Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = orthopoxviruses (OPV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1302 KB  
Communication
Vaccinia and Monkeypox Virus-Neutralizing Antibodies in People Living with HIV: A Serological Study in a Orthopoxvirus-Endemic, Low-Income Region in Brazil
by Thyago José Silva, Ana Gabriella Stoffella-Dutra, Victor Lacerda Gripp, Pollyana R. C. Gorgens, Iago José da Silva Domingos, Pedro Henrique Bastos e Silva, Bruna Caroline Chaves-Garcia, Erna Geessien Kroon, Etel Rocha-Vieira, Giliane de Souza Trindade and Danilo Bretas de Oliveira
Pathogens 2025, 14(8), 733; https://doi.org/10.3390/pathogens14080733 - 25 Jul 2025
Cited by 1 | Viewed by 1069
Abstract
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks [...] Read more.
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks affect rural communities. This epidemiological context is especially relevant for at-risk populations, such as people living with HIV (PLHIV). This study aimed to assess the presence of neutralizing antibodies (NAbs) against OPV in PLHIV in this endemic setting. Serum samples were collected from 177 PLHIV in treatment at the specialized service between December 2021 and August 2022. VACV and MPXV NAbs were measured using the plaque reduction neutralization test (PRNT) and VACV-infected cells. The overall occurrence of OPV NAbs was 27.7%. NAbs were higher in individuals born before 1980 (53.3%) than those born after 1980 (1.1%). Among anti-VACV-seropositive individuals, 40.8% also had MPXV NAbs, suggesting cross-immunity. These findings indicate the circulation of VACV in PLHIV and highlight the increased susceptibility to OPV infections among individuals born after the cessation of smallpox vaccination. The results reinforce the importance of continued surveillance of OPV, especially in endemic regions and vulnerable populations. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

14 pages, 2449 KB  
Review
VP37 Protein Inhibitors for Mpox Treatment: Highlights on Recent Advances, Patent Literature, and Future Directions
by Shuaibu A. Hudu, Ahmed S. Alshrari, Aiman Al Qtaitat and Mohd Imran
Biomedicines 2023, 11(4), 1106; https://doi.org/10.3390/biomedicines11041106 - 6 Apr 2023
Cited by 18 | Viewed by 4463
Abstract
Monkeypox disease (Mpox) has threatened humankind worldwide since mid-2022. The Mpox virus (MpoxV) is an example of Orthopoxviruses (OPVs), which share similar genomic structures. A few treatments and vaccines are available for Mpox. OPV-specific VP37 protein (VP37P) is a target for developing drugs [...] Read more.
Monkeypox disease (Mpox) has threatened humankind worldwide since mid-2022. The Mpox virus (MpoxV) is an example of Orthopoxviruses (OPVs), which share similar genomic structures. A few treatments and vaccines are available for Mpox. OPV-specific VP37 protein (VP37P) is a target for developing drugs against Mpox and other OPV-induced infections such as smallpox. This review spotlights the existing and prospective VP37P inhibitors (VP37PIs) for Mpox. The non-patent literature was collected from PubMed, and the patent literature was gathered from free patent databases. Very little work has been carried out on developing VP37PIs. One VP37PI (tecovirimat) has already been approved in Europe to treat Mpox, while another drug, NIOCH-14, is under clinical trial. Developing tecovirimat/NIOCH-14-based combination therapies with clinically used drugs demonstrating activity against Mpox or other OPV infections (mitoxantrone, ofloxacin, enrofloxacin, novobiocin, cidofovir, brincidofovir, idoxuridine, trifluridine, vidarabine, fialuridine, adefovir, imatinib, and rifampicin), immunity boosters (vitamin C, zinc, thymoquinone, quercetin, ginseng, etc.), and vaccines may appear a promising strategy to fight against Mpox and other OPV infections. Drug repurposing is also a good approach for identifying clinically useful VP37PIs. The dearth in the discovery process of VP37PIs makes it an interesting area for further research. The development of the tecovirimat/NIOCH-14-based hybrid molecules with certain chemotherapeutic agents looks fruitful and can be explored to obtain new VP37PI. It would be interesting and challenging to develop an ideal VP37PI concerning its specificity, safety, and efficacy. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

9 pages, 2000 KB  
Article
Evaluation of Rapid Dot-Immunoassay for Detection Orthopoxviruses Using Laboratory-Grown Viruses and Animal’s Clinical Specimens
by Nikita Ushkalenko, Anna Ersh, Alexander Sergeev, Pavel Filatov and Alexander Poltavchenko
Viruses 2022, 14(11), 2580; https://doi.org/10.3390/v14112580 - 21 Nov 2022
Cited by 5 | Viewed by 2227
Abstract
The aim of the work was an experimental evaluation of the characteristics of the kit for the rapid immunochemical detection of orthopoxviruses (OPV). The kit is based on the method of one-stage dot-immunoassay on flat protein arrays using gold conjugates and a silver [...] Read more.
The aim of the work was an experimental evaluation of the characteristics of the kit for the rapid immunochemical detection of orthopoxviruses (OPV). The kit is based on the method of one-stage dot-immunoassay on flat protein arrays using gold conjugates and a silver developer. Rabbit polyclonal antibodies against the vaccinia virus were used as capture and detection reagents. The sensitivity of detection of OPV and the specificity of the analysis were assessed using culture crude preparations (monkeypox virus, vaccinia virus, rabbitpox virus, cowpox virus, and ectromelia virus), a suspension from a crust from a human vaccination site as well as blood and tissue suspensions of infected rabbits. It has been shown that the assay using the kit makes it possible to detect OPV within 36 min at a temperature of 18–40 °C in unpurified culture samples of the virus and clinical samples in the range of 103–104 PFU/mL. Tests of the kit did not reveal cross-reactivity with uninfected cell cultures and viral pathogens of exanthematous infections (measles, rubella and chicken pox). The kit can be used to detect or exclude the presence of a virus threat in samples and can be useful in various aspects of biosecurity. The simplicity of analysis, the possibility of visual accounting the and interpretation of the results make it possible to use the test in laboratories with a high level of biological protection and in out-of-laboratory conditions. Full article
Show Figures

Figure 1

8 pages, 2193 KB  
Article
Orthopoxvirus Seroprevalence in Cats and Veterinary Personnel in North-Eastern Italy in 2011
by Daniele Lapa, Anna Beltrame, Alessandra Arzese, Fabrizio Carletti, Antonino Di Caro, Giuseppe Ippolito, Maria Rosaria Capobianchi and Concetta Castilletti
Viruses 2019, 11(2), 101; https://doi.org/10.3390/v11020101 - 25 Jan 2019
Cited by 6 | Viewed by 4507
Abstract
Orthopoxviruses (OPV) are emerging zoonotic pathogens, and an increasing number of human infections is currently reported in Europe and in other continents, warranting heightened attention on this topic. Following two OPV infections reported in veterinarians scratched by sick cats in 2005 and 2007 [...] Read more.
Orthopoxviruses (OPV) are emerging zoonotic pathogens, and an increasing number of human infections is currently reported in Europe and in other continents, warranting heightened attention on this topic. Following two OPV infections reported in veterinarians scratched by sick cats in 2005 and 2007 in North-Eastern-Italy, involving a previously undescribed OPV, a similar strain was isolated by a sick cat from the same territory in 2011, i.e., 6 years later, raising attention on OPV circulation in this region. A surveillance program was launched to assess the OPV seroprevalence among the veterinarians working in local veterinary clinics and in the local wild and domestic cat population; seroprevalence was 33.3% in veterinarians and 19.5% in cats. Seroprevalence in cats was unevenly distributed, peaking at 40% in the area where OPV-infected cats had been observed. Full article
(This article belongs to the Special Issue Emerging Viruses)
Show Figures

Figure 1

12 pages, 3959 KB  
Article
Whole Genome Characterization of Orthopoxvirus (OPV) Abatino, a Zoonotic Virus Representing a Putative Novel Clade of Old World Orthopoxviruses
by Cesare E. M. Gruber, Emanuela Giombini, Marina Selleri, Simon H. Tausch, Andreas Andrusch, Alona Tyshaieva, Giusy Cardeti, Raniero Lorenzetti, Lorenzo De Marco, Fabrizio Carletti, Andreas Nitsche, Maria R. Capobianchi, Giuseppe Ippolito, Gian Luca Autorino and Concetta Castilletti
Viruses 2018, 10(10), 546; https://doi.org/10.3390/v10100546 - 6 Oct 2018
Cited by 21 | Viewed by 6916
Abstract
Orthopoxviruses (OPVs) are diffused over the complete Eurasian continent, but previously described strains are mostly from northern Europe, and few infections have been reported from Italy. Here we present the extended genomic characterization of OPV Abatino, a novel OPV isolated in Italy from [...] Read more.
Orthopoxviruses (OPVs) are diffused over the complete Eurasian continent, but previously described strains are mostly from northern Europe, and few infections have been reported from Italy. Here we present the extended genomic characterization of OPV Abatino, a novel OPV isolated in Italy from an infected Tonkean macaque, with zoonotic potential. Phylogenetic analysis based on 102 conserved OPV genes (core gene set) showed that OPV Abatino is most closely related to the Ectromelia virus species (ECTV), although placed on a separate branch of the phylogenetic tree, bringing substantial support to the hypothesis that this strain may be part of a novel OPV clade. Extending the analysis to the entire set of genes (coding sequences, CDS) further substantiated this hypothesis. In fact the genome of OPV Abatino included more CDS than ECTV; most of the extra genes (mainly located in the terminal genome regions), showed the highest similarity with cowpox virus (CPXV); however vaccinia virus (VACV) and monkeypox virus (MPXV) were the closest OPV for certain CDS. These findings suggest that OPV Abatino could be the result of complex evolutionary events, diverging from any other previously described OPV, and may indicate that previously reported cases in Italy could represent the tip of the iceberg yet to be explored. Full article
(This article belongs to the Special Issue Emerging Viruses)
Show Figures

Figure 1

29 pages, 13983 KB  
Review
Rapid Viral Diagnosis of Orthopoxviruses by Electron Microscopy: Optional or a Must?
by Hans R. Gelderblom and Dick Madeley
Viruses 2018, 10(4), 142; https://doi.org/10.3390/v10040142 - 22 Mar 2018
Cited by 30 | Viewed by 19578
Abstract
Diagnostic electron microscopy (DEM) was an essential component of viral diagnosis until the development of highly sensitive nucleic acid amplification techniques (NAT). The simple negative staining technique of DEM was applied widely to smallpox diagnosis until the world-wide eradication of the human-specific pathogen [...] Read more.
Diagnostic electron microscopy (DEM) was an essential component of viral diagnosis until the development of highly sensitive nucleic acid amplification techniques (NAT). The simple negative staining technique of DEM was applied widely to smallpox diagnosis until the world-wide eradication of the human-specific pathogen in 1980. Since then, the threat of smallpox re-emerging through laboratory escape, molecular manipulation, synthetic biology or bioterrorism has not totally disappeared and would be a major problem in an unvaccinated population. Other animal poxviruses may also emerge as human pathogens. With its rapid results (only a few minutes after arrival of the specimen), no requirement for specific reagents and its “open view”, DEM remains an important component of virus diagnosis, particularly because it can easily and reliably distinguish smallpox virus or any other member of the orthopoxvirus (OPV) genus from parapoxviruses (PPV) and the far more common and less serious herpesviruses (herpes simplex and varicella zoster). Preparation, enrichment, examination, internal standards and suitable organisations are discussed to make clear its continuing value as a diagnostic technique. Full article
(This article belongs to the Special Issue Smallpox and Emerging Zoonotic Orthopoxviruses: What Is Coming Next?)
Show Figures

Graphical abstract

21 pages, 2773 KB  
Review
Vaccinia Virus Natural Infections in Brazil: The Good, the Bad, and the Ugly
by Jaqueline Silva de Oliveira, Poliana De Oliveira Figueiredo, Galileu Barbosa Costa, Felipe Lopes de Assis, Betânia Paiva Drumond, Flávio Guimarães Da Fonseca, Maurício Lacerda Nogueira, Erna Geessien Kroon and Giliane De Souza Trindade
Viruses 2017, 9(11), 340; https://doi.org/10.3390/v9110340 - 15 Nov 2017
Cited by 46 | Viewed by 10180
Abstract
The orthopoxviruses (OPV) comprise several emerging viruses with great importance to human and veterinary medicine, including vaccinia virus (VACV), which causes outbreaks of bovine vaccinia (BV) in South America. Historically, VACV is the most comprehensively studied virus, however, its origin and natural hosts [...] Read more.
The orthopoxviruses (OPV) comprise several emerging viruses with great importance to human and veterinary medicine, including vaccinia virus (VACV), which causes outbreaks of bovine vaccinia (BV) in South America. Historically, VACV is the most comprehensively studied virus, however, its origin and natural hosts remain unknown. VACV was the primary component of the smallpox vaccine, largely used during the smallpox eradication campaign. After smallpox was declared eradicated, the vaccination that conferred immunity to OPV was discontinued, favoring a new contingent of susceptible individuals to OPV. VACV infections occur naturally after direct contact with infected dairy cattle, in recently vaccinated individuals, or through alternative routes of exposure. In Brazil, VACV outbreaks are frequently reported in rural areas, affecting mainly farm animals and humans. Recent studies have shown the role of wildlife in the VACV transmission chain, exploring the role of wild rodents as reservoirs that facilitate VACV spread throughout rural areas. Furthermore, VACV circulation in urban environments and the significance of this with respect to public health, have also been explored. In this review, we discuss the history, epidemiological, ecological and clinical aspects of natural VACV infections in Brazil, also highlighting alternative routes of VACV transmission, the factors involved in susceptibility to infection, and the natural history of the disease in humans and animals, and the potential for dissemination to urban environments. Full article
(This article belongs to the Special Issue Smallpox and Emerging Zoonotic Orthopoxviruses: What Is Coming Next?)
Show Figures

Graphical abstract

Back to TopTop