Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = outer dynein arm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3230 KB  
Article
CFAP300 Loss-of-Function Mutations with Primary Ciliary Dyskinesia: Evidence from Ex Vivo and ALI Cultures
by Anna G. Demchenko, Tatiana A. Kyian, Elena I. Kondratyeva, Elizaveta E. Bragina, Oksana P. Ryzhkova, Roman V. Veiko, Aleksandra G. Nazarova, Vyacheslav B. Chernykh, Svetlana A. Smirnikhina and Sergey I. Kutsev
Int. J. Mol. Sci. 2025, 26(15), 7655; https://doi.org/10.3390/ijms26157655 - 7 Aug 2025
Viewed by 372
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired mucociliary clearance due to defects in motile cilia. This study investigates the impact of loss-of-function mutations in the CFAP300 gene on the ciliary structure and function in three PCD patients. Using [...] Read more.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired mucociliary clearance due to defects in motile cilia. This study investigates the impact of loss-of-function mutations in the CFAP300 gene on the ciliary structure and function in three PCD patients. Using a multimodal approach, we integrated molecular genetic testing, transmission electron microscopy, the high-speed video microscopy assay and immunofluorescence staining to analyze ciliary motility and protein expression in both ex vivo and in vitro-obtained ciliary cells. Our results revealed that the pathogenic variant c.198_200delinsCC (p.Phe67ProfsTer10) in CFAP300 led to the absence of the functional CFAP300 protein, the complete loss of outer and inner dynein arms and immotile cilia. Air–liquid interface (ALI)-cultured cells from patients exhibited no ciliary beating, contrasting with healthy controls. Immunostaining confirmed the absence of CFAP300 in patient-derived cilia, underscoring its critical role in dynein arm assembly. These findings highlight the diagnostic utility of ALI cultures combined with functional and protein analyses for PCD, offering a clinically actionable framework that can be readily incorporated into standard diagnostic workflows. Full article
(This article belongs to the Special Issue Molecular and Cellular Therapeutics for Respiratory Diseases)
Show Figures

Figure 1

18 pages, 4053 KB  
Article
Molecular Insights into Outer Dynein Arm Defects in Primary Ciliary Dyskinesia: Involvement of ZMYND10 and GRP78
by İlker Levent Erdem, Zeynep Bengisu Kaya, Pergin Atilla, Nagehan Emiralioğlu, Cemil Can Eylem, Emirhan Nemutlu, Uğur Özçelik, Halime Nayır Büyükşahin, Ayşenur Daniş and Elif Karakoç
Cells 2025, 14(12), 916; https://doi.org/10.3390/cells14120916 - 17 Jun 2025
Viewed by 737
Abstract
Background: Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by recurrent sinopulmonary infections due to motile cilia defects. The disease is genetically heterogeneous, with abnormalities in structural ciliary proteins. Zinc finger MYND-type containing 10 (ZMYND10) is essential for the assembly of [...] Read more.
Background: Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by recurrent sinopulmonary infections due to motile cilia defects. The disease is genetically heterogeneous, with abnormalities in structural ciliary proteins. Zinc finger MYND-type containing 10 (ZMYND10) is essential for the assembly of outer dynein arms (ODA), with chaperones like Glucose-regulated protein 78 (GRP78) facilitating protein folding. This study investigates ZMYND10 and Dynein axonemal heavy chain 5 (DNAH5) mutations in individuals with PCD. Methods: Eight individuals aged 14–22 with clinical PCD symptoms and confirmed DNAH5 mutations were included. We analyzed the correlation between DNAH5 abnormalities and preassembly/chaperone proteins using immunofluorescence labeling. Nasal swabs were double-labeled (DNAH5–β-tubulin, β-tubulin–ZMYND10, β-tubulin–GRP78) and examined via fluorescence microscopy. Serum metabolomics and proteomics were also assessed. Results: The corrected total cell fluorescence (CTCF) levels of DNAH5, ZMYND10, and GRP78 were significantly different between PCD individuals and controls. Metabolomic analysis showed reduced valine, leucine, and isoleucine biosynthesis, with increased malate and triacylglycerol biosynthesis, malate-aspartate and glycerol phosphate shuttles, and arginine/proline metabolism, suggesting mitochondrial and ER stress. Conclusions: The altered expression of DNAH5, ZMYND10, and GRP78, along with metabolic shifts, points to a complex link between ciliary dysfunction and cellular stress in PCD. Further studies are needed to clarify the underlying mechanisms. Full article
(This article belongs to the Special Issue The Role of Cilia in Health and Diseases—2nd Edition)
Show Figures

Graphical abstract

25 pages, 2776 KB  
Article
Diagnostic Role of Immunofluorescence Analysis in Primary Ciliary Dyskinesia-Suspected Individuals
by Elif Karakoç, Rim Hjeij, Zeynep Bengisu Kaya, Nagehan Emiralioğlu, Dilber Ademhan Tural, Pergin Atilla, Uğur Özçelik and Heymut Omran
J. Clin. Med. 2025, 14(6), 1941; https://doi.org/10.3390/jcm14061941 - 13 Mar 2025
Cited by 1 | Viewed by 1037
Abstract
Background/Objectives: Primary ciliary dyskinesia (PCD) (OMIM: 244400) is a hereditary, rare disorder with a high prevalence in Turkey due to a high rate of consanguinity. The disorder is caused by malfunctioning motile cilia and is characterized by a variety of clinical symptoms [...] Read more.
Background/Objectives: Primary ciliary dyskinesia (PCD) (OMIM: 244400) is a hereditary, rare disorder with a high prevalence in Turkey due to a high rate of consanguinity. The disorder is caused by malfunctioning motile cilia and is characterized by a variety of clinical symptoms including sinusitis, otitis media and chronic obstructive pulmonary disease. This study presents the first assessment of the efficacy of immunofluorescence (IF) labeling for diagnosing PCD in Turkey by correlating IF with clinical observations when genetic data are scarce. Methods: We have a cohort of 54 PCD-suspected individuals with an age range of 5–27 years classified into two groups: group A with available genomic data (8 individuals) and group B with no available genomic data (46 individuals). We performed immunofluorescence analysis to confirm the pathogenicity of the variants in individuals with a prior genetic diagnosis and to confirm a PCD diagnosis in individuals with typical PCD symptoms and no genetic diagnosis. Results: All individuals had airway infections and displayed clinical symptoms of PCD. Our data revealed an absence of outer dynein arm dynein heavy chain DNAH5 in individuals with pathogenic variants in DNAH5 and DNAAF1 and in 17 other PCD-suspected individuals, an absence of nexin–dynein regulatory complex component GAS8 in 8 PCD-suspected individuals, an absence of outer dynein arm dynein heavy chain DNAH11 in 6 PCD-suspected individuals and an absence of radial spoke head component RSPH9 in 2 PCD-suspected individuals. Furthermore, the pathogenicity of ARMC4 variants was confirmed by the absence of the outer dynein arm docking complex component ARMC4 and the proximal localization of DNAH5. Conclusions: Immunofluorescence analysis, owing to its lower cost and quicker turnaround time, proves to be a powerful tool for diagnosing PCD even in the absence of genetic data or electron microscopy results. Full article
(This article belongs to the Special Issue Pediatric Pulmonology: Recent Developments and Emerging Trends)
Show Figures

Figure 1

19 pages, 7505 KB  
Article
Loss of Dnah5 Downregulates Dync1h1 Expression, Causing Cortical Development Disorders and Congenital Hydrocephalus
by Koichiro Sakamoto, Masakazu Miyajima, Madoka Nakajima, Ikuko Ogino, Kou Horikoshi, Ryo Miyahara, Kaito Kawamura, Kostadin Karagiozov, Chihiro Kamohara, Eri Nakamura, Nobuhiro Tada and Akihide Kondo
Cells 2024, 13(22), 1882; https://doi.org/10.3390/cells13221882 - 14 Nov 2024
Viewed by 1762
Abstract
Dnah5 is associated with primary ciliary dyskinesia in humans. Dnah5-knockout (Dnah5−/− mice develop acute hydrocephalus shortly after birth owing to impaired ciliary motility and cerebrospinal fluid (CSF) stagnation. In contrast to chronic adult-onset hydrocephalus observed in other models, this rapid [...] Read more.
Dnah5 is associated with primary ciliary dyskinesia in humans. Dnah5-knockout (Dnah5−/− mice develop acute hydrocephalus shortly after birth owing to impaired ciliary motility and cerebrospinal fluid (CSF) stagnation. In contrast to chronic adult-onset hydrocephalus observed in other models, this rapid ventricular enlargement indicates additional factors beyond CSF stagnation. Herein, we investigated the contributors to rapid ventricular enlargement in congenital hydrocephalus. Dnah5−/− mice were generated using CRISPR/Cas9. The expression of dynein, N-cadherin, and nestin in the cerebral cortex was assessed using microarrays and immunostaining. Real-time PCR and Western blotting were performed for gene and protein quantification, respectively. All Dnah5−/− mice developed hydrocephalus, confirmed by electron microscopy, indicating the absence of axonemal outer dynein arms. Ventricular enlargement occurred rapidly, with a 25% reduction in the number of mature neurons in the motor cortex. Dync1h1 expression was decreased, while cytoplasmic dynein levels were 56.3% lower. Levels of nestin and N-cadherin in the lateral ventricular walls decreased by 31.7% and 33.3%, respectively. Reduced cytoplasmic dynein disrupts neurogenesis and axonal growth and reduces neuron cortical density. Hydrocephalus in Dnah5−/− mice may result from cortical maldevelopment due to cytoplasmic dynein deficiency, further exacerbating ventricular enlargement due to CSF stagnation caused by impaired motile ciliary function. Full article
Show Figures

Figure 1

20 pages, 2141 KB  
Review
Genetic Alterations of NF-κB and Its Regulators: A Rich Platform to Advance Colorectal Cancer Diagnosis and Treatment
by Faranak Alipourgivi, Aishat Motolani, Alice Y. Qiu, Wenan Qiang, Guang-Yu Yang, Shuibing Chen and Tao Lu
Int. J. Mol. Sci. 2024, 25(1), 154; https://doi.org/10.3390/ijms25010154 - 21 Dec 2023
Cited by 10 | Viewed by 3083
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States, with an estimated 52,000 deaths in 2023. Though significant progress has been made in both diagnosis and treatment of CRC in recent years, genetic heterogeneity of CRC—the culprit [...] Read more.
Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States, with an estimated 52,000 deaths in 2023. Though significant progress has been made in both diagnosis and treatment of CRC in recent years, genetic heterogeneity of CRC—the culprit for possible CRC relapse and drug resistance, is still an insurmountable challenge. Thus, developing more effective therapeutics to overcome this challenge in new CRC treatment strategies is imperative. Genetic and epigenetic changes are well recognized to be responsible for the stepwise development of CRC malignancy. In this review, we focus on detailed genetic alteration information about the nuclear factor (NF)-κB signaling, including both NF-κB family members, and their regulators, such as protein arginine methyltransferase 5 (PRMT5), and outer dynein arm docking complex subunit 2 (ODAD2, also named armadillo repeat-containing 4, ARMC4), etc., in CRC patients. Moreover, we provide deep insight into different CRC research models, with a particular focus on patient-derived xenografts (PDX) and organoid models, and their potential applications in CRC research. Genetic alterations on NF-κB signaling components are estimated to be more than 50% of the overall genetic changes identified in CRC patients collected by cBioportal for Cancer Genomics; thus, emphasizing its paramount importance in CRC progression. Consequently, various genetic alterations on NF-κB signaling may hold great promise for novel therapeutic development in CRC. Future endeavors may focus on utilizing CRC models (e.g., PDX or organoids, or isogenic human embryonic stem cell (hESC)-derived colonic cells, or human pluripotent stem cells (hPSC)-derived colonic organoids, etc.) to further uncover the underpinning mechanism of these genetic alterations in NF-κB signaling in CRC progression. Moreover, establishing platforms for drug discovery in dishes, and developing Biobanks, etc., may further pave the way for the development of innovative personalized medicine to treat CRC in the future. Full article
(This article belongs to the Special Issue Colorectal Cancer: A Molecular Genetics Perspective)
Show Figures

Figure 1

18 pages, 2538 KB  
Article
N-Terminal Processing and Modification of Ciliary Dyneins
by Miho Sakato-Antoku, Jeremy L. Balsbaugh and Stephen M. King
Cells 2023, 12(20), 2492; https://doi.org/10.3390/cells12202492 - 20 Oct 2023
Cited by 3 | Viewed by 2129
Abstract
Axonemal dyneins are highly complex microtubule motors that power ciliary motility. These multi-subunit enzymes are assembled at dedicated sites within the cytoplasm. At least nineteen cytosolic factors are specifically needed to generate dynein holoenzymes and/or for their trafficking to the growing cilium. Many [...] Read more.
Axonemal dyneins are highly complex microtubule motors that power ciliary motility. These multi-subunit enzymes are assembled at dedicated sites within the cytoplasm. At least nineteen cytosolic factors are specifically needed to generate dynein holoenzymes and/or for their trafficking to the growing cilium. Many proteins are subject to N-terminal processing and acetylation, which can generate degrons subject to the AcN-end rule, alter N-terminal electrostatics, generate new binding interfaces, and affect subunit stoichiometry through targeted degradation. Here, we have used mass spectrometry of cilia samples and electrophoretically purified dynein heavy chains from Chlamydomonas to define their N-terminal processing; we also detail the N-terminal acetylase complexes present in this organism. We identify four classes of dynein heavy chain based on their processing pathways by two distinct acetylases, one of which is dependent on methionine aminopeptidase activity. In addition, we find that one component of both the outer dynein arm intermediate/light chain subcomplex and the docking complex is processed to yield an unmodified Pro residue, which may provide a setpoint to direct the cytosolic stoichiometry of other dynein complex subunits that contain N-terminal degrons. Thus, we identify and describe an additional level of processing and complexity in the pathways leading to axonemal dynein formation in cytoplasm. Full article
(This article belongs to the Special Issue Structure and Roles of Dynein in Cellular Processes)
Show Figures

Figure 1

22 pages, 4585 KB  
Article
Cfap91-Dependent Stability of the RS2 and RS3 Base Proteins and Adjacent Inner Dynein Arms in Tetrahymena Cilia
by Marta Bicka, Ewa Joachimiak, Paulina Urbanska, Anna Osinka, Anna Konopka, Ewa Bulska and Dorota Wloga
Cells 2022, 11(24), 4048; https://doi.org/10.3390/cells11244048 - 14 Dec 2022
Cited by 10 | Viewed by 2810
Abstract
Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules—nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking [...] Read more.
Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules—nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability. Full article
(This article belongs to the Special Issue Microtubules: Organization, Dynamics and Functions)
Show Figures

Figure 1

17 pages, 1027 KB  
Article
Clustering of Genetic Anomalies of Cilia Outer Dynein Arm and Central Apparatus in Patients with Transposition of the Great Arteries
by Marlon De Ita, Javier Gaytán-Cervantes, Bulmaro Cisneros, María Antonieta Araujo, Juan Carlos Huicochea-Montiel, Alan Cárdenas-Conejo, Charles César Lazo-Cárdenas, César Iván Ramírez-Portillo, Carina Feria-Kaiser, Leoncio Peregrino-Bejarano, Lucelli Yáñez-Gutiérrez, Carolina González-Torres and Haydeé Rosas-Vargas
Genes 2022, 13(9), 1662; https://doi.org/10.3390/genes13091662 - 16 Sep 2022
Cited by 5 | Viewed by 3488
Abstract
Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and [...] Read more.
Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and ciliary trafficking, as well as genes previously associated with this heart malformation. Deleterious missense and splicing variants of genes DNAH9, DNAH11, and ODAD4 of cilia outer dynein arm and central apparatus, HYDIN, were found in our TGA patients. Remarkable, there is a clustering of deleterious genetic variants in cilia genes, suggesting it could be an oligogenic disease. Our data evidence the genetic diversity and etiological complexity of TGA and point out that population allele determination and genetic aggregation studies are required to improve genetic counseling. Full article
(This article belongs to the Special Issue Genetics of Complex Human Disease)
Show Figures

Graphical abstract

18 pages, 2314 KB  
Article
Using VBIM Technique to Discover ARMC4/ODAD2 as a Novel Negative Regulator of NF-κB and a New Tumor Suppressor in Colorectal Cancer
by Matthew Martin, Rasika Mundade, Antja-Voy Hartley, Guanglong Jiang, Jiamin Jin, Steven Sun, Ahmad Safa, George Sandusky, Yunlong Liu and Tao Lu
Int. J. Mol. Sci. 2022, 23(5), 2732; https://doi.org/10.3390/ijms23052732 - 1 Mar 2022
Cited by 7 | Viewed by 3347
Abstract
Since nuclear factor (NF) κB plays pivotal roles in inflammation and cancer, understanding its regulation holds great promise for disease therapy. Using the powerful validation-based insertional mutagenesis (VBIM) technique established by us previously, we discovered armadillo repeat-containing protein 4 (ARMC4)/outer dynein arm docking [...] Read more.
Since nuclear factor (NF) κB plays pivotal roles in inflammation and cancer, understanding its regulation holds great promise for disease therapy. Using the powerful validation-based insertional mutagenesis (VBIM) technique established by us previously, we discovered armadillo repeat-containing protein 4 (ARMC4)/outer dynein arm docking complex subunit 2 (ODAD2), a rarely studied protein known to date, as a novel negative regulator of NF-κB in colorectal cancer (CRC). High expression of ARMC4 downregulated the expression of NF-κB-dependent genes, dramatically reduced NF-κB activity, cellular proliferation, anchorage-independent growth, and migratory ability in vitro, and significantly decreased xenograft tumor growth in vivo. Co-immunoprecipitation experiments demonstrated that ARMC4 forms a complex with NF-κB. Importantly, the lower ARMC4 expression in patient tumors than normal tissues indicates its potential tumor suppressor function in CRC. Collectively, we uncovered a completely new facet of ARMC4 function by identifying it as a novel NF-κB negative regulator, thus uncovering ARMC4 as a potential new therapeutic target in CRC. Full article
Show Figures

Figure 1

17 pages, 13211 KB  
Article
Expression of a Truncated Form of ODAD1 Associated with an Unusually Mild Primary Ciliary Dyskinesia Phenotype
by Lawrence E. Ostrowski, Weining Yin, Amanda J. Smith, Patrick R. Sears, Ximena M. Bustamante-Marin, Hong Dang, Friedhelm Hildebrandt, Leigh Anne Daniels, Nicole A. Capps, Kelli M. Sullivan, Margaret W. Leigh, Maimoona A. Zariwala and Michael R. Knowles
Int. J. Mol. Sci. 2022, 23(3), 1753; https://doi.org/10.3390/ijms23031753 - 3 Feb 2022
Cited by 9 | Viewed by 3489
Abstract
Primary ciliary dyskinesia (PCD) is a rare lung disease caused by mutations that impair the function of motile cilia, resulting in chronic upper and lower respiratory disease, reduced fertility, and a high prevalence of situs abnormalities. The disease is genetically and phenotypically heterogeneous, [...] Read more.
Primary ciliary dyskinesia (PCD) is a rare lung disease caused by mutations that impair the function of motile cilia, resulting in chronic upper and lower respiratory disease, reduced fertility, and a high prevalence of situs abnormalities. The disease is genetically and phenotypically heterogeneous, with causative mutations in > 50 genes identified, and clinical phenotypes ranging from mild to severe. Absence of ODAD1 (CCDC114), a component of the outer dynein arm docking complex, results in a failure to assemble outer dynein arms (ODAs), mostly immotile cilia, and a typical PCD phenotype. We identified a female (now 34 years old) with an unusually mild clinical phenotype who has a homozygous non-canonical splice mutation (c.1502+5G>A) in ODAD1. To investigate the mechanism for the unusual phenotype, we performed molecular and functional studies of cultured nasal epithelial cells. We demonstrate that this splice mutation results in the expression of a truncated protein that is attached to the axoneme, indicating that the mutant protein retains partial function. This allows for the assembly of some ODAs and a significant level of ciliary activity that may result in the atypically mild clinical phenotype. The results also suggest that partial restoration of ciliary function by therapeutic agents could lead to significant improvement of disease symptoms. Full article
Show Figures

Figure 1

17 pages, 12321 KB  
Article
Zebrafish Motile Cilia as a Model for Primary Ciliary Dyskinesia
by Andreia L. Pinto, Margarida Rasteiro, Catarina Bota, Sara Pestana, Pedro Sampaio, Claire Hogg, Thomas Burgoyne and Susana S. Lopes
Int. J. Mol. Sci. 2021, 22(16), 8361; https://doi.org/10.3390/ijms22168361 - 4 Aug 2021
Cited by 9 | Viewed by 5167
Abstract
Zebrafish is a vertebrate teleost widely used in many areas of research. As embryos, they develop quickly and provide unique opportunities for research studies owing to their transparency for at least 48 h post fertilization. Zebrafish have many ciliated organs that include primary [...] Read more.
Zebrafish is a vertebrate teleost widely used in many areas of research. As embryos, they develop quickly and provide unique opportunities for research studies owing to their transparency for at least 48 h post fertilization. Zebrafish have many ciliated organs that include primary cilia as well as motile cilia. Using zebrafish as an animal model helps to better understand human diseases such as Primary Ciliary Dyskinesia (PCD), an autosomal recessive disorder that affects cilia motility, currently associated with more than 50 genes. The aim of this study was to validate zebrafish motile cilia, both in mono and multiciliated cells, as organelles for PCD research. For this purpose, we obtained systematic high-resolution data in both the olfactory pit (OP) and the left–right organizer (LRO), a superficial organ and a deep organ embedded in the tail of the embryo, respectively. For the analysis of their axonemal ciliary structure, we used conventional transmission electron microscopy (TEM) and electron tomography (ET). We characterised the wild-type OP cilia and showed, for the first time in zebrafish, the presence of motile cilia (9 + 2) in the periphery of the pit and the presence of immotile cilia (still 9 + 2), with absent outer dynein arms, in the centre of the pit. In addition, we reported that a central pair of microtubules in the LRO motile cilia is common in zebrafish, contrary to mouse embryos, but it is not observed in all LRO cilia from the same embryo. We further showed that the outer dynein arms of the microtubular doublet of both the OP and LRO cilia are structurally similar in dimensions to the human respiratory cilia at the resolution of TEM and ET. We conclude that zebrafish is a good model organism for PCD research but investigators need to be aware of the specific physical differences to correctly interpret their results. Full article
Show Figures

Figure 1

15 pages, 1590 KB  
Review
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms’ Preassembly
by Hanna Fabczak and Anna Osinka
Int. J. Mol. Sci. 2019, 20(24), 6174; https://doi.org/10.3390/ijms20246174 - 7 Dec 2019
Cited by 25 | Viewed by 6565
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly [...] Read more.
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder. Full article
Show Figures

Figure 1

15 pages, 4589 KB  
Article
CFAP70 Is a Novel Axoneme-Binding Protein That Localizes at the Base of the Outer Dynein Arm and Regulates Ciliary Motility
by Noritoshi Shamoto, Keishi Narita, Tomohiro Kubo, Toshiyuki Oda and Sen Takeda
Cells 2018, 7(9), 124; https://doi.org/10.3390/cells7090124 - 29 Aug 2018
Cited by 38 | Viewed by 7478
Abstract
In the present study, we characterized CFAP70, a candidate of cilia-related protein in mice. As this protein has a cluster of tetratricopeptide repeat (TPR) domains like many components of the intraflagellar transport (IFT) complex, we investigated the domain functions of particular interest in [...] Read more.
In the present study, we characterized CFAP70, a candidate of cilia-related protein in mice. As this protein has a cluster of tetratricopeptide repeat (TPR) domains like many components of the intraflagellar transport (IFT) complex, we investigated the domain functions of particular interest in ciliary targeting and/or localization. RT-PCR and immunohistochemistry of various mouse tissues demonstrated the association of CFAP70 with motile cilia and flagella. A stepwise extraction of proteins from swine tracheal cilia showed that CFAP70 bound tightly to the ciliary axoneme. Fluorescence microscopy of the cultured ependyma expressing fragments of CFAP70 demonstrated that the N-terminus rather than the C-terminus with the TPR domains was more important for the ciliary localization. When CFAP70 was knocked down in cultured mouse ependyma, reductions in cilia beating frequency were observed. Consistent with these observations, a Chlamydomonas mutant lacking the CFAP70 homolog, FAP70, showed defects in outer dynein arm (ODA) activity and a reduction in flagellar motility. Cryo-electron tomography revealed that the N-terminus of FAP70 resided stably at the base of the ODA. These results demonstrated that CFAP70 is a novel regulatory component of the ODA in motile cilia and flagella, and that the N-terminus is important for its ciliary localization. Full article
(This article belongs to the Collection Cilia and Flagella: Structure, Function and Beyond)
Show Figures

Figure 1

Back to TopTop