Fungicide Resistance Dynamics: Knowledge from Downy Mildew Management in Japanese Vineyards
Abstract
:1. Introduction
2. Chronology and Effectiveness of Fungicides in Japan Viticulture
3. QoI Fungicide Resistance
4. CAA Fungicide Resistance
5. Oxathiapiprolin Fungicide Resistance
6. IPM and Monitoring Fungicide Resistance in Obligate Plant Pathogens
7. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
QoI | quinone outer inhibitor |
QiI | quinone inner inhibitor |
CAA | carboxylic acid amide |
OSBPI | oxysterol-binding protein inhibitor |
FRAC | Fungicide Resistance Action Committee |
References
- Polesani, M.; Desario, F.; Ferrarini, A.; Zamboni, A.; Pezzotti, M.; Kortekamp, A.; Polverari, A. cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genom. 2008, 9, 142. [Google Scholar] [CrossRef]
- Kennelly, M.M.; Gadoury, D.M.; Wilcox, W.F.; Magarey, P.A.; Seem, R.C. Primary infection, lesion productivity, and survival of sporangia in the grapevine downy mildew pathogen Plasmopara viticola. Phytopathology 2007, 97, 512–522. [Google Scholar] [PubMed]
- Yano, R. Ecology and control of grapevine mildew. Plant Protect. 1976, 30, 275–279. (In Japanese) [Google Scholar]
- Peng, Q.; Wang, Z.; Fang, Y.; Wang, W.; Cheng, X.; Liu, X. Point mutations in the β-tubulin of Phytophthora sojae confer resistance to ethaboxam. Phytopathology 2019, 109, 2096–2106. [Google Scholar] [CrossRef]
- Clerjeau, M.; Simone, J. Apparition en France de souches de mildiou (Plasmopara viticola) resistantes aux fongicides de la famille des anilides (metalaxyl, milfurame) [vigne]. Progrès Agric. Vitic. 1982, 99, 59–61. [Google Scholar]
- Watauchi, K. Use of betofighter granule hydrate for control of grapevine downy mildew in Yamanashi Prefecture. Agchem. Age 2012, 193, 1–4. (In Japanese) [Google Scholar]
- Tsuguti, H.; Seino, N.; Kawase, H.; Imada, Y.; Nakaegawa, T.; Takayabu, I. Meteorological overview and mesoscale characteristics of the heavy rain event of July 2018 in Japan. Landslides 2019, 16, 363–371. [Google Scholar]
- Aoki, Y.; Usujima, A.; Suzuki, S. High night temperature promotes downy mildew in grapevine via attenuating plant defense response and enhancing early Plasmopara viticola infection. Plant Prot. Sci. 2021, 57, 21–30. [Google Scholar]
- Heaney, S.P.; Hall, A.A.; Davies, S.A.; Olaya, G. Resistance to fungicides in the Qol-STAR cross-resistance group: Current perspectives. BCPC Conf. Pests Dis. 2000, 2, 755–762. [Google Scholar]
- Watauchi, K.; Murakami, Y.; Uchida, K.; Kunugi, Y. Occurrence of Qol fungicide-resistant strains of Plasmoparaviticola, in Yamanashi prefecture. Bull. Yamanashi Fruit Tree Exp. Stn. 2015, 14, 39–47. (In Japanese) [Google Scholar]
- Furuya, S.; Mochizuki, M.; Saito, S.; Kobayashi, H.; Takayanagi, T.; Suzuki, S. Monitoring of QoI fungicide resistance in Plasmopara viticola populations in Japan. Pest Manag. Sci. 2010, 66, 1268–1272. [Google Scholar]
- Fernández-Ortuño, D.; Torés, J.A.; De Vicente, A.; Pérez-García, A. Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. Int. Microbiol. 2008, 11, 1–9. [Google Scholar]
- Gisi, U. Chemical control of downy mildews. In Advances in Downy Mildew Research; Spencer-Phillips, P.T.N., Gisi, U., Lebeda, A., Eds.; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2002; pp. 119–159. [Google Scholar]
- Furuya, S.; Suzuki, S.; Kobayashi, H.; Saito, S.; Takayanagi, T. Rapid method for detecting resistance to a QoI fungicide in Plasmopara viticola populations. Pest Manag. Sci. 2009, 65, 840–843. [Google Scholar]
- Wong, F.P.; Wilcox, W.F. Distribution of baseline sensitivities to azoxystrobin among isolates of Plasmopara viticola. Plant Dis. 2000, 84, 275–281. [Google Scholar]
- Aoki, Y.; Kasai, Y.; Ikehara, S.; Sasada, T.; Suzuki, S. Monitoring QoI fungicide resistance in Plasmopara viticola populations in Hokkaido. J. ASEV Jpn. 2018, 29, 113–118. [Google Scholar]
- Damicone, J.; Smith, D. Fungicide Resistance Management. Oklahoma Cooperative Extension Service. 2017. Available online: https://extension.okstate.edu/fact-sheets/fungicide-resistance-management.html (accessed on 25 September 2024).
- Genet, J.L.; Jaworska, G.; Deparis, F. Effect of dose rate and mixtures of fungicides on selection for QoI resistance in populations of Plasmopara viticola. Pest Manag. Sci. 2006, 62, 188–194. [Google Scholar]
- Gisi, U.; Sierotzki, H. Fungicide modes of action and resistance in downy mildews. In The Downy Mildews-Genetics, Molecular Biology and Control; Lebeda, A., Spencer-Phillips, P.T.N., Cooke, B.M., Eds.; Springer: Berlin, Germany, 2008; pp. 157–167. [Google Scholar]
- Chabane, K.; Leroux, P.; Maia, N.; Bompeix, G. Resistance to dimethomorph in laboratory mutants of Phytophthora parasitica. In Modern Fungicides and Antifungal Compounds; Lyr, H., Russell, P.E., Sisler, H.D., Eds.; Intercept Limited: Andover, UK, 1996; pp. 387–391. [Google Scholar]
- Giraud, F.; Bleunven, M.; Evers, D.; Molitor, D. CAA and QoI Resistance Profiles of Plasmopara viticola Pathogen populations in the Luxembourgish Winegrowing Region. In Proceedings of the 10e Conférence Internationale sur les Maladies des Plantes, Tours, France, 3–5 December 2012. [Google Scholar]
- Sawant, S.D.; Ghule, M.R.; Sawant, I.S. Occurrence of CAA fungicide resistance and detection of G1105S mutation in Plasmopara viticola isolates from vineyards in Sangli, Maharashtra, India. Plant Dis. 2017, 101, 259. [Google Scholar]
- Zhang, H.; Kong, F.; Wang, X.; Liang, L.; Schoen, C.D.; Feng, J.; Wang, Z. Tetra-primer ARMS PCR for rapid detection and characterisation of Plasmopara viticola phenotypes resistant to carboxylic acid amide fungicides. Pest Manag. Sci. 2017, 73, 1655–1660. [Google Scholar]
- Gisi, U.; Waldner, M.; Kraus, N.; Dubuis, P.H.; Sierotzki, H. Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola. Plant Pathol. 2007, 56, 199–208. [Google Scholar]
- Protocol of the Discussions and Recommendations of the CAA Working Group of the FRAC. 2011. Available online: https://www.frac.info/docs/default-source/working-groups/caa-fungicides/archiv/minutes-of-the-2011-caa-meeting-recommendations-for-2012.pdf?sfvrsn=be96419a_8 (accessed on 2 September 2024).
- Aoki, Y.; Furuya, S.; Suzuki, S. Method for rapid detection of the PvCesA3 gene allele conferring resistance to mandipropamid, a carboxylic acid amide fungicide, in Plasmopara viticola populations. Pest Manag. Sci. 2011, 67, 1557–1561. [Google Scholar]
- Aoki, Y.; Hada, Y.; Suzuki, S. Development of a multiplex allele-specific primer PCR assay for simultaneous detection of QoI and CAA fungicide resistance alleles in Plasmopara viticola populations. Pest Manag. Sci. 2013, 69, 268–273. [Google Scholar] [PubMed]
- Blum, M.; Waldner, M.; Gisi, U. A single point mutation in the novel PvCesA3 gene confers resistance to the carboxylic acid amide fungicide mandipropamid in Plasmopara viticola. Fungal Genet. Biol. 2010, 47, 499–510. [Google Scholar] [CrossRef]
- Aoki, Y.; Kawagoe, Y.; Fujimori, N.; Tanaka, S.; Suzuki, S. Monitoring of a single point mutation in the PvCesA3 allele conferring resistance to carboxylic acid amide fungicides in Plasmopara viticola populations in Yamanashi Prefecture, Japan. Plant Health Prog. 2015, 16, 84–87. [Google Scholar] [CrossRef]
- Aoki, Y. Personal Communication; University of Yamanashi: Yamanashi, Japan, 2024. [Google Scholar]
- Miao, J.; Cai, M.; Dong, X.; Liu, L.; Lin, D.; Zhang, C.; Pang, Z.; Liu, X. Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W) in PcORP1 that confers resistance. Front. Microbiol. 2016, 7, 615. [Google Scholar] [CrossRef]
- Bittner, R.J.; Sweigard, J.A.; Mila, A.L. Assessing the resistance potential of Phytophthora nicotianae, the causal agent of black shank of tobacco, to oxathiopropalin with laboratory mutants. Crop Prot. 2017, 102, 63–71. [Google Scholar] [CrossRef]
- Pintye, A.; Németh, M.Z.; Molnar, O.; Horváth, Á.N.; Spitzmüller, Z.; Szalóki, N.; Pál, K.; Vaczy, K.Z.; Kovacs, G.M. Improved DNA extraction and quantitative real-time PCR for genotyping Erysiphe necator and detecting the DMI fungicide resistance marker A495T, using single ascocarps. Phytopathol. Mediterr. 2020, 59, 97–106. [Google Scholar] [CrossRef]
- Miles, T.D.; Neill, T.M.; Colle, M.; Warneke, B.; Robinson, G.; Stergiopoulos, I.; Mahaffee, W.F. Allele-specific detection methods for QoI fungicide-resistant Erysiphe necator in vineyards. Plant Dis. 2021, 105, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Massi, F.; Torriani, S.F.; Waldner-Zulauf, M.; Bianco, P.A.; Coatti, M.; Borsa, P.; Borghi, L.; Toffolatti, S.L. Characterization of Italian Plasmopara viticola populations for resistance to oxathiapiprolin. Pest Manag. Sci. 2023, 79, 1243–1250. [Google Scholar] [CrossRef]
- Mboup, M.K.; Sweigard, J.W.; Carroll, A.; Jaworska, G.; Genet, J.L. Genetic mechanism, baseline sensitivity and risk of resistance to oxathiapiprolin in oomycetes. Pest Manag. Sci. 2022, 78, 905–913. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. 1966. Available online: https://www.fao.org/agriculture/crops/thematic-sitemap/theme/compendium/tools-guidelines/what-is-ipm/en/ (accessed on 2 September 2024).
- Furuya, S.; Mochizuki, M.; Aoki, Y.; Kobayashi, H.; Takayanagi, T.; Shimizu, M.; Suzuki, S. Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol. Sci. Technol. 2011, 21, 705–720. [Google Scholar] [CrossRef]
- Mochizuki, M.; Yamato, S.; Aoki, Y.; Suzuki, S. Isolation and characterization of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gleosporiodes. Biocontrol. Sci. Technol. 2012, 22, 697–709. [Google Scholar]
- Hamaoka, K.; Aoki, Y.; Suzuki, S. Isolation and characterization of endophyte Bacillus velezensis KOF112 from grapevine shoot xylem as biological control agent for fungal diseases. Plants 2021, 10, 1815. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A. Drug resistance management and development of new fungicides and insecticides for sustainable pest control. Plant Protect. 2017, 71, 337–346. (In Japanese) [Google Scholar]
- Toffolatti, S.L.; Lecchi, B.; Maddalena, G.; Marcianò, D.; Stuknytė, M.; Arioli, S.; Mora, D.; Bianco, P.A.; Borsa, P.; Coatti, M.; et al. The management of grapevine downy mildew: From anti-resistance strategies to innovative approaches for fungicide resistance monitoring. J. Plant Dis. Prot. 2024, 131, 1225–1232. [Google Scholar]
Year | Chemical |
---|---|
1899 | Bordeaux mixture |
1969 | mancozeb |
manneb | |
1972 | dithianon |
captan | |
1983 | fosetyl-aluminium |
1986 | metalaxyl |
1990 | fluazinam |
1997 | famoxadone |
dimethomorph | |
2001 | azoxystrobin |
2007 | benthiavalicarb-isopropyl |
2009 | mandipropamid |
2012 | fluopicolide |
ethaboxam | |
2019 | oxathiapiprolin |
Month | Chemical | Disease |
---|---|---|
April | cyazofamid/chlorothalonil | anthracnose |
downy mildew | ||
ripe rot | ||
tebuconazole | powdery mildew | |
May | captan | anthracnose |
downy mildew | ||
ripe rot | ||
gray mold | ||
fluazinam | anthracnose | |
downy mildew | ||
ripe rot | ||
gray mold | ||
metalaxyl/mancozeb | downy mildew | |
June | athiapiprolin/mancozeb | downy mildew |
ripe rot | ||
ethaboxam | downy mildew | |
mandipropamid | downy mildew | |
July | Bordeaux mixture | anthracnose |
downy mildew | ||
ripe rot | ||
leaf rust | ||
cyazofamid | downy mildew | |
August | Bordeaux mixture | anthracnose |
downy mildew | ||
ripe rot | ||
leaf rust |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoki, Y.; Suzuki, S. Fungicide Resistance Dynamics: Knowledge from Downy Mildew Management in Japanese Vineyards. Agriculture 2025, 15, 714. https://doi.org/10.3390/agriculture15070714
Aoki Y, Suzuki S. Fungicide Resistance Dynamics: Knowledge from Downy Mildew Management in Japanese Vineyards. Agriculture. 2025; 15(7):714. https://doi.org/10.3390/agriculture15070714
Chicago/Turabian StyleAoki, Yoshinao, and Shunji Suzuki. 2025. "Fungicide Resistance Dynamics: Knowledge from Downy Mildew Management in Japanese Vineyards" Agriculture 15, no. 7: 714. https://doi.org/10.3390/agriculture15070714
APA StyleAoki, Y., & Suzuki, S. (2025). Fungicide Resistance Dynamics: Knowledge from Downy Mildew Management in Japanese Vineyards. Agriculture, 15(7), 714. https://doi.org/10.3390/agriculture15070714