Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = orthotopic nude mouse model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1978 KiB  
Article
Establishment of an Orthotopic and Metastatic Colorectal Cancer Mouse Model Using a Tissue Adhesive-Based Implantation Method
by Sang Bong Lee, Hui-Jeon Jeon, Hoon Hyun and Yong Hyun Jeon
Cancers 2025, 17(13), 2266; https://doi.org/10.3390/cancers17132266 - 7 Jul 2025
Viewed by 580
Abstract
Background: To overcome the limitations of conventional CRC (colorectal cancer) mouse models in replicating metastasis and enabling efficient therapeutic evaluation, we developed a novel implantation method using tissue adhesive to establish reproducible orthotopic and metastatic tumors. Conventional models using injection or suturing techniques [...] Read more.
Background: To overcome the limitations of conventional CRC (colorectal cancer) mouse models in replicating metastasis and enabling efficient therapeutic evaluation, we developed a novel implantation method using tissue adhesive to establish reproducible orthotopic and metastatic tumors. Conventional models using injection or suturing techniques often suffer from technical complexity, inconsistent tumor establishment, and limited metastatic reliability. Methods: We developed and validated a novel orthotopic and metastatic CRC model utilizing tissue adhesive for tumor transplantation. Uniform tumor fragments derived from bioluminescent HCT116/Luc xenografts were affixed to the cecum of nude mice. Tumor growth and metastasis were monitored through bioluminescence imaging and confirmed by the results of histological analysis of metastatic lesions. The model’s utility for therapeutic testing was evaluated using MK801, an NMDA receptor antagonist. Results: The biological-based model demonstrated rapid and reproducible tumor implantation (<5 min), consistent primary tumor growth, and robust metastasis to the liver and lungs. The biological-based approach achieved 80% tumor engraftment (4/5), with consistent metastasis to the liver and lungs in all mice, compared with lower and variable metastasis rates in injection (0%, 0/5) and suturing (20%, 1/5) methods. MK801 treatment significantly suppressed both primary tumor growth and metastasis, validating the model’s suitability for preclinical drug evaluation. Conclusions: By enabling rapid, reproducible, and spontaneous formation of metastatic lesions using a minimally invasive tissue adhesive technique, our model represents a significant methodological advancement that supports high-throughput therapeutic screening and bridges the gap between experimental modeling and clinical relevance in colorectal cancer research. Full article
(This article belongs to the Special Issue Colorectal Cancer Liver Metastases)
Show Figures

Figure 1

13 pages, 6484 KiB  
Article
Accurate Co-Localization of Luciferase Expression and Fluorescent Anti-CEA Antibody Targeting of Liver Metastases in an Orthotopic Mouse Model of Colon Cancer
by Kyung-Ha Lee, Kristin E. Cox, Siamak Amirfakhri, Sunidhi Jaiswal, Shanglei Liu, Mojgan Hosseini, Thinzar M. Lwin, Paul J. Yazaki, Robert M. Hoffman and Michael Bouvet
Cancers 2024, 16(19), 3341; https://doi.org/10.3390/cancers16193341 - 29 Sep 2024
Cited by 1 | Viewed by 1613
Abstract
Background: The present study aimed to validate the accuracy of a tumor-specific antibody to target liver metastases of colorectal cancer. Methods: A humanized anti-CEA antibody conjugated to a fluorescent dye (M5A-IR800) was tested for targeting human colorectal cancer liver metastases (CRLMs) expressing luciferase [...] Read more.
Background: The present study aimed to validate the accuracy of a tumor-specific antibody to target liver metastases of colorectal cancer. Methods: A humanized anti-CEA antibody conjugated to a fluorescent dye (M5A-IR800) was tested for targeting human colorectal cancer liver metastases (CRLMs) expressing luciferase in an orthotopic mouse model. Orthotopic mouse models of CRLMs were established by implanting fragments of a luciferase-expressing human colorectal cancer cell line, LS174T, in the liver of nude mice. Mice received 50 µg M5A-IR800 72 h prior to imaging. To test co-localization, bioluminescence imaging was performed using D-luciferin, which was given via intraperitoneal injection just prior to imaging. Results: Tumors were able to be visualized non-invasively through the skin with the luciferase–luciferin signal. Intra-abdominal imaging showed accurate labeling of CRLMs with M5A-IR800, which co-localized with the luciferase–luciferin signal. Conclusions: The present results validate the accuracy of a tumor-specific anti-CEA antibody in targeting liver metastases of colorectal cancer. Full article
(This article belongs to the Special Issue Recent Advance in Colorectal Cancer Liver Metastases)
Show Figures

Figure 1

13 pages, 3361 KiB  
Article
CXCL14 Attenuates Triple-Negative Breast Cancer Progression by Regulating Immune Profiles of the Tumor Microenvironment in a T Cell-Dependent Manner
by Carla Gibbs, Jae Young So, Abdul Ahad, Aleksandra M. Michalowski, Deok-Soo Son and Yang Li
Int. J. Mol. Sci. 2022, 23(16), 9314; https://doi.org/10.3390/ijms23169314 - 18 Aug 2022
Cited by 7 | Viewed by 2909
Abstract
Triple-negative breast cancer (TNBC) is aggressive and has a poor overall survival due to a lack of therapeutic targets compared to other subtypes. Chemokine signature revealed that TNBC had low levels of CXCL14, an orphan homeostatic chemokine to regulate the immune network. Here, [...] Read more.
Triple-negative breast cancer (TNBC) is aggressive and has a poor overall survival due to a lack of therapeutic targets compared to other subtypes. Chemokine signature revealed that TNBC had low levels of CXCL14, an orphan homeostatic chemokine to regulate the immune network. Here, we investigated if CXCL14 plays a critical role in TNBC progression, focusing on survival rates, tumor growth and metastasis, and immune profiles in the tumor microenvironment. Analysis of human breast-cancer datasets showed that low CXCL14 expression levels were associated with poor survival rates in patients with breast cancer, particularly for TNBC subtypes. Overexpression of CXCL14 in TNBC 4T1 orthotopic mouse model significantly reduced tumor weights and inhibited lung metastasis. Furthermore, the CXCL14 overexpression altered immune profiles in the tumor microenvironment as follows: decreased F4/80+ macrophages and CD4+CD25+ Treg cells, and increased CD8+T cells in primary tumors; decreased Ly6C+ myeloid cells and CD4+CD25+ Treg cells and increased CD4+ and CD8+T cells in lung metastatic tumors. CXCL14-induced reduction of tumor growth and metastasis was diminished in T cell-deficient nude mice. Taken together, our data demonstrate that CXCL14 inhibits TNBC progression through altering immune profiles in the tumor microenvironment and it is mediated in a T cell-dependent manner. Thus, CXCL14 could be used as a biomarker for prognosis. Full article
Show Figures

Figure 1

12 pages, 13174 KiB  
Article
Effective Tumor Targeting by EphA2-Agonist-Biotin-Streptavidin Conjugates
by Parima Udompholkul, Carlo Baggio, Luca Gambini, Yu Sun, Ming Zhao, Robert M. Hoffman and Maurizio Pellecchia
Molecules 2021, 26(12), 3687; https://doi.org/10.3390/molecules26123687 - 17 Jun 2021
Cited by 6 | Viewed by 3936
Abstract
We recently reported on a potent synthetic agent, 135H11, that selectively targets the receptor tyrosine kinase, EphA2. While 135H11 possesses a relatively high binding affinity for the ligand-binding domain of EphA2 (Kd~130 nM), receptor activation in the cell required the synthesis of dimeric [...] Read more.
We recently reported on a potent synthetic agent, 135H11, that selectively targets the receptor tyrosine kinase, EphA2. While 135H11 possesses a relatively high binding affinity for the ligand-binding domain of EphA2 (Kd~130 nM), receptor activation in the cell required the synthesis of dimeric versions of such agent (namely 135H12). This was expected given that the natural ephrin ligands also need to be dimerized or clustered to elicit agonistic activity in cell. In the present report we investigated whether the agonistic activity of 135H11 could be enhanced by biotin conjugation followed by complex formation with streptavidin. Therefore, we measured the agonistic EphA2 activity of 135H11-biotin (147B5) at various agent/streptavidin ratios, side by side with 135H12, and a scrambled version of 147B5 in pancreatic- and breast-cancer cell lines. The (147B5)n-streptavidin complexes (when n = 2, 3, 4, but not when n = 1) induced a strong receptor degradation effect in both cell lines compared to 135H12 or the (scrambled-147B5)4-streptavidin complex as a control, indicating that multimerization of the targeting agent resulted in an increased ability to cause receptor clustering and internalization. Subsequently, we prepared an Alexa-Fluor-streptavidin conjugate to demonstrate that (147B5)4-AF-streptavidin, but not the scrambled equivalent complex, concentrates in pancreatic and breast cancers in orthotopic nude-mouse models. Hence, we conclude that these novel targeting agents, with proper derivatization with imaging reagents or chemotherapy, can be used as diagnostics, and/or to deliver chemotherapy selectively to EphA2-expressing tumors. Full article
(This article belongs to the Special Issue Bioconjugation Strategies in Drug Delivery and Molecular Imaging)
Show Figures

Graphical abstract

14 pages, 2620 KiB  
Article
NR4A1 Ligands as Potent Inhibitors of Breast Cancer Cell and Tumor Growth
by Keshav Karki, Kumaravel Mohankumar, Abigail Schoeller, Gregory Martin, Rupesh Shrestha and Stephen Safe
Cancers 2021, 13(11), 2682; https://doi.org/10.3390/cancers13112682 - 29 May 2021
Cited by 23 | Viewed by 4570
Abstract
Nuclear receptor 4A1 (NR4A1, Nur77, TR3) is more highly expressed in breast and solid tumors compared to non-tumor tissues and is a pro-oncogenic factor in solid tumor-derived cancers. NR4A1 regulates cancer cell growth, survival, migration, and invasion, and bis-indole-derived compounds (CDIMs) that bind [...] Read more.
Nuclear receptor 4A1 (NR4A1, Nur77, TR3) is more highly expressed in breast and solid tumors compared to non-tumor tissues and is a pro-oncogenic factor in solid tumor-derived cancers. NR4A1 regulates cancer cell growth, survival, migration, and invasion, and bis-indole-derived compounds (CDIMs) that bind NR4A1 act as antagonists and inhibit tumor growth. Preliminary structure-binding studies identified 1,1-bis(3′-indolyl)-1-(3,5-disubstitutedphenyl)methane analogs as NR4A1 ligands with low KD values; we further investigated the anticancer activity of the four most active analogs (KD’s ≤ 3.1 µM) in breast cancer cells and in athymic mouse xenograft models. The treatment of MDA-MB-231 and SKBR3 breast cancer cells with the 3-bromo-5-methoxy, 3-chloro-5-trifluoromethoxy, 3-chloro-5-trifluoromethyl, and 3-bromo-5-trifluoromethoxy phenyl-substituted analogs decreased cell growth and the expression of epidermal of growth factor receptor (EGFR), hepatocyte growth factor receptor (cMET), and PD-L1 as well as inhibited mTOR phosphorylation. In addition, all four compounds inhibited tumor growth in athymic nude mice bearing MDA-MB-231 cells (orthotopic) at a dose of 1 mg/kg/d, which was not accompanied by changes in body weight. These 3,5-disubstituted analogs were the most potent CDIM/NR4A1 ligands reported and are being further developed for clinical applications. Full article
Show Figures

Figure 1

20 pages, 2597 KiB  
Review
Recent Advances in Implantation-Based Genetic Modeling of Biliary Carcinogenesis in Mice
by Masashi Izumiya, Shingo Kato and Yoshitaka Hippo
Cancers 2021, 13(10), 2292; https://doi.org/10.3390/cancers13102292 - 11 May 2021
Cited by 6 | Viewed by 4195
Abstract
Epithelial cells in the biliary system can develop refractory types of cancers, which are often associated with inflammation caused by viruses, parasites, stones, and chemicals. Genomic studies have revealed recurrent genetic changes and deregulated signaling pathways in biliary tract cancer (BTC). The causal [...] Read more.
Epithelial cells in the biliary system can develop refractory types of cancers, which are often associated with inflammation caused by viruses, parasites, stones, and chemicals. Genomic studies have revealed recurrent genetic changes and deregulated signaling pathways in biliary tract cancer (BTC). The causal roles have been at least partly clarified using various genetically engineered mice. Technical advances in Cre-LoxP technology, together with hydrodynamic tail injection, CRISPR/Cas9 technology, in vivo electroporation, and organoid culture have enabled more precise modeling of BTC. Organoid-based genetic modeling, combined with implantation in mice, has recently drawn attention as a means to accelerate the development of BTC models. Although each model may not perfectly mimic the disease, they can complement one another, or two different approaches can be integrated to establish a novel model. In addition, a comparison of the outcomes among these models with the same genotype provides mechanistic insights into the interplay between genetic alterations and the microenvironment in the pathogenesis of BTCs. Here, we review the current status of genetic models of BTCs in mice to provide information that facilitates the wise selection of models and to inform the future development of ideal disease models. Full article
(This article belongs to the Collection Carcinogenesis Model)
Show Figures

Graphical abstract

12 pages, 1816 KiB  
Article
Prostate Cancer Metastases Are Strongly Inhibited by Agonistic Epha2 Ligands in an Orthotopic Mouse Model
by Ahmed F. Salem, Luca Gambini, Sandrine Billet, Yu Sun, Hiromichi Oshiro, Ming Zhao, Robert M. Hoffman, Neil A. Bhowmick and Maurizio Pellecchia
Cancers 2020, 12(10), 2854; https://doi.org/10.3390/cancers12102854 - 2 Oct 2020
Cited by 18 | Viewed by 3575
Abstract
The EphA2 tyrosine kinase receptor is highly expressed in several types of solid tumors. In our recent studies, we targeted EphA2 in pancreatic cancer with agonistic agents and demonstrated that suppression of EphA2 significantly reduced cancer-cell migration in cell-based assays. In the present [...] Read more.
The EphA2 tyrosine kinase receptor is highly expressed in several types of solid tumors. In our recent studies, we targeted EphA2 in pancreatic cancer with agonistic agents and demonstrated that suppression of EphA2 significantly reduced cancer-cell migration in cell-based assays. In the present study, we focused on targeting EphA2 in prostate cancer. While not all prostate cancers express EphA2, we showed that enzalutamide induced EphA2 expression in prostate cancer cells and in a patient-derived xenograft (PDX) animal model, which provides further impetus to target EphA2 in prostate cancer. Western blot studies showed that agonistic dimeric synthetic (135H12) and natural (ephrinA1-Fc) ligands effectively degraded EphA2 receptor in the prostate cancer cell line PC-3. The agents also delayed cell migration of prostate cancer (PC-3) cells, while an in vivo PC-3 orthotopic metastatic nude-mouse model also revealed that administration of ephrinA1-Fc or 135H12 strongly reduced metastases. The present study further validates EphA2 as an important target in metastatic prostate cancer treatment. Our results should incentivize further efforts aimed at developing potent and effective EphA2 synthetic agonistic agents for the treatment of EphA2-driven aggressive metastatic tumors including prostate, pancreatic, and breast cancer. Full article
(This article belongs to the Special Issue Targeting Cancer Metastasis)
Show Figures

Graphical abstract

19 pages, 1830 KiB  
Article
(−)-Oleocanthal Prevents Breast Cancer Locoregional Recurrence After Primary Tumor Surgical Excision and Neoadjuvant Targeted Therapy in Orthotopic Nude Mouse Models
by Abu Bakar Siddique, Nehad M. Ayoub, Afsana Tajmim, Sharon A. Meyer, Ronald A. Hill and Khalid A. El Sayed
Cancers 2019, 11(5), 637; https://doi.org/10.3390/cancers11050637 - 8 May 2019
Cited by 30 | Viewed by 5720
Abstract
Breast cancer (BC) recurrence represents a challenge for survivors who have had their primary tumors surgically excised, and/or have completed radiation, neoadjuvant, or adjuvant therapeutic regimens. Current BC treatments mostly lack the ability to reduce the risk of disease recurrence. About 70% of [...] Read more.
Breast cancer (BC) recurrence represents a challenge for survivors who have had their primary tumors surgically excised, and/or have completed radiation, neoadjuvant, or adjuvant therapeutic regimens. Current BC treatments mostly lack the ability to reduce the risk of disease recurrence. About 70% of BC patients will subsequently suffer disease relapse, manifesting as local, regional, or distant tumor recurrence, which clearly underscores the urgent need to discover novel recurrence inhibitors. (−)-Oleocanthal (OC) is a natural phenolic, found so far exclusively in extra-virgin olive oil (EVOO). OC exerts documented bioactivities against diverse cancer types, inflammation, and neurodegenerative diseases. Herein we report the novel activity of daily oral treatment with OC (10 mg/kg) in preventing BC locoregional recurrence in a nude mouse xenograft model generated by orthotopic inoculation with BT-474 cells as a luminal type B model. We further report inhibition of tumor recurrence by OC after completion of a lapatinib neoadjuvant regimen. However, in a recurrence model of triple-negative breast cancer (TNBC), OC treatment (10 mg/kg) did not effectively prevent tumor recurrence, but rather, was seen to significantly reduce the growth of recurrent tumors as compared to vehicle control-treated animals. Inhibition of tumor recurrence was associated with significant serum level reductions of the human BC recurrence marker CA 15-3 at the study end in animals treated with OC. OC treatment upregulated the expression of the epithelial marker E-cadherin and downregulated the levels of the mesenchymal marker vimentin in recurrent tumors vs. untreated control animals. OC treatment also reduced the activation of MET and HER2 receptors, as indicated by reduced phosphorylation levels of these proteins in recurrent tumors vs. controls. Collectively, the results of our studies provide the first evidence for suppression of BC tumor recurrence by oral OC treatment in an animal model for such recurrence, and furthermore, highlight favorable prospects for this natural product to emerge as a first-in-class BC recurrence inhibitor. Full article
Show Figures

Figure 1

16 pages, 6358 KiB  
Article
Development of an Image-Guided Orthotopic Xenograft Mouse Model of Endometrial Cancer with Controllable Estrogen Exposure
by Gonda FJ Konings, Niina Saarinen, Bert Delvoux, Loes Kooreman, Pasi Koskimies, Camilla Krakstad, Kristine E. Fasmer, Ingfrid S. Haldorsen, Amina Zaffagnini, Merja R. Häkkinen, Seppo Auriola, Ludwig Dubois, Natasja Lieuwes, Frank Verhaegen, Lotte EJR Schyns, Roy FPM Kruitwagen, ENITEC Consortium, Sofia Xanthoulea and Andrea Romano
Int. J. Mol. Sci. 2018, 19(9), 2547; https://doi.org/10.3390/ijms19092547 - 28 Aug 2018
Cited by 12 | Viewed by 5571
Abstract
Endometrial cancer (EC) is the most common gynaecological malignancy in Western society and the majority of cases are estrogen dependent. While endocrine drugs proved to be of insufficient therapeutic value in the past, recent clinical research shows promising results by using combinational regimens [...] Read more.
Endometrial cancer (EC) is the most common gynaecological malignancy in Western society and the majority of cases are estrogen dependent. While endocrine drugs proved to be of insufficient therapeutic value in the past, recent clinical research shows promising results by using combinational regimens and pre-clinical studies and identified potential novel endocrine targets. Relevant pre-clinical models can accelerate research in this area. In the present study we describe an orthotopic and estrogen dependent xenograft mouse model of EC. Tumours were induced in one uterine horn of female athymic nude mice using the well-differentiated human endometrial adenocarcinoma Ishikawa cell line—modified to express the luciferase gene for bioluminescence imaging (BLI). BLI and contrast-enhanced computed-tomograph (CE-CT) were used to measure non-invasive tumour growth. Controlled estrogen exposure was achieved by the use of MedRod implants releasing 1.5 μg/d of 17β-estradiol (E2) in ovariectomized mice. Stable E2 serum concentration was demonstrated by LC-MS/MS. Induced tumours were E2 responsive as increased tumour growth was observed in the presence of E2 but not placebo, assessed by BLI, CE-CT, and tumour weight at sacrifice. Metastatic spread was assessed macroscopically by BLI and histology and was seen in the peritoneal cavity, in the lymphovascular space, and in the thoracic cavity. In conclusion, we developed an orthotopic xenograft mouse model of EC that exhibits the most relevant features of human disease, regarding metastatic spread and estrogen dependency. This model offers an easy to manipulate estrogen dosage (by simply adjusting the MedRod implant length), image-guided monitoring of tumour growth, and objectively measurable endpoints (including tumour weight). This is an excellent in vivo tool to further explore endocrine drug regimens and novel endocrine drug targets for EC. Full article
(This article belongs to the Special Issue Molecular Research of Endometrial Pathophysiology)
Show Figures

Graphical abstract

14 pages, 4664 KiB  
Article
The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma
by Caiqin Zhang, Yong Zhao, He Zhang, Xue Chen, Ningning Zhao, Dengxu Tan, Hai Zhang and Changhong Shi
Int. J. Mol. Sci. 2017, 18(6), 1332; https://doi.org/10.3390/ijms18061332 - 21 Jun 2017
Cited by 39 | Viewed by 10136
Abstract
Near infrared fluorescence (NIRF) imaging has strong potential for widespread use in noninvasive tumor imaging. Indocyanine green (ICG) is the only Food and Drug Administration (FDA) -approved NIRF dye for clinical diagnosis; however, it is unstable and poorly targets tumors. DZ-1 is a [...] Read more.
Near infrared fluorescence (NIRF) imaging has strong potential for widespread use in noninvasive tumor imaging. Indocyanine green (ICG) is the only Food and Drug Administration (FDA) -approved NIRF dye for clinical diagnosis; however, it is unstable and poorly targets tumors. DZ-1 is a novel heptamethine cyanine NIRF dye, suitable for imaging and tumor targeting. Here, we compared the fluorescence intensity and metabolism of DZ-1 and ICG. Additionally, we assayed their specificities and abilities to target tumor cells, using cultured hepatocellular carcinoma (HCC) cell lines, a nude mouse subcutaneous xenograft model of liver cancer, and a rabbit orthotopic transplantation model. We found that DZ-1 accumulates in tumor tissue and specifically recognizes HCC in subcutaneous and orthotopic models. The NIRF intensity of DZ-1 was one order of magnitude stronger than that of ICG, and DZ-1 showed excellent intraoperative tumor targeting in the rabbit model. Importantly, ICG accumulated at tumor sites, as well as in the liver and kidney. Furthermore, DZ-1 analog-gemcitabine conjugate (NIRG) exhibited similar tumor-specific targeting and imaging properties, including inhibition of tumor growth, in HCC patient-derived xenograft (PDX) mice. DZ-1 and NIRG demonstrated superior tumor-targeting specificity, compared to ICG. We show that DZ-1 is an effective molecular probe for specific imaging, targeting, and therapy in HCC. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

16 pages, 1627 KiB  
Article
GHGKHKNK Octapeptide (P-5m) Inhibits Metastasis of HCCLM3 Cell Lines via Regulation of MMP-2 Expression in in Vitro and in Vivo Studies
by Xiao Han, Dong-Mei Yan, Xiang-Feng Zhao, Matsuura Hiroshi, Wei-Guang Ding, Peng Li, Shuang Jiang, Bai-Rong Du, Pei-Ge Du and Xun Zhu
Molecules 2012, 17(2), 1357-1372; https://doi.org/10.3390/molecules17021357 - 2 Feb 2012
Cited by 11 | Viewed by 11058 | Correction
Abstract
P-5m, an octapeptide derived from domain 5 of HKa, was initially found to inhibit the invasion and migration of melanoma cells. The high metastatic potential of melanoma cells was prevented by the HGK motif in the P-5m peptide in vitro and in an [...] Read more.
P-5m, an octapeptide derived from domain 5 of HKa, was initially found to inhibit the invasion and migration of melanoma cells. The high metastatic potential of melanoma cells was prevented by the HGK motif in the P-5m peptide in vitro and in an experimental lung metastasis model, suggesting that P-5m may play an important role in the regulation of tumor metastasis. The aim of this study was to measure the effect of P-5m on tumor metastasis of human hepatocarcinoma cell line (HCCLM3) in vitro and in vivo in a nude mouse model of hepatocellular carcinoma (HCC), and detect the mechanisms involved in P-5m-induced anti-metastasis. By gelatin zymography, matrix metallo-proteinases 2 (MMP-2) activity in HCCLM3 was dramatically diminished by P-5m peptide. In addition, the migration and metastasis of HCCLM3 cells was also inhibited by the peptide in vitro. In an orthotopic model of HCC in nude mice, P-5m treatment effectively reduced the lung metastasis as well as the expression of MMP-2 in the tumor tissues. Overall, these observations indicate an important role for P-5m peptide in HCC invasion and metastasis, at least partially through modulation MMP-2 expression. These data suggests that P-5m may have therapeutic potential in metastatic human hepatocarcinoma. Full article
Show Figures

Figure 1

16 pages, 873 KiB  
Article
SLT-VEGF Reduces Lung Metastases, Decreases Tumor Recurrence, and Improves Survival in an Orthotopic Melanoma Model
by Rachel Ackerman, Joseph M. Backer, Marina Backer, Sini Skariah and Carl V. Hamby
Toxins 2010, 2(9), 2242-2257; https://doi.org/10.3390/toxins2092242 - 27 Aug 2010
Viewed by 9502
Abstract
SLT-VEGF is a recombinant cytotoxin comprised of Shiga-like toxin (SLT) subunit A fused to human vascular endothelial growth factor (VEGF). It is highly cytotoxic to tumor endothelial cells overexpressing VEGF receptor-2 (VEGFR-2/KDR/Flk1) and inhibits the growth of primary tumors in subcutaneous models of [...] Read more.
SLT-VEGF is a recombinant cytotoxin comprised of Shiga-like toxin (SLT) subunit A fused to human vascular endothelial growth factor (VEGF). It is highly cytotoxic to tumor endothelial cells overexpressing VEGF receptor-2 (VEGFR-2/KDR/Flk1) and inhibits the growth of primary tumors in subcutaneous models of breast and prostate cancer and inhibits metastatic dissemination in orthotopic models of pancreatic cancer. We examined the efficacy of SLT-VEGF in limiting tumor growth and metastasis in an orthotopic melanoma model, using NCR athymic nude mice inoculated with highly metastatic Line IV Cl 1 cultured human melanoma cells. Twice weekly injections of SLT-VEGF were started when tumors became palpable at one week after intradermal injection of 1 × 106 cells/mouse. Despite selective depletion of VEGFR-2 overexpressing endothelial cells from the tumor vasculature, SLT-VEGF treatment did not affect tumor growth. However, after primary tumors were removed, continued SLT-VEGF treatment led to fewer tumor recurrences (p = 0.007), reduced the incidence of lung metastasis (p = 0.038), and improved survival (p = 0.002). These results suggest that SLT-VEGF is effective at the very early stages of tumor development, when selective killing of VEGFR-2 overexpressing endothelial cells can still prevent further progression. We hypothesize that SLT-VEGF could be a promising adjuvant therapy to inhibit or prevent outgrowth of metastatic foci after excision of aggressive primary melanoma lesions. Full article
(This article belongs to the Special Issue Toxins as Therapeutics)
Show Figures

Graphical abstract

Back to TopTop