Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = oxidized carbon nanohorns

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7568 KiB  
Article
Carbon Nano-Onions–Polyvinyl Alcohol Nanocomposite for Resistive Monitoring of Relative Humidity
by Bogdan-Catalin Serban, Niculae Dumbravescu, Octavian Buiu, Marius Bumbac, Carmen Dumbravescu, Mihai Brezeanu, Cristina Pachiu, Cristina-Mihaela Nicolescu, Cosmin Romanitan and Oana Brincoveanu
Sensors 2025, 25(10), 3047; https://doi.org/10.3390/s25103047 - 12 May 2025
Viewed by 599
Abstract
This paper reports several preliminary investigations concerning the relative humidity (RH) detection response of a chemiresistive sensor that uses a novel sensing layer based on pristine carbon nano-onions (CNOs) and polyvinyl alcohol (PVA) at a 1/1 and 2/1 w/w ratio. The [...] Read more.
This paper reports several preliminary investigations concerning the relative humidity (RH) detection response of a chemiresistive sensor that uses a novel sensing layer based on pristine carbon nano-onions (CNOs) and polyvinyl alcohol (PVA) at a 1/1 and 2/1 w/w ratio. The sensing device, including a Si/SiO2 substrate and gold electrodes, is obtained by depositing the CNOs–PVA aqueous suspension on the sensing structure by drop casting. The composition and morphology of the sensing film are explored by means of scanning electron microscopy, Raman spectroscopy, atomic force microscopy, and X-ray diffraction. The manufactured sensor’s room temperature RH detection performance is examined by applying a continuous flow of the electric current between the interdigitated electrodes and measuring the voltage as the RH varies from 5% to 95%. For RH below 82% (sensing layer based on CNOs–PVA at 1/1 w/w ratio) or below 50.5% (sensing layer based on CNOs–PVA at 2/1 w/w ratio), the resistance varies linearly with RH, with a moderate slope. The newly developed sensor, using CNOs–PVA at a 1:1 ratio (w/w), responded as well as or better than the reference sensor. At the same time, the recorded recovery time was about 30 s, which is half the recovery time of the reference sensor. Additionally, the changes in resistance (ΔR/ΔRH) for different humidity levels showed that the CNOs–PVA layer at 1:1 was more sensitive at humidity levels above 80%. The main RH sensing mechanisms considered and discussed are the decrease in the hole concentration in the CNOs during the interaction with an electron donor molecule, such as water, and the swelling of the hydrophilic PVA. The experimental RH detection data are analyzed and compared with the RH sensing results reported in previously published work on RH detectors employing sensing layers based on oxidized carbon nanohorns–polyvinylpirrolidone (PVP), oxidized carbon nanohorns–PVA and CNOs–polyvinylpyrrolidone. Full article
Show Figures

Figure 1

17 pages, 5079 KiB  
Article
Holey Carbon Nanohorns-Based Nanohybrid as Sensing Layer for Resistive Ethanol Sensor
by Bogdan-Catalin Serban, Niculae Dumbravescu, Octavian Buiu, Marius Bumbac, Mihai Brezeanu, Cristina Pachiu, Cristina-Mihaela Nicolescu, Oana Brancoveanu and Cornel Cobianu
Sensors 2025, 25(5), 1299; https://doi.org/10.3390/s25051299 - 20 Feb 2025
Cited by 1 | Viewed by 670
Abstract
The study presents the ethanol vapor sensing performance of a resistive sensor that utilizes a quaternary nanohybrid sensing layer composed of holey carbon nanohorns (CNHox), graphene oxide (GO), SnO2, and polyvinylpyrrolidone (PVP) in an equal mass ratio of 1:1:1:1 (w [...] Read more.
The study presents the ethanol vapor sensing performance of a resistive sensor that utilizes a quaternary nanohybrid sensing layer composed of holey carbon nanohorns (CNHox), graphene oxide (GO), SnO2, and polyvinylpyrrolidone (PVP) in an equal mass ratio of 1:1:1:1 (w/w/w/w). The sensing device includes a flexible polyimide substrate and interdigital transducer (IDT)-like electrodes. The sensing film is deposited by drop-casting on the sensing structure. The morphology and composition of the sensitive film are analyzed using scanning electron microscopy (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, and Raman spectroscopy. The manufactured resistive device presents good sensitivity to concentrations of alcohol vapors varying in the range of 0.008–0.16 mg/cm3. The resistance of the proposed sensing structure increases over the entire range of measured ethanol concentration. Different types of sensing mechanisms are recognized. The decrease in the hole concentration in CNHox, GO, and CNHox due to the interaction with ethanol vapors, which act as electron donors, and the swelling of the PVP are plausible and seem to be the prevalent sensing pathway. The hard–soft acid-base (HSAB) principle strengthens our analysis. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Figure 1

16 pages, 8086 KiB  
Article
Ratiometric Electrochemical Sensor Applying SWCNHs/T-PEDOT Nanocomposites for Efficient Quantification of Tert-Butylhydroquinone in Foodstuffs
by Jing Wu, Huilin Li, Zhijuan Wang, Mingfei Pan and Shuo Wang
Foods 2024, 13(18), 2996; https://doi.org/10.3390/foods13182996 - 21 Sep 2024
Viewed by 1333
Abstract
Tert-butylhydroquinone (TBHQ) is a phenolic substance that is commonly employed to prevent food oxidation. Excessive or improper utilization of this antioxidant can not only impact food quality but may also pose potential risks to human health. In this study, an ultrasensitive, stable, [...] Read more.
Tert-butylhydroquinone (TBHQ) is a phenolic substance that is commonly employed to prevent food oxidation. Excessive or improper utilization of this antioxidant can not only impact food quality but may also pose potential risks to human health. In this study, an ultrasensitive, stable, and easily operable ratiometric electrochemical sensor was successfully fabricated by combining the tubular (3,4-ethylenedioxythiophene) (T-PEDOT) with single-wall carbon nanohorns (SWCNHs) for the detection of TBHQ antioxidants in food. The SWCNHs/T-PEDOT nanocomposite fabricated through ultrasound-assisted and template approaches was employed as the modified substrate for the electrode interface. The synergistic effect of SWCNHs and T-PEDOT, which possess excellent electrical conductivity and catalytic properties, enabled the modified electrode to showcase remarkable electrocatalytic performance towards TBHQ, with the redox signal of methylene blue serving as an internal reference. Under optimized conditions, the SWCNHs/T-PEDOT-modified electrode demonstrated good linearity within the TBHQ concentration range of 0.01–200.0 μg mL−1, featuring a low limit of detection (LOD) of 0.005 μg mL−1. The proposed ratiometric electrochemical sensor displayed favorable reproducibility, stability, and anti-interference capacity, thereby offering a promising strategy for monitoring the levels of TBHQ in oil-rich food products. Full article
(This article belongs to the Special Issue Sensors for Food Safety and Quality Assessment (2nd Edition))
Show Figures

Figure 1

13 pages, 3701 KiB  
Article
Rheological Behavior of an Aqueous Suspension of Oxidized Carbon Nanohorn (CNHox)
by Ayumi Moteki and Motoyoshi Kobayashi
Nanomaterials 2024, 14(15), 1247; https://doi.org/10.3390/nano14151247 - 25 Jul 2024
Cited by 2 | Viewed by 1625
Abstract
Oxidized carbon nanohorn (CNHox) a carbon nanomaterial that has attracted attention due to its unique material properties. It is expected to be applied in various areas like cancer treatment, gene-expression technology, fluids with high thermal conductivity, lubricants, and so on. While the rheological [...] Read more.
Oxidized carbon nanohorn (CNHox) a carbon nanomaterial that has attracted attention due to its unique material properties. It is expected to be applied in various areas like cancer treatment, gene-expression technology, fluids with high thermal conductivity, lubricants, and so on. While the rheological measurements of suspensions provide information on the effective size and interactions of suspended particles, the rheological behaviors of aqueous suspensions of CNHox have never been systematically investigated. To clarify the rheological behaviors of aqueous suspensions of CNHox, their viscosity and dynamic viscoelasticity were measured with changing particle concentration and salt concentration. The viscosity of a CNHox suspension showed yield stress at low shear rates and showed shear-thinning behavior with increasing shear rates. The viscosity of 5 weight % CNHox suspensions was comparable to that of 60 weight % silica suspensions. This high viscosity at a low CNHox concentration is probably due to the porous structure and large effective volume of the CNHox particle. The estimated effective volume of CNHox calculated by the Krieger−Dougherty equation was 18.9 times larger than the actual volume calculated by the mass concentration and density. The dependence of rheological behavior of the CNHox suspension on salt concentration was weak compared to that of the colloidal silica suspension. This weak dependence on salt concentration may be due to the roughness of the particle surface, which would weaken the effect of electric double-layer interactions and/or van der Waals interactions between particles. These rheological behaviors of the aqueous suspension of CNHox shown in this research will be useful in efforts to improve the efficiency of its utilization for the various applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

12 pages, 3405 KiB  
Article
Novel Enzyme-Assisted Recycle Amplification Strategy for Tetracycline Detection Based on Oxidized Single-Walled Carbon Nanohorns
by Tingting Feng, Shuzhu Yan and Yu Huang
Molecules 2024, 29(7), 1444; https://doi.org/10.3390/molecules29071444 - 23 Mar 2024
Cited by 2 | Viewed by 1045
Abstract
In this study, oxidized single-walled carbon nanohorns (oxSWCNHs) were prepared using nitric acid oxidation and subsequently combined with 3′6-carboxyfluorescein through charge transfer to prepare fluorescent probes. These oxSWCNHs were used to quench fluorogen signals at short distances and dissociate ssDNA using cryonase enzymes. [...] Read more.
In this study, oxidized single-walled carbon nanohorns (oxSWCNHs) were prepared using nitric acid oxidation and subsequently combined with 3′6-carboxyfluorescein through charge transfer to prepare fluorescent probes. These oxSWCNHs were used to quench fluorogen signals at short distances and dissociate ssDNA using cryonase enzymes. We established a method for rapidly detecting tetracycline (TC) in complex samples based on the amplification of cryonase enzyme signals. After optimizing the experimental conditions, our method showed a detection limit of 5.05 ng/mL, with good specificity. This method was used to determine the TC content in complex samples, yielding a recovery rate of 90.0–103.3%. This result validated the efficacy of our method in detecting TC content within complex samples. Full article
Show Figures

Figure 1

16 pages, 4615 KiB  
Article
The Effect of Lysozyme on the Aggregation and Charging of Oxidized Carbon Nanohorn (CNHox) in Aqueous Solution
by Zhengjian Tian, Maolin Li, Takuya Sugimoto and Motoyoshi Kobayashi
Appl. Sci. 2024, 14(6), 2645; https://doi.org/10.3390/app14062645 - 21 Mar 2024
Cited by 3 | Viewed by 1407
Abstract
To clarify the effect of proteins on the charging and aggregation–dispersion characteristics of oxidized carbon nanohorn (CNHox), we measured the electrophoretic mobility and stability ratios as a function of concentrations of a model protein, lysozyme (LSZ), and KCl. The zeta potential from the [...] Read more.
To clarify the effect of proteins on the charging and aggregation–dispersion characteristics of oxidized carbon nanohorn (CNHox), we measured the electrophoretic mobility and stability ratios as a function of concentrations of a model protein, lysozyme (LSZ), and KCl. The zeta potential from the electrophoretic mobility of CNHox was neutralized and reversed by the addition of oppositely charged LSZ. Electrical and hydrophobic interactions between CNHox and LSZ can be attributed to the adsorption and charge reversal of CNHox. The stability ratio of CNHox in the presence or absence of LSZ showed Derjaguin–Landau and Verwey–Overbeek (DLVO) theory-like behavior. That is, the slow aggregation regime, fast aggregation regime, and critical coagulation concentration (CCC) were identified. At the isoelectric point, only the fast aggregation regime was shown. The existence of patch-charge attraction due to the charge heterogeneity on the surface was inferred to have happened due to the enhanced aggregation of CNHox at high LSZ dosage and low electrolyte concentration. The relationship between critical coagulation ionic strength and surface charge density at low LSZ dosage showed that the aggregation of CNHox is in line with the DLVO theory. An obvious decrement in the Hamaker constant at high LSZ dosage can probably be found due to an increased interaction of LSZ-covered parts. Full article
(This article belongs to the Special Issue Advances in the Improvement of Colloidal Systems’ Stability)
Show Figures

Figure 1

18 pages, 7658 KiB  
Article
Preparation of Functional Nanoparticles-Loaded Magnetic Carbon Nanohorn Nanocomposites towards Composite Treatment
by Fitriani Jati Rahmania, Yi-Shou Huang, Yitayal Admassu Workie, Toyoko Imae, Anna Kondo, Yukiko Miki, Ritsuko Imai, Takashi Nagai, Hiroshi Nakagawa, Noriyasu Kawai and Kaname Tsutsumiuchi
Nanomaterials 2023, 13(5), 839; https://doi.org/10.3390/nano13050839 - 23 Feb 2023
Cited by 4 | Viewed by 2799
Abstract
Combination therapy for cancer is expected for the synergetic effect of different treatments, and the development of promising carrier materials is demanded for new therapeutics. In this study, nanocomposites including functional nanoparticles (NPs) such as samarium oxide NP for radiotherapy and gadolinium oxide [...] Read more.
Combination therapy for cancer is expected for the synergetic effect of different treatments, and the development of promising carrier materials is demanded for new therapeutics. In this study, nanocomposites including functional nanoparticles (NPs) such as samarium oxide NP for radiotherapy and gadolinium oxide NP as a magnetic resonance imaging agent were synthesized and chemically combined with iron oxide NP-embedded or carbon dot-coating iron oxide NP-embedded carbon nanohorn carriers, where iron oxide NP is a hyperthermia reagent and carbon dot exerts effects on photodynamic/photothermal treatments. These nanocomposites exerted potential for delivery of anticancer drugs (doxorubicin, gemcitabine, and camptothecin) even after being coated with poly(ethylene glycol). The co-delivery of these anticancer drugs played better drug-release efficacy than the independent drug delivery, and the thermal and photothermal procedures enlarged the drug release. Thus, the prepared nanocomposites can be expected as materials to develop advanced medication for combination treatment. Full article
(This article belongs to the Special Issue Plasmonic and Magnetic Nanoparticles for Localized-Hyperthermia)
Show Figures

Graphical abstract

17 pages, 4708 KiB  
Article
Role of HIKESHI on Hyperthermia for Castration-Resistant Prostate Cancer and Application of a Novel Magnetic Nanoparticle with Carbon Nanohorn for Magnetic Hyperthermia
by Takashi Nagai, Noriyasu Kawai, Masakazu Gonda, Keitaro Iida, Toshiki Etani, Daichi Kobayashi, Taku Naiki, Aya Naiki-Ito, Ryosuke Ando, Sataro Yamaguchi, Yuto Sugahara, Sakyo Ueno, Kaname Tsutsumiuchi, Toyoko Imae and Takahiro Yasui
Pharmaceutics 2023, 15(2), 626; https://doi.org/10.3390/pharmaceutics15020626 - 13 Feb 2023
Cited by 7 | Viewed by 2770
Abstract
The prognosis of castration-resistant prostate cancer (CRPC) is technically scarce; therefore, a novel treatment for CRPC remains warranted. To this end, hyperthermia (HT) was investigated as an alternative therapy. In this study, the analysis focused on the association between CRPC and heat shock [...] Read more.
The prognosis of castration-resistant prostate cancer (CRPC) is technically scarce; therefore, a novel treatment for CRPC remains warranted. To this end, hyperthermia (HT) was investigated as an alternative therapy. In this study, the analysis focused on the association between CRPC and heat shock protein nuclear import factor “hikeshi (HIKESHI)”, a factor of heat tolerance. Silencing the HIKESHI expression of 22Rv1 cells (human CRPC cell line) treated with siRNAs inhibited the translocation of heat shock protein 70 from the cytoplasm to the nucleus under heat shock and enhanced the effect of hyperthermia. Moreover, a novel magnetic nanoparticle was developed via binding carbon nanohorn (CNH) and iron oxide nanoparticle (IONP) with 3-aminopropylsilyl (APS). Tumor-bearing model mice implanted with 22 Rv1 cells were examined to determine the effect of magnetic HT (mHT). We locally injected CNH-APS-IONP into the tumor, which was set under an alternative magnetic field and showed that tumor growth in the treatment group was significantly suppressed compared with other groups. This study suggests that HIKESHI silencing enhances the sensitivity of 22Rv1 cells to HT, and CNH-APTES-IONP deserves consideration for mHT. Full article
(This article belongs to the Special Issue Nanocarriers for Cancer Therapy and Diagnosis, 2nd Edition)
Show Figures

Figure 1

16 pages, 7618 KiB  
Article
Quaternary Holey Carbon Nanohorns/SnO2/ZnO/PVP Nano-Hybrid as Sensing Element for Resistive-Type Humidity Sensor
by Bogdan-Catalin Serban, Cornel Cobianu, Octavian Buiu, Marius Bumbac, Niculae Dumbravescu, Viorel Avramescu, Cristina Mihaela Nicolescu, Mihai Brezeanu, Cristiana Radulescu, Gabriel Craciun, Cosmin Romanitan and Florin Constantin Comanescu
Coatings 2021, 11(11), 1307; https://doi.org/10.3390/coatings11111307 - 27 Oct 2021
Cited by 8 | Viewed by 2545
Abstract
In this study, a resistive humidity sensor for moisture detection at room temperature is presented. The thin film proposed as a critical sensing element is based on a quaternary hybrid nanocomposite CNHox//SnO2/ZnO/PVP (oxidated carbon nanohorns–tin oxide–zinc oxide–polyvinylpyrrolidone) at the w/ [...] Read more.
In this study, a resistive humidity sensor for moisture detection at room temperature is presented. The thin film proposed as a critical sensing element is based on a quaternary hybrid nanocomposite CNHox//SnO2/ZnO/PVP (oxidated carbon nanohorns–tin oxide–zinc oxide–polyvinylpyrrolidone) at the w/w/w/w ratios of 1.5/1/1/1 and 3/1/1/1. The sensing structure consists of a Si/SiO2 dielectric substrate and interdigitated transducers (IDT) electrodes, while the sensing film layer is deposited through the drop-casting method. Morphology and composition of the sensing layers were investigated through scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction, and Raman spectroscopy. Each quaternary hybrid nanocomposite-based thin film’s relative humidity (RH) sensing capability was analyzed by applying a direct current with known intensity between two electrodes and measuring the voltage difference when varying the RH from 0% to 100% in a humid nitrogen atmosphere. While the sensor with CNHox/SnO2/ZnO/PVP at 1.5/1/1/1 as the sensing layer has the better performance in terms of sensitivity, the structure employing CNHox//SnO2/ ZnO/PVP at 3/1/1/1 (mass ratio) as the sensing layer has a better performance in terms of linearity. The contribution of each component of the quaternary hybrid nanocomposites to the sensing performance is discussed in relation to their physical and chemical properties. Several alternative sensing mechanisms were taken into consideration and discussed. Based on the measured sensing results, we presume that the impact of the p-type semiconductor behavior of CNHox, in conjunction with the swelling of the hydrophilic polymer, is dominant and leads to the overall increasing resistance of the sensing film. Full article
(This article belongs to the Special Issue Surface Modification of Nanostructured Materials)
Show Figures

Figure 1

18 pages, 51705 KiB  
Article
Ternary Holey Carbon Nanohorns/TiO2/PVP Nanohybrids as Sensing Films for Resistive Humidity Sensors
by Bogdan-Catalin Serban, Octavian Buiu, Marius Bumbac, Niculae Dumbravescu, Viorel Avramescu, Mihai Brezeanu, Cristiana Radulescu, Gabriel Craciun, Cristina Mihaela Nicolescu, Cosmin Romanitan and Florin Comanescu
Coatings 2021, 11(9), 1065; https://doi.org/10.3390/coatings11091065 - 3 Sep 2021
Cited by 7 | Viewed by 2445
Abstract
In this paper, we present the relative humidity (RH) sensing response of a chemiresistive sensor, employing sensing layers based on a ternary nanohybrids comprised of holey carbon nanohorns (CNHox), titanium (IV) oxide, and polyvinylpyrrolidone (PVP) at 1/1/1/(T1), 2/1/1/(T2), and with 3/1/1 (T3) mass [...] Read more.
In this paper, we present the relative humidity (RH) sensing response of a chemiresistive sensor, employing sensing layers based on a ternary nanohybrids comprised of holey carbon nanohorns (CNHox), titanium (IV) oxide, and polyvinylpyrrolidone (PVP) at 1/1/1/(T1), 2/1/1/(T2), and with 3/1/1 (T3) mass ratios. The sensing device is comprised of a silicon-based substrate, a SiO2 layer, and interdigitated transducer (IDT) electrodes. The sensitive layer was deposited via the drop-casting method on the sensing structure, followed by a two-step annealing process. The structure and composition of the sensing films were investigated through scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD). The resistance of the ternary nanohybrid-based sensing layer increases when H increases between 0% and 80%. A different behavior of the sensitive layers is registered when the humidity increases from 80% to 100%. Thus, the resistance of the T1 sensor slightly decreases with increasing humidity, while the resistance of sensors T2 and T3 register an increase in resistance with increasing humidity. The T2 and T3 sensors demonstrate a good linearity for the entire (0–100%) RH range, while for T1, the linear behavior is limited to the 0–80% range. Their overall room temperature response is comparable to a commercial humidity sensor, characterized by a good sensitivity, a rapid response, and fast recovery times. The functional role for each of the components of the ternary CNHox/TiO2/PVP nanohybrid is explained by considering issues such as their electronic properties, affinity for water molecules, and internal pore accessibility. The decreasing number of holes in the carbonaceous component at the interaction with water molecules, with the protonic conduction (Grotthus mechanism), and with swelling were analyzed to evaluate the sensing mechanism. The hard–soft acid-base (HSAB) theory also has proven to be a valuable tool for understanding the complex interaction of the ternary nanohybrid with moisture. Full article
(This article belongs to the Special Issue Recent Trends in Coating of Biomaterials)
Show Figures

Figure 1

7 pages, 3107 KiB  
Proceeding Paper
Ternary Oxidized Carbon Nanohorns/TiO2/PVP Nanohybrid as Sensitive Layer for Chemoresistive Humidity Sensor
by Bogdan-Catalin Serban, Octavian Buiu, Marius Bumbac, Roxana Marinescu, Niculae Dumbravescu, Viorel Avramescu, Cornel Cobianu, Cristina Mihaela Nicolescu, Mihai Brezeanu, Cristiana Radulescu and Florin Comanescu
Chem. Proc. 2021, 5(1), 12; https://doi.org/10.3390/CSAC2021-10616 - 6 Jul 2021
Cited by 2 | Viewed by 1359
Abstract
The relative humidity (RH) sensing response of a chemoresistive sensor using a novel ternary hybrid nanocomposite film as a sensing element is presented. The sensitive layer was obtained by employing the drop-casting technique for depositing a thin film of nanocomposite between the electrodes [...] Read more.
The relative humidity (RH) sensing response of a chemoresistive sensor using a novel ternary hybrid nanocomposite film as a sensing element is presented. The sensitive layer was obtained by employing the drop-casting technique for depositing a thin film of nanocomposite between the electrodes of an interdigitated (IDT) structure. The sensing support structure consists of an IDT dual-comb structure fabricated on a oSi-SiO2 substrate. The IDT comprises chromium, as an adhesion layer (10 nm thickness), and a gold layer (100 nm thickness). The sensing capability of a novel thin film based on a ternary hybrid made of oxidated carbon nanohorns–titanium dioxide–polyvinylpyrrolidone (CNHox/TiO2/PVP) nanocomposite was investigated by applying a direct current with known intensity between the two electrodes of the sensing structure, and measuring the resulting voltage difference, while varying the RH from 0% to 100% in a humid nitrogen atmosphere. The ternary hybrid-based thin film’s resistance increased when the sensors were exposed to relative humidity ranging from 0 to 100%. It was found that the performance of the new chemoresistive sensor is consistent with that of the capacitive commercial sensor used as a benchmark. Raman spectroscopy was used to provide information on the composition of the sensing layer and on potential interactions between constituents. Several sensing mechanisms were considered and discussed, based on the interaction of water molecules with each component of the ternary nanohybrid. The sensing results obtained lead to the conclusion that the synergic effect of the p-type semiconductor behavior of the CNHox and the PVP swelling process plays a pivotal role in the overall resistance decrease of the sensitive film. Full article
Show Figures

Figure 1

19 pages, 11956 KiB  
Article
Ternary Nanocomposites Based on Oxidized Carbon Nanohorns as Sensing Layers for Room Temperature Resistive Humidity Sensing
by Bogdan-Catalin Serban, Cornel Cobianu, Octavian Buiu, Marius Bumbac, Niculae Dumbravescu, Viorel Avramescu, Cristina Mihaela Nicolescu, Mihai Brezeanu, Cristina Pachiu, Gabriel Craciun and Cristiana Radulescu
Materials 2021, 14(11), 2705; https://doi.org/10.3390/ma14112705 - 21 May 2021
Cited by 10 | Viewed by 2223
Abstract
This paper presents the relative humidity (RH) sensing response of a resistive sensor employing sensing layers based on a ternary nanocomposite comprising graphene oxide-oxidized carbon nanohorns-polyvinylpyrrolidone (GO-CNHox–PVP), at 1/1/1, 1/2/1, and 1/3/1 w/w/w mass ratios. The sensing structure is composed of a silicon [...] Read more.
This paper presents the relative humidity (RH) sensing response of a resistive sensor employing sensing layers based on a ternary nanocomposite comprising graphene oxide-oxidized carbon nanohorns-polyvinylpyrrolidone (GO-CNHox–PVP), at 1/1/1, 1/2/1, and 1/3/1 w/w/w mass ratios. The sensing structure is composed of a silicon substrate, a SiO2 layer, and interdigitated transducers (IDT) electrodes, on which the sensing layer is deposited via the drop-casting method. The morphology and the composition of the sensing layers are investigated through scanning electron microscopy (SEM) and RAMAN spectroscopy. The RH sensing capability of each carbonaceous nanocomposite-based thin film was analyzed by applying a current between the two electrodes and by measuring the voltage difference when varying the RH from 0% to 100% in humid nitrogen. The sensors have a room temperature response comparable to that of a commercial humidity sensor and are characterized by a rapid response, excellent linearity, good sensitivity, and recovery time. The manufactured sensing devices’ transfer functions were established, and we extracted the response and recovery times. While the structures with GO/CNHox/PVP at 1/1/1 ratio (w/w/w) had the best performance in terms of relative sensibility, response time, and recovery time, the sensors employing the GO/CNHox/PVP nanocomposite at the 1/2/1 ratio (w/w/w) had the best linearity. Moreover, the ternary mixture proved to have much better sensing properties compared to CNHox and CNHox-PVP-based sensing layers in terms of sensitivity and linearity. Each component of the ternary nanocomposites’ functional role is explained based on their physical and chemical properties. We analyzed the potential mechanism associated with the sensors’ response; among these, the effect of the p-type semiconductor behavior of CNHox and GO, correlated with swelling of the PVP, was dominant and led to increased resistance of the sensing layer. Full article
(This article belongs to the Special Issue Functional Carbon-Based Nanomaterials and Nanocomposites)
Show Figures

Figure 1

18 pages, 5333 KiB  
Article
Quaternary Oxidized Carbon Nanohorns—Based Nanohybrid as Sensing Coating for Room Temperature Resistive Humidity Monitoring
by Bogdan-Catalin Serban, Cornel Cobianu, Octavian Buiu, Marius Bumbac, Niculae Dumbravescu, Viorel Avramescu, Cristina Mihaela Nicolescu, Mihai Brezeanu, Cristiana Radulescu, Gabriel Craciun, Cosmin Romanitan and Florin Comanescu
Coatings 2021, 11(5), 530; https://doi.org/10.3390/coatings11050530 - 29 Apr 2021
Cited by 15 | Viewed by 3130
Abstract
We report the relative humidity (RH) sensing response of a resistive sensor, employing sensing layers, based on a quaternary organic–inorganic hybrid nanocomposite comprising oxidized carbon nanohorns (CNHox), graphene oxide (GO), tin dioxide, and polyvinylpyrrolidone (PVP), at 1/1/1/1 and 0.75/0.75/1/1/1 mass ratios. The sensing [...] Read more.
We report the relative humidity (RH) sensing response of a resistive sensor, employing sensing layers, based on a quaternary organic–inorganic hybrid nanocomposite comprising oxidized carbon nanohorns (CNHox), graphene oxide (GO), tin dioxide, and polyvinylpyrrolidone (PVP), at 1/1/1/1 and 0.75/0.75/1/1/1 mass ratios. The sensing structure comprises a silicon substrate, a SiO2 layer, and interdigitated transducer (IDT) electrodes. The sensing film was deposited via the drop-casting method on the sensing structure. The morphology and the composition of the sensing layers were investigated through Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and RAMAN spectroscopy. The organic–inorganic quaternary hybrid-based thin film’s resistance increased when the sensors were exposed to relative humidity ranging from 0 to 100%. The manufactured devices show a room temperature response comparable to that of a commercial capacitive humidity sensor and characterized by excellent linearity, rapid response and recovery times, and good sensitivity. While the sensor with CNHox/GO/SnO2/PVP at 0.75/0.75/1/1 as the sensing layer has the best performance in terms of linearity and recovery time, the structures employing the CNHox/GO/SnO2/PVP at 1/1/1/1 (mass ratio) have a better performance in terms of relative sensitivity. We explained each constituent of the quaternary hybrid nanocomposites’ sensing role based on their chemical and physical properties, and mutual interactions. Different alternative mechanisms were taken into consideration and discussed. Based on the sensing results, we presume that the effect of the p-type semiconductor behavior of CNHox and GO, correlated with swelling of PVP, dominates and leads to the overall increasing resistance of the sensing layer. The hard–soft acid–base (HSAB) principle also supports this mechanism. Full article
(This article belongs to the Collection Coatings: 10th Anniversary)
Show Figures

Figure 1

14 pages, 7151 KiB  
Article
Effect of Toluene Addition in an Electric Arc on Morphology, Surface Modification, and Oxidation Behavior of Carbon Nanohorns and Their Sedimentation in Water
by Kseniya I. Baskakova, Olga V. Sedelnikova, Evgeniy A. Maksimovskiy, Igor P. Asanov, Aida T. Arymbaeva, Lyubov G. Bulusheva and Alexander V. Okotrub
Nanomaterials 2021, 11(4), 992; https://doi.org/10.3390/nano11040992 - 13 Apr 2021
Cited by 4 | Viewed by 1969
Abstract
Carbon nanohorns (CNHs) are attractive for various applications, where a high specific surface area and long dispersion stability in water are important. In the present work, we study these parameters of CNHs prepared by arc evaporation of graphite depending on the conditions of [...] Read more.
Carbon nanohorns (CNHs) are attractive for various applications, where a high specific surface area and long dispersion stability in water are important. In the present work, we study these parameters of CNHs prepared by arc evaporation of graphite depending on the conditions of the synthesis and subsequent oxidation in air. It is shown that the addition of toluene in the reactor during the arcing allows obtaining CNHs functionalized with −CHx groups. Heating of CNHs in air at 400 °C leads to substitution of −CHx groups for oxygen-containing groups. Moreover, the CNH endcaps are opened at 500 °C, and as a result, the specific surface area of CNHs increases 4 times. Aqueous suspensions with a concentration of oxidized CNHs of 100 µg/mL are stable for 8 months. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

14 pages, 4435 KiB  
Article
Nitric-Acid Oxidized Single-Walled Carbon Nanohorns as a Potential Material for Bio-Applications—Toxicity and Hemocompatibility Studies
by Wojciech Zieba, Joanna Czarnecka, Tomasz Rusak, Monika Zieba and Artur P. Terzyk
Materials 2021, 14(6), 1419; https://doi.org/10.3390/ma14061419 - 15 Mar 2021
Cited by 9 | Viewed by 2317
Abstract
The results of in vitro studies of single-walled carbon nanohorn (SWCNH) oxidized materials’ cytotoxicity obtained by the cell membrane integrity (Neutral Red Uptake (NRU)) and metabolic activity (by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)) on A549 and human dermal fibroblasts (HDF) cell lines are presented. We [...] Read more.
The results of in vitro studies of single-walled carbon nanohorn (SWCNH) oxidized materials’ cytotoxicity obtained by the cell membrane integrity (Neutral Red Uptake (NRU)) and metabolic activity (by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)) on A549 and human dermal fibroblasts (HDF) cell lines are presented. We also present hemocompatibility studies on human and porcine blood, and an erythrocyte concentrate to prove that the obtained samples will not interfere with blood components. Characterization of the materials is supplemented by ζ-potential measurements, Transmission Electron Microscope (TEM) imaging, and thermogravimetric studies (TG). The presented results show the correlation between the specific surface area of materials and the platelet aggregation, when the ID/IG ratio determined from Raman spectra correlates with hemoglobin release from the erythrocytes (in whole blood testing). A plausible mechanism explaining the observed correlations is given. The cytotoxicity and hemocompatibility studies prove that the studied materials are acceptable for use in biomedical applications, especially a sample SWCNH-ox-1.5 with the best application potential. Full article
Show Figures

Figure 1

Back to TopTop