Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = outer steel pipe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7223 KB  
Article
Analysis of Failure Cause in Steel Wire-Reinforced Thermoplastic Composite Pipes for Sour Gas Field Water Transportation
by Zhiming Yu, Shaomu Wen, Jie Wang, Jianwei Lin, Chuan Xie and Dezhi Zeng
Materials 2025, 18(21), 4865; https://doi.org/10.3390/ma18214865 - 24 Oct 2025
Viewed by 522
Abstract
Steel-reinforced thermoplastic pipe is widely used for water transportation in sour gas fields. However, under the combined effects of corrosive media, internal high pressure, and long-term environmental aging, premature failures such as leakage and bursting often occur. To clarify the failure causes and [...] Read more.
Steel-reinforced thermoplastic pipe is widely used for water transportation in sour gas fields. However, under the combined effects of corrosive media, internal high pressure, and long-term environmental aging, premature failures such as leakage and bursting often occur. To clarify the failure causes and primary contributing factors of the composite pipes, this study conducted a comprehensive analysis through microscopic morphology examination of different typical failure cases, differential scanning calorimetry, Fourier transform infrared spectroscopy, and mechanical property testing. The main failure mechanisms were investigated, and targeted protective measures are proposed. Key findings reveal that the typical failure modes are ductile cracking, aging-induced brittle cracking, and aging creep cracking. These failures follow a mechanism of degradation of the inner and outer polyethylene protective layers, penetration of the medium and corrosion of the steel wires, reduction in pressure-bearing capacity, and eventual structural damage or leakage propagation through the pipe wall. Notably, oxidation induction time values dropped as low as 1.4–17 min—far below the standard requirement of >20 min—indicating severe antioxidant depletion and material aging. The main controlling factors are poor material quality, external stress or mechanical damage, and long-term aging. The polyethylene used for the inner and outer protective layers is critical to the overall pipe performance; therefore, emphasis should be placed on evaluating its anti-aging properties and on protecting the pipe body during installation to ensure the long-term safety and stable operation of the pipeline system. Full article
Show Figures

Figure 1

20 pages, 6578 KB  
Article
Hydration Heat Effect and Temperature Control Measures of Long-Span U-Shaped Aqueducts
by Pingan Liu, Yupeng Ou, Tiehu Wang, Fei Yue, Yingming Zhen and Xun Zhang
CivilEng 2025, 6(3), 42; https://doi.org/10.3390/civileng6030042 - 14 Aug 2025
Viewed by 765
Abstract
This study presents a comprehensive analysis of hydration heat-induced temperature and stress fields in a U-shaped aqueduct during the casting phase, integrating field measurements and numerical simulations. The key findings are as follows: (1) Thermal Evolution Characteristics: Both experimental and numerical results demonstrated [...] Read more.
This study presents a comprehensive analysis of hydration heat-induced temperature and stress fields in a U-shaped aqueduct during the casting phase, integrating field measurements and numerical simulations. The key findings are as follows: (1) Thermal Evolution Characteristics: Both experimental and numerical results demonstrated consistent thermal behavior, characterized by a rapid temperature rise, subsequent rapid cooling, and eventual stabilization near ambient conditions. The peak temperature is observed at the centroid of the bearing section’s base slab, reaching 83.8 °C in field tests and 87.0 °C in simulations. (2) Stress Field Analysis: Numerical modeling reveals critical stress conditions in the outer concrete layers within high-temperature zones. The maximum tensile stress reaches 6.37 MPa, exceeding the allowable value of the tensile strength of the current concrete (1.85 MPa) by 244%, indicating a significant risk of thermal cracking. (3) Temperature Gradient and Cooling Rate Anomalies: Both methodologies identify non-compliance with critical control criteria. Internal-to-surface temperature differentials exceed the 25 °C threshold. Daily cooling rates at monitored locations surpass 2.0 °C/d during the initial 5–6 days of the cooling phase, elevating cracking risks associated with excessive thermal gradients. (4) Mitigation Strategy Proposal: Implementation of a hydration heat control system is recommended; compared to single-layer systems, the proposed mid-depth double-layer steel pipe cooling system (1.2 m/s flow) reduced peak temperature by 23.8 °C and improved cooling efficiency by 28.7%. The optimized water circulation maintained thermal balance between concrete and cooling water, achieving water savings and cost reduction while ensuring structural quality. (5) The cooling system proposed in this paper has certain limitations in terms of applicable environment and construction difficulty. Future research can combine with a BIM system to dynamically control the tube cooling system in real time. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

21 pages, 17998 KB  
Article
Change in the Structural and Mechanical State of Heat-Resistant 15CrMoV5-10 Steel of TPP Steam Pipelines Under the Influence of Operational Factors
by Oleksandra Student, Halyna Krechkovska, Robert Pała and Ivan Tsybailo
Materials 2025, 18(14), 3421; https://doi.org/10.3390/ma18143421 - 21 Jul 2025
Viewed by 559
Abstract
The operational efficiency of the main steam pipelines at thermal power plants is reduced due to several factors, including operating temperature, pressure, service life, and the frequency of process shutdowns, which contribute to the degradation of heat-resistant steels. The study aims to identify [...] Read more.
The operational efficiency of the main steam pipelines at thermal power plants is reduced due to several factors, including operating temperature, pressure, service life, and the frequency of process shutdowns, which contribute to the degradation of heat-resistant steels. The study aims to identify the features of changes in the sizes of grains and carbides along their boundaries, as well as mechanical properties (hardness, strength, plasticity and fracture toughness) along the wall thickness of both pipes in the initial state and after operation with block shutdowns. Preliminary electrolytic hydrogenation of specimens (before tensile tests in air) showed even more clearly the negative consequences of operational degradation of steel. The degradation of steel was also assessed using fracture toughness (JIC). The value of JIC for operated steel with a smaller number of shutdowns decreased by 32–33%, whereas with a larger number of shutdowns, its decrease in the vicinity of the outer and inner surfaces of the pipe reached 65 and 61%, respectively. Fractographic signs of more intense degradation of steel after a greater number of shutdowns were manifested at the stage of spontaneous fracture of specimens by changing the mechanism from transgranular cleavage to intergranular, which indicated a decrease in the cohesive strength of grain boundaries. Full article
(This article belongs to the Special Issue Assessment of the Strength of Materials and Structure Elements)
Show Figures

Figure 1

15 pages, 3481 KB  
Article
Forensic Investigation of Stainless Steel 316 Hydrogen-Membrane and Ammonia-Cracking Reactors Through Mechanical Testing
by Alexander Ilyushechkin, Veronica Gray, Riley Ingle, Lachlan Carter and Liezl Schoeman
Corros. Mater. Degrad. 2025, 6(2), 17; https://doi.org/10.3390/cmd6020017 - 13 May 2025
Viewed by 1403
Abstract
Knowledge of alloy behavior under industry-relevant conditions is critical to hydrogen production and processing, yet it is currently limited. To understand more about the impact of hydrogen damage on stainless steel 316 under realistic in-service conditions, we conducted a forensic investigation of two [...] Read more.
Knowledge of alloy behavior under industry-relevant conditions is critical to hydrogen production and processing, yet it is currently limited. To understand more about the impact of hydrogen damage on stainless steel 316 under realistic in-service conditions, we conducted a forensic investigation of two reactors exposed to various hydrogen-processing conditions. We examined samples of reactor walls exposed to hydrogen-containing atmospheres for >100 and ~1000 h at elevated temperatures during hydrogen separation and ammonia cracking. The samples were characterized by tensile testing, stretch–bend testing, and three-point bending. A loss in ductility and strength was observed for the reactor wall material compared with both untreated materials and materials annealed in neutral atmospheres at the same temperatures used during reactor operation. The three-point bend testing, which was conducted on inner and outer pipe-surface material extracted via electrical discharge machining, showed larger changes in the flexural modulus of exposed reactors but increases in the elastic limit. Microstructural observations revealed that hydrogen may play a role in stress relaxation, possibly promoting normalization at lower-than-expected temperatures. We also observed that materials exposed to ammonia undertake more damage from nitriding than from hydrogen. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

15 pages, 10319 KB  
Article
Residual Stresses of Small-Bore Butt-Welded Piping Measured by Quantum Beam Hybrid Method
by Kenji Suzuki, Yasufumi Miura, Hidenori Toyokawa, Ayumi Shiro, Takahisa Shobu, Satoshi Morooka and Yuki Shibayama
Quantum Beam Sci. 2025, 9(2), 15; https://doi.org/10.3390/qubs9020015 - 2 May 2025
Viewed by 1777
Abstract
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of [...] Read more.
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of small-bore welded piping, post-welding stress improvement measures are often not possible due to dimensional restrictions, etc. Therefore, knowing the actual welding residual stresses of small-bore welded piping regardless of reactor type is essential for the safe and stable operation of nuclear power stations, but there are only a limited number of examples of measuring the residual stresses. In this study, austenitic stainless steel pipes with an outer diameter of 100 mm and a wall thickness of 11.1 mm were butt-welded. The residual stresses were measured by the strain scanning method using neutrons. Furthermore, to obtain detailed residual stresses near the penetration bead where the maximum stress is generated, the residual stresses near the inner surface of the weld were measured using the double-exposure method (DEM) with hard X-rays of synchrotron radiation. A method using a cross-correlation algorithm was proposed to determine the accurate diffraction angle from the complex diffraction patterns from the coarse grains, dendritic structures, and plastic zones. A quantum beam hybrid method (QBHM) was proposed that uses the circumferential residual stresses obtained by neutrons and the residual stresses obtained by the double-exposure method in a complementary use. The residual stress map of welded piping measured using the QBHM showed an area where the axial tensile residual stress exists from the neighborhood of the penetration bead toward the inside of the welded metal. This result could explain the occurrence of stress corrosion cracking in the butt-welded piping. A finite element analysis of the same butt-welded piping was performed and its results were compared. There is also a difference between the simulation results of residual stress using the finite element method and the measurement results using the QBHM. This difference is because the measured residual stress map also includes the effect of the stress of each crystal grain based on elastic anisotropy, that is, residual micro-stress. Full article
(This article belongs to the Section Engineering and Structural Materials)
Show Figures

Figure 1

16 pages, 6076 KB  
Article
Research on the Vertical Bearing Capacity of Concrete-Filled Steel Tube Composite Piles by Mixing Method
by Chaosen Tian, Ping Li, Rongxi Yv, Yixin Li and Bohan Li
Appl. Sci. 2025, 15(9), 5022; https://doi.org/10.3390/app15095022 - 30 Apr 2025
Cited by 2 | Viewed by 729
Abstract
To address the issues of low shear strength, susceptibility to eccentricity, and alignment difficulties in post-inserted core piles, a new type of steel tube concrete integrated mixing composite pile has been independently developed. This pile type replaces the conventional mixing pile shaft with [...] Read more.
To address the issues of low shear strength, susceptibility to eccentricity, and alignment difficulties in post-inserted core piles, a new type of steel tube concrete integrated mixing composite pile has been independently developed. This pile type replaces the conventional mixing pile shaft with a larger diameter steel tube equipped with mixing blades. After forming the external annular cement mixing pile, the steel tube is retained, and the hollow core is filled with concrete. To thoroughly explore the vertical compressive bearing characteristics of the steel tube concrete mixing composite pile and clarify its vertical compressive behavior, static load field tests and PLAXIS 3D finite element numerical simulations were conducted on four test piles of different sizes to analyze the vertical bearing performance of the steel tube concrete mixing composite pile. The research results indicate that for a composite pile with a length of 40 m, an outer diameter of 1000 mm, and a steel tube diameter of 273 mm, the ultimate bearing capacity of a single pile is 7200 kN, with the steel tube concrete core contributing approximately 81% of the vertical bearing capacity, while the cement mixing pile contributes around 19%. Based on the characteristic that the maximum axial force is concentrated in the upper half of the pile length, an innovative variable-diameter design with a reduced wall thickness of the steel pipe in the lower part of the pile was proposed. Practical verification has shown that, despite the reduced material usage, the load-bearing capacity remains largely unchanged. This effectively validates the feasibility of the “strong upper part and weak lower part” design concept and provides an effective way to reduce construction costs. Full article
Show Figures

Figure 1

13 pages, 38148 KB  
Article
Parameter Optimization of Orbital TIG Welding on Stainless Steel Pipe
by Thien Tran Ngoc, Van-Thuc Nguyen, Thanh Trung Do, Van Huong Hoang, Dinh Ngoc Huy, Ha Tan Phat and Van Thanh Tien Nguyen
Appl. Sci. 2025, 15(6), 3227; https://doi.org/10.3390/app15063227 - 15 Mar 2025
Cited by 1 | Viewed by 2667
Abstract
Orbital TIG welding is widely applied to weld pipes to pipes in many fields, such as food, chemicals, oil, gas, and transportation. Optimizing welding parameters such as voltage, current, and travel speed is critical to achieve a good-quality weld. This study investigated the [...] Read more.
Orbital TIG welding is widely applied to weld pipes to pipes in many fields, such as food, chemicals, oil, gas, and transportation. Optimizing welding parameters such as voltage, current, and travel speed is critical to achieve a good-quality weld. This study investigated the impacts of orbital welding parameters and filler wire diameters on the tensile strength of 304 stainless steel pipes. The 304 stainless steel pipe has an outer diameter of 76 mm and a thickness of 2 mm. Filler wire is used with the workpiece, and is available in three diameters of 0.8 mm, 1 mm, and 1.2 mm, wire feed speed from 3.8 mm/s to 5.6 mm/s, current from 90 A to 110 A, and travel speed fixed at 5.5 mm/s. The highest tensile strength of 562 MPa was achieved with heat input of 0.32 kJ/mm and wire feed speed of 3.8 mm/s. In addition, the best parameters via the Taguchi method were found. The parameters’ influence trends on the weld quality were also revealed. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

25 pages, 6176 KB  
Article
Numerical Permeation Models to Predict the Annulus Composition of Flexible Pipes
by João Marcos B. Vieira and José Renato M. de Sousa
J. Mar. Sci. Eng. 2024, 12(12), 2294; https://doi.org/10.3390/jmse12122294 - 13 Dec 2024
Cited by 1 | Viewed by 1329
Abstract
The migration of acid gases through the pressure sheath of flexible pipes may induce a corrosive environment that can lead to steel armors’ failure by SCC (stress corrosion cracking). This permeation process depends on temperature, partial pressures, materials, and the pipe’s geometry. However, [...] Read more.
The migration of acid gases through the pressure sheath of flexible pipes may induce a corrosive environment that can lead to steel armors’ failure by SCC (stress corrosion cracking). This permeation process depends on temperature, partial pressures, materials, and the pipe’s geometry. However, there are few works related to permeation modeling in flexible pipes, and these works usually contain significant simplification in pipes’ geometry. Hence, this work proposes two finite element (FE) permeation models and discusses the effects of the pipe’s characteristics. The models were developed in Ansys®, considering two- (2DFE) and three-dimensional (3DFE) approaches, and rely on gas fugacities instead of concentrations to describe the mass transport phenomenon. A radial temperature gradient is also considered, and the heat transfer is uncoupled from the mass transfer. Dry and flooded annulus analyses were conducted with the proposed models. In dry conditions, the results obtained with the 2DFE and the 3DFE approaches showed no significant differences, demonstrating that 3D effects are irrelevant. Hence, the permeation phenomenon is ruled by the permeation properties of the polymeric layers (pressure and outer sheaths) and possible shield effects promoted by the metallic armors. In contrast, the flooded annulus analyses resulted in a non-uniform fugacity distribution in the annulus with significant differences between the 2DFE and the 3DFE approaches, showing the importance of modeling the helical geometries of the metallic armors in this condition. Finally, a conservative 2DFE approach, which neglects the contribution of the pressure sheath, is proposed to analyze the flooded annulus condition, aiming to overcome the high computational cost demanded by the 3DFE approach. Full article
(This article belongs to the Special Issue Advanced Research in Flexible Riser and Pipelines)
Show Figures

Figure 1

17 pages, 6288 KB  
Article
Concentric Compressive Behavior and Design of Stainless Steel–Concrete Double-Skin Composite Tubes Influenced by Dual Hydraulic Pressures
by Jian-Tao Wang, Yang Yang, Kai-Lin Yang, Deng-Long Hu, Long-Bo Xu and Jun-Xin Li
J. Mar. Sci. Eng. 2024, 12(12), 2140; https://doi.org/10.3390/jmse12122140 - 23 Nov 2024
Cited by 2 | Viewed by 1122
Abstract
The external hydraulic pressure and internal medium pressure acting on submarine pipelines can lead to the coupling effect of active and passive constraints on the mechanical performance of steel–concrete double-skin composite tubes, resulting in a significantly different bearing capacity mechanism compared to terrestrial [...] Read more.
The external hydraulic pressure and internal medium pressure acting on submarine pipelines can lead to the coupling effect of active and passive constraints on the mechanical performance of steel–concrete double-skin composite tubes, resulting in a significantly different bearing capacity mechanism compared to terrestrial engineering. In this paper, the full-range concentric compressive mechanism of new-type stainless steel–concrete double-skin (SSCDS) composite tubes subjected to dual hydraulic pressure was analyzed by the finite element method. The influence of geometric–physical parameters at various water depths was discussed. The key results reveal that imposing dual hydraulic pressures significantly improves the confinement of double-skin tubes to encased concrete, resulting in a higher axial compressive strength and a non-uniform stress distribution; increasing the material strengths of concrete, outer tubes and inner tubes results in an approximately linear enhancement in axial bearing capacity; enhancing the diameter-to-thickness ratios of outer tubes and inner tubes can decrease the bearing capacity of SSCDS composite tubes; and the axial compression strength of SSCDS composite tubes with a higher hollow ratio of 0.849 tends to decrease with increasing outer hydraulic pressure. A practical method that integrates the effects of dual hydraulic pressures was developed and validated for the strength calculation of SSCDS composite tubes. This research provides fundamental guidelines for the application of pipe-in-pipe structures in deep-sea engineering. Full article
(This article belongs to the Special Issue Analysis and Design of Marine Structures)
Show Figures

Figure 1

12 pages, 8605 KB  
Article
Microstructure Evolution of Super304H Steel Used in a Service Power Station Boiler
by Xiaoxin Wang, Baohe Yuan, Jianbin Li and Guoxi Chen
Materials 2024, 17(22), 5518; https://doi.org/10.3390/ma17225518 - 12 Nov 2024
Cited by 1 | Viewed by 1320
Abstract
The microstructure and structure of a Super304H superheater steel pipe after 47,000 h were analyzed by metallographic microscope, scanning electron microscope (SEM), and EDS, and its mechanical properties were measured by hardness meter. The results show that the austenitic grains appear on the [...] Read more.
The microstructure and structure of a Super304H superheater steel pipe after 47,000 h were analyzed by metallographic microscope, scanning electron microscope (SEM), and EDS, and its mechanical properties were measured by hardness meter. The results show that the austenitic grains appear on the outer wall of Super304H steel pipe after service, while the SEM and metallographic microscope tests show that the outer wall particles are coarse. There is an obvious corrosion layer on the outer surface, and the thickness of the corrosion layer on the windward surface is significantly higher than that on the leeward surface. The inner surface is refined and the hardness of the material is significantly increased; the outer surface, the inner surface, and the center all grow abnormally. In this case, the room temperature tensile strength and impact performance of the rough crystal area of the outer wall of the Super304H steel pipe are reduced and fracture along the crystal. Supervision should be strengthened to eliminate the safety risks caused by the abnormal growth of the outer wall austenite grain. The results of crystal phase microscopy show that the main structure of the material still maintains the basic structure of austenitic steel, and particle aggregation mainly occurs in the sub-inner layer of the inner and outer surface. Compared with the lee surface, the middle body structure is basically the same, but whether the thickness of the corrosion layer on the inner surface or the outer surface increases, the deformation degree of the deformation layer is greater. The hardness measurement finds that the hardness of the corrosion layer is caused by the increase in Super304H steel surface stress. In case of pipe explosion accident, the highest chance of pipe explosion here should be closely observed. Full article
Show Figures

Figure 1

16 pages, 9079 KB  
Article
Buckling and Ultimate Bearing Capacity of Steel Pipes Jacked in Hard Rocks: A Case Study of a Water Pipeline Project in Zhongshan
by Rusen Zhao, Zhidong Chen, Dinghua Feng, Qiping Liu, Peiwen Wen and Hongwei Yang
Water 2024, 16(21), 3041; https://doi.org/10.3390/w16213041 - 24 Oct 2024
Viewed by 1895
Abstract
Steel jacking pipes are potentially prone to buckling instability, a phenomenon that has received limited attention in hard rock formations. This study reports on the field monitoring of a water pipeline project in Zhongshan City, where the circumferential and hoop strains of steel [...] Read more.
Steel jacking pipes are potentially prone to buckling instability, a phenomenon that has received limited attention in hard rock formations. This study reports on the field monitoring of a water pipeline project in Zhongshan City, where the circumferential and hoop strains of steel pipe segments jacked in hard rocks were recorded. The buckling deformation observed during steel pipe jacking, as well as the critical buckling load, was analyzed with the aid of numerical simulations using finite element software. The initial defect for the post-buckling analysis of the steel pipe was selected as the first-order buckling mode. Field monitoring revealed that the loading conditions experienced by the steel pipe segments during the jacking process are complex, leading to significant deformation. Throughout the monitoring process, axial stress at each measurement point underwent tensile-compressive transitions. Numerical results showed the actual critical buckling load increases with wall thickness at a constant length-to-diameter ratio, which is significant for short pipes. For pipes with the same wall thickness and outer diameter, the actual critical buckling load of long pipes is significantly lower than that of short pipes. Additionally, initial defects were found to significantly reduce the actual critical buckling load of the steel pipe. Furthermore, the actual critical buckling load of long pipes is much lower than their yield load, whereas, for short pipes, the critical buckling load is limited by their yield load. Measures for managing buckling deformation of steel pipes in situ were also reported. The findings on critical buckling load and the countermeasures for managing buckling in situ would be valuable for the design and construction stages of similar projects employing pipe-jacking technology in hard rock formations. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

14 pages, 6195 KB  
Article
Microscopic Analysis of Structure and Wear for Metallic Materials Using SEM
by Ľuboš Marček, Ján Vavro and Ján Vavro
Appl. Sci. 2024, 14(20), 9378; https://doi.org/10.3390/app14209378 - 15 Oct 2024
Viewed by 2667
Abstract
The introduced work deals with the microscopic analysis of metallographically prepared selected metal materials structures, using a scanning electron microscope (SEM). Prepared samples of seamless steel pipes were subjected to a thorough microscopic examination from the outer surface to the inner regions in [...] Read more.
The introduced work deals with the microscopic analysis of metallographically prepared selected metal materials structures, using a scanning electron microscope (SEM). Prepared samples of seamless steel pipes were subjected to a thorough microscopic examination from the outer surface to the inner regions in order to interpret the specific structure, including the change in the inner surfaces due to wear. The experiment demonstrated that the microstructure and character of the surfaces play a key role in the behavior of metallic materials in real conditions of hot water heating. Four pipe samples were monitored according to their use. The unused steel pipe (designated as sample No. 1) exhibited a rough outer surface with identified inclusions, while the used pipe (designated as sample No. 2) showed marks of intergranular corrosion and significant wear after long-term use. The older pipe (designated as sample No. 3) showed a decarburized area and inclusions containing sulfides and aluminum. The steel pipe with corrosion layers (designated as sample No. 4) exhibited a continuous corrosion layer with cavitation and cracks. The results of this study offer a comprehensive view of the influence of the nature of microstructure and wear on water flow in metal pipes, with an emphasis on the identification of possible risks associated with geometry change, corrosion, and wear. The findings form the basis for predicting degradation and appropriate maintenance in order to ensure their long and reliable service life under real conditions of use. They offer the possibility of continuing and expanding research and analysis of the use of metallic materials in comparison with polymers and composites. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

26 pages, 819 KB  
Article
Feasibility Verification of Casing Drilling in Shallow Marine Formations
by Gang Song, Xin Zhang, Xiaojun Chen, Shuying Cui, Qinglei Niu, Yingying Tian, Bo Ning, Yuanzhuang Jiang, Ming Zhao, Genlong Chen, Zelong Han, Qiwei Ren and Yafeng Jiang
Processes 2024, 12(10), 2093; https://doi.org/10.3390/pr12102093 - 26 Sep 2024
Viewed by 1717
Abstract
DDWC (Directional Drilling with Casing) is an effective wellbore construction technique, particularly suitable for soft marine formations. In DDWC, the casing replaces the drill pipe for sliding drilling operations, and the passability of the drill string through the casing has become one of [...] Read more.
DDWC (Directional Drilling with Casing) is an effective wellbore construction technique, particularly suitable for soft marine formations. In DDWC, the casing replaces the drill pipe for sliding drilling operations, and the passability of the drill string through the casing has become one of the primary challenges in applying DDWC. This study uses ANSYS Workbench to simulate the strain and bending behavior of the casing under various geological conditions. Simulations were conducted for different wellbore trajectories, casing specifications, and materials to evaluate the feasibility of the drill string passing through the casing under different conditions. The results show that, when the dogleg severity reaches 18°/30 m and the casing’s inner diameter is 315 mm, the maximum radial strain of the casing is 4.2 mm, which cannot guarantee the successful passage of a drill string assembly with a 311 mm outer diameter. For other casing specifications, with a minimum inner diameter of 317 mm, the drill string can pass through under the maximum dogleg severity. Additionally, since the elastic modulus and Poisson’s ratio of the casing materials are identical, the strain behavior is consistent across different materials, meaning that the material does not affect the passability of the casing. Moreover, the study optimized the selection of casing specifications and materials. From the perspective of ensuring drill string passability and resource conservation, a casing with an inner diameter of 319.4 mm was chosen. To ensure the longevity of the casing and the stability of the wellbore, N80 steel was selected as the material. A sensitivity analysis was conducted on the factors affecting casing strain, and the results aligned with the simulation findings, showing that wellbore trajectory and casing specifications have a significant impact on casing strain. Verifying the passability of the drill string through the casing is critical for the development and application of DDWC technology. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 8464 KB  
Article
Geometric Parameter Effects on Bandgap Characteristics of Periodic Pile Barriers in Passive Vibration Isolation
by Jinglei Liu, Xiuxin Li, Jinyuan Cao, Zhengchun Duan, Qingzhi Ye and Guishuai Feng
Symmetry 2024, 16(9), 1130; https://doi.org/10.3390/sym16091130 - 1 Sep 2024
Cited by 3 | Viewed by 1358
Abstract
To investigate the impact of the geometric parameters of periodic pile barriers on bandgap characteristics in passive vibration isolation, a two-dimensional, three-component unit cell was developed using the finite element method (FEM). This study analyzed the bandgap properties of periodic pile barriers and [...] Read more.
To investigate the impact of the geometric parameters of periodic pile barriers on bandgap characteristics in passive vibration isolation, a two-dimensional, three-component unit cell was developed using the finite element method (FEM). This study analyzed the bandgap properties of periodic pile barriers and validated the effectiveness of the FEM through model testing. The FEM was then methodically applied to evaluate the effects of pipe pile thickness, periodic constant, arrangement pattern, and cross-sectional shape on the bandgap characteristics, culminating in the proposition of a novel H-shaped cross-section for the piles. The results demonstrated that the FEM-calculated bandgap frequency range, featuring steel piles arranged in a square pattern, closely aligned with the attenuation zone in the model tests. The lower band frequency (LBF) was primarily influenced by the pipe pile’s inner radius, while the upper band frequency (UBF) was predominantly affected by its outer radius. As the periodic constant increased, the LBF, UBF, and the width of band gap (WBG) all decreased. Conversely, changing the arrangement pattern from square to hexagonal led to increases in UBF and WBG, while the LBF diminished. Notably, the WBG of the H-section steel piles, possessing the same cross-sectional area, was 1.31 times greater than that of the steel pipe piles, indicating an enhanced vibration isolation performance. Additionally, the impact of transverse and vertical characteristic dimensions of the H-shaped pile on the band gap distribution was assessed, revealing that the transverse characteristic dimensions exerted a more significant influence than the vertical dimensions. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

17 pages, 5827 KB  
Article
Hydrogen Embrittlement Detection Technology Using Nondestructive Testing for Realizing a Hydrogen Society
by Yamato Abiru, Hiroshi Nishiguchi, Masato Maekawa, Takara Nagata, Toshiya Itaya, Michie Koga and Toshiomi Nishi
Materials 2024, 17(17), 4237; https://doi.org/10.3390/ma17174237 - 27 Aug 2024
Cited by 4 | Viewed by 2104
Abstract
Crack detection in high-pressure hydrogen gas components, such as pipes, is crucial for ensuring the safety and reliability of hydrogen infrastructure. This study conducts the nondestructive testing of crack propagation in steel piping under cyclic compressive loads in the presence of hydrogen in [...] Read more.
Crack detection in high-pressure hydrogen gas components, such as pipes, is crucial for ensuring the safety and reliability of hydrogen infrastructure. This study conducts the nondestructive testing of crack propagation in steel piping under cyclic compressive loads in the presence of hydrogen in the material. The specimens were hydrogen-precharged through immersion in a 20 mass% ammonium thiocyanate solution at 40 °C for 72 h. The crack growth rate in hydrogen-precharged specimens was approximately 10 times faster than that in uncharged specimens, with cracks propagating from the inner to outer surfaces of the pipe. The fracture surface morphology differed significantly, with flat surfaces in hydrogen-precharged materials and convex or concave surfaces in uncharged materials. Eddy current and hammering tests revealed differences in the presence of large cracks between the two materials. By contrast, hammering tests revealed differences in the presence of a half size crack between the two materials. These findings highlight the effect of hydrogen precharging on crack propagation in steel piping and underscore the importance of early detection methods. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop