ABCA1, in turn enhancing the release of PLs. Full article
(This article belongs to the Special Issue New Advances in Osteoarthritis)
Show Figures

Figure 1

20 pages, 12140 KiB  
Article
Potential Prognostic Biomarkers of OSBPL Family Genes in Patients with Pancreatic Ductal Adenocarcinoma
by Cheng-Wei Chou, Yu-Hsiu Hsieh, Su-Chi Ku, Wan-Jou Shen, Gangga Anuraga, Hoang Dang Khoa Ta, Kuen-Haur Lee, Yu-Cheng Lee, Cheng-Hsien Lin, Chih-Yang Wang and Wei-Jan Wang
Biomedicines 2021, 9(11), 1601; https://doi.org/10.3390/biomedicines9111601 - 3 Nov 2021
Cited by 18 | Viewed by 3849
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with poor survival outcomes. In addition, oxysterol-binding protein-like (OSBPL) family members are reported to be involved in lipid binding and transport and play critical roles in tumorigenesis. However, relationships between PDAC and OSBPL family [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with poor survival outcomes. In addition, oxysterol-binding protein-like (OSBPL) family members are reported to be involved in lipid binding and transport and play critical roles in tumorigenesis. However, relationships between PDAC and OSBPL family members have not comprehensively been elucidated. In this study, we used the Oncomine and GEPIA 2 databases to analyze OSBPL transcription expressions in PDAC. The Kaplan–Meier plotter and TIMER 2.0 were used to assess the relationships between overall survival (OS) and immune-infiltration with OSBPL family members. Co-expression data from cBioPortal were downloaded to assess the correlated pathways with OSBPL gene family members using DAVID. The expressions of OSBPL3, OSBPL8, OSBPL10, and OSBPL11 were found to be highly upregulated in PDAC. Low expressions of OSBPL3, OSBPL8, and OSBPL10 indicated longer OS. The functions of OSBPL family members were mainly associated with several potential signaling pathways in cancer cells, including ATP binding, integrin binding, receptor binding, and the renin-angiotensin system (RAS) signaling pathway. The transcription levels of OSBPL gene family members were connected with several immune infiltrates. Collectively, OSBPL family members are influential biomarkers for the early diagnosis of PDAC and have prognostic value, with the promise of precise treatment of PDAC in the future. Full article
Show Figures

Figure 1

13 pages, 2492 KiB  
Article
Changes in Honey Bee Head Proteome in Response to Dietary 24-Methylenecholesterol
by Priyadarshini Chakrabarti and Ramesh R. Sagili
Insects 2020, 11(11), 743; https://doi.org/10.3390/insects11110743 - 29 Oct 2020
Cited by 7 | Viewed by 4195
Abstract
Phytosterols are important micronutrients that are precursors of important molting hormones and help maintain cellular membrane integrity in insects including bees. Previous research has shown that 24-methylenecholesterol is a key phytosterol that enhances honey bee longevity and improves nurse bee physiology. Nurse bees [...] Read more.
Phytosterols are important micronutrients that are precursors of important molting hormones and help maintain cellular membrane integrity in insects including bees. Previous research has shown that 24-methylenecholesterol is a key phytosterol that enhances honey bee longevity and improves nurse bee physiology. Nurse bees have the ability to selectively transfer this sterol to developing larvae through brood food. This study examines the physiological impacts of 24-methylenecholesterol on nurse bees, by analyzing the protein profiles of nurse bee heads upon dietary sterol manipulation. Dietary experimental groups consisting of newly emerged honey bees were provided with varying concentrations of 24-methylenecholesterol for three weeks. At the end of the study, honey bees were collected and proteomic analysis was performed on honey bee heads. A total of 1715 proteins were identified across experimental groups. The mean relative abundances of nutritional marker proteins (viz. major royal jelly proteins 1, 4, 5, 7) were higher in experimental groups supplemented with higher dietary sterol concentrations, when compared with the control dietary group. The mean relative abundances of important enzymatic proteins (aminopeptidase and calcium-transporting ATPase) were higher in control groups, whereas mean relative abundances of oxysterol-binding protein and fatty acid-binding protein were higher in higher dietary sterol groups. Full article
(This article belongs to the Special Issue Honey Bee Nutrition)
Show Figures

Graphical abstract

Back to TopTop