Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = organotin complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4054 KiB  
Article
Benzo[c]cinnolinium Trifluoromethanesulfonate Architectures Induced by Organotin(IV) Complexes
by Hélène Cattey and Laurent Plasseraud
Crystals 2025, 15(7), 655; https://doi.org/10.3390/cryst15070655 - 17 Jul 2025
Viewed by 334
Abstract
Four novel crystalline architectures based on benzo[c]cinnolininium trifluoromethanesulonate salts, [C12H9N2]+[CF3SO3], have been isolated as single-crystals, and their structures have been determined by X-ray diffraction analysis. The formation [...] Read more.
Four novel crystalline architectures based on benzo[c]cinnolininium trifluoromethanesulonate salts, [C12H9N2]+[CF3SO3], have been isolated as single-crystals, and their structures have been determined by X-ray diffraction analysis. The formation of the new salts results from reactions involving the dimeric hydroxo di-n-butylstannane trifluoromethanesulfonato complex [n-Bu2Sn(OH)(H2O)(CF3SO3)]2 (1) and benzo[c]cinnoline (C12H8N2, BCC). Organic salts I, II, III, and IV were crystallized through slow evaporation at room temperature from a mixture of toluene/dichloromethane. The cystallographic structures of I, II, and IV exhibit the presence of monoprotonated benzo[c]cinnolinium cations in interactions with a free benzo[c]cinnoline molecule through N–H···N hydrogen bonding, while for salt III, the monoprotonated cation directly interacts with the CF3SO3 anion via an N–H···O interaction. For all four salts, aromatic π-π interactions involving rings of various components (free benzo[c]cinnoline molecule, benzo[c]cinnolinium cation, toluene molecule), combined with weak C–H···O and C–H···F interactions implying the trifluoromethanesulfonate anion, promote the solid-state self-assembly of supramolecular stacks. In parallel to the formation of benzo[c]cinnolinium based-salts, organotin(IV) 1 was converted into a distannoxane compound, 2{[n-Bu2(μ-OH)SnOSn(μ-η2-O3SCF3)n-Bu2]2[n-Bu2(η1-O3SCF3)SnOSn(μ-OH)n-Bu2]2} (3), which was also isolated as a single crystal and whose crystallographic structure was previously established by us. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

16 pages, 3337 KiB  
Article
Development of Composite Semiconductor Films Based on Organotin Complexes Doped with Cobalt Porphine for Applications in Organic Diodes
by María Elena Sánchez Vergara, José Miguel Rocha Flores, Luis Alberto Cantera-Cantera, Ricardo Ballinas-Indilí, Alejandro Flores Huerta and Cecilio Álvarez-Toledano
Materials 2025, 18(1), 45; https://doi.org/10.3390/ma18010045 - 26 Dec 2024
Viewed by 895
Abstract
In this work, we present the green synthesis of complex AE derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine [...] Read more.
In this work, we present the green synthesis of complex AE derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine and incorporated into a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) matrix to manufacture composite semiconductor films. The semiconductor films were characterized through atomic force microscopy, examining their topography, Knoop hardness (around 17 HK), and tensile strength, which varied from 5 × 10−4 to 7 × 10−2 Pa. The optical behavior was evaluated, revealing that the changes in these characteristics are related to the type of organotin complex present in the composite film: the transmittance ranged from 77% to 86%, while the reflectance varied from 13% to 17%. The band gap, calculated using the Kubelka–Munk function F(KM), was approximately 3.7 ± 0.19 eV for all the semiconductor films. Finally, we assessed the electrical behavior of the composite films through current–voltage (I–V) measurements under different lighting conditions. The I–V curves demonstrated that they share a saturation current density of 3.46 mA/mm2. However, they differ in their conduction rates within the ohmic regimen. These composite films’ optical and electrical properties suggest their potential use in developing electronic devices like organic diodes. Full article
(This article belongs to the Special Issue Advances in Materials Science for Engineering Applications)
Show Figures

Figure 1

17 pages, 4786 KiB  
Article
Unexpected Products of Salicylidene-Aminoguanidine Reactions with Metal Ions—Synthesis and Structural Aspects
by Mirjana M. Radanović, Ljiljana S. Vojinović-Ješić, Niko S. Radulović, Vidak N. Raičević, Vukadin M. Leovac and Marko V. Rodić
Organics 2024, 5(4), 623-639; https://doi.org/10.3390/org5040033 - 11 Dec 2024
Viewed by 1000
Abstract
Due to the promising characteristics of aminoguanidine Schiff bases, ongoing research focuses on synthesizing and characterizing different compounds of this class to establish structure–property relationships. However, the pronounced alkalinity of the aminoguanidine residue makes isolating its Schiff bases in neutral form challenging. In [...] Read more.
Due to the promising characteristics of aminoguanidine Schiff bases, ongoing research focuses on synthesizing and characterizing different compounds of this class to establish structure–property relationships. However, the pronounced alkalinity of the aminoguanidine residue makes isolating its Schiff bases in neutral form challenging. In the reaction of salicylidene-aminoguanidine ([HL]NO3) with a strong base (NaOH), the partially neutralized product of the formula [HL]NO3∙L·H2O was obtained in the form of single crystals. This compound could be considered a cocrystal in which protonated and neutral forms of the Schiff base coexist. Furthermore, the coordinating properties of [HL]NO3 towards zinc and organotin were investigated, and instead of the expected crystals of complex compounds, a novel polymorph of the ligand was obtained. Additionally, the reaction of [HL]NO3, NH4VO3 and salicylaldehyde was carried out to achieve the condensation of the free NH2-group in the aminoguanidinium fragment, targeting a vanadium(V) complex with tetradentate ligand. However, a purely organic compound containing three salicylaldehyde residues and two imine groups, i.e., C21H18N2O3, was isolated. All the obtained compounds were characterized by elemental and spectroscopic analysis, conductometry and SC-XRD analysis. The data were compared to those of similar structures, and the results provide further insight into the properties of these compounds and their future investigation for potential usage. Full article
Show Figures

Figure 1

24 pages, 6883 KiB  
Article
Organic Moiety on Sn(IV) Does Matter for In Vitro Mode of Action: nBu3Sn(IV) Compounds with Carboxylato N-Functionalized 2-Quinolones Induce Anoikis-like Cell Death in A375 Cells
by Marijana P. Kasalović, Sanja Jelača, Dušan Dimić, Danijela Maksimović-Ivanić, Verica V. Jevtić, Sanja Mijatović, Tobias Rüffer, Goran N. Kaluđerović and Nebojša Đ. Pantelić
Pharmaceutics 2024, 16(12), 1529; https://doi.org/10.3390/pharmaceutics16121529 - 28 Nov 2024
Cited by 1 | Viewed by 1110
Abstract
Objectives: New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid (HL1) and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid (HL2) have been synthesized. Methods: Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn) [...] Read more.
Objectives: New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid (HL1) and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid (HL2) have been synthesized. Methods: Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains. A theoretical structural analysis was performed by optimization employing B3LYP-D3BJ functional and 6-311++G(d,p)/def2-TZVP(Sn) basis sets for H, C, N, O/Sn, respectively. The interactions between tin(IV) and surrounding atoms were examined by QTAIM approach. The in vitro antiproliferative activity of the synthesized compounds was evaluated by MTT and CV assays versus MCF-7 (human breast adenocarcinoma), HCT116 (human colorectal carcinoma), A375 (human melanoma), 4T1 (mouse breast carcinoma), CT26 (mouse colon carcinoma) and B16 (mouse melanoma) tumor cell lines. Results: Both synthesized compounds (nBu3SnL1 and nBu3SnL2) exerted powerful micromolar IC50 cytotoxicity values and demonstrated high selectivity toward malignant cells. Both experimental drugs affected cell adhesion and induced anchorage independent apoptosis, a favorable type of cell death with an essential role in cancer dissemination prevention. The BSA-binding affinity of the obtained organotin compounds was followed by spectrofluorometric titration and molecular docking simulations. Conclusions: The tributyltin(IV) compounds selectively induce anoikis-like cell death in A375 cells, also highlighting the importance of the organic moiety on the tin(IV) ion in the mechanism of action. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Metal Complexes and Derived Materials)
Show Figures

Figure 1

10 pages, 3337 KiB  
Article
Novel Sulfamethoxazole Organotin Complexes: Synthesis, Characterization, and Hydrogen Storage Application
by Dina S. Ahmed, Noor Emad, Mohammed Kadhom, Emad Yousif and Mohammed Al-Mashhadani
Hydrogen 2024, 5(4), 872-881; https://doi.org/10.3390/hydrogen5040045 - 13 Nov 2024
Viewed by 1028
Abstract
This study presents the synthesis and characterization of novel sulfamethoxazole organotin complexes and evaluates their potential for hydrogen storage applications. The synthesized complexes were characterized using various techniques, such as Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy to determine their constructional and [...] Read more.
This study presents the synthesis and characterization of novel sulfamethoxazole organotin complexes and evaluates their potential for hydrogen storage applications. The synthesized complexes were characterized using various techniques, such as Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy to determine their constructional and physicochemical properties. Field Emission Scanning Electron Microscopy was applied to analyze the surface morphology, and the Brunauer–Emmett–Teller method was utilized to measure the surface area. High-pressure adsorption experiments demonstrated the remarkable hydrogen storage capabilities of these complexes, with the highest hydrogen uptake of 29.1 cm3/g observed at 323 K. The results suggest that the prepared sulfamethoxazole organotin complexes have the potential to be candidates for gas separation and storage applications. Full article
(This article belongs to the Special Issue Advancements in Hydrogen Storage Materials and DFT-Based Studies)
Show Figures

Figure 1

12 pages, 2675 KiB  
Article
Antiproliferative Activity of an Organometallic Sn(IV) Coordination Compound Based on 1-Methylbenzotriazole against Human Cancer Cell Lines
by Christina Stamou, Chrisavgi Gourdoupi, Pierre Dechambenoit, Dionissios Papaioannou, Zoi Piperigkou and Zoi G. Lada
Chemistry 2024, 6(5), 1189-1200; https://doi.org/10.3390/chemistry6050068 - 1 Oct 2024
Viewed by 1425
Abstract
A motivating class of compounds with interest in the research field of biological active metallopharmaceuticals for cancer treatment is based on organometallic complexes of Sn(IV), exhibiting advantages such as improved cellular uptake and body excretion, lower toxicity, and fewer side effects compared to [...] Read more.
A motivating class of compounds with interest in the research field of biological active metallopharmaceuticals for cancer treatment is based on organometallic complexes of Sn(IV), exhibiting advantages such as improved cellular uptake and body excretion, lower toxicity, and fewer side effects compared to platinum-based drugs. In this study, the mononuclear organotin coordination complex [(CH3)2SnCl2(mebta)2] was synthesized and characterized using vibrational spectroscopy (IR, Raman), 1H NMR, 13C{1H} NMR, and X-ray crystallography. Its antiproliferative properties were thoroughly assessed across an aggressive triple-negative human breast cancer cell line. Notably, comparative studies with precursor materials verified that the observed biological activity is intrinsic to the complex itself. This study highlights the compound’s ability to induce cell fate by disrupting essential cellular functions, such as proliferation. By exploring the antiproliferative effects of organotin(IV) derivatives, we introduce a novel class of Sn complexes with 1-methylbenzotriazole (mebta), demonstrating significant potential as promising antitumor agents in the field of organotin compounds. Full article
(This article belongs to the Section Bioinorganics)
Show Figures

Figure 1

22 pages, 6612 KiB  
Article
Trimethyltin(IV) Bearing 3-(4-Methyl-2-oxoquinolin-1(2H)-yl)propanoate Causes Lipid Peroxidation-Mediated Autophagic Cell Death in Human Melanoma A375 Cells
by Marijana P. Kasalović, Dušan Dimić, Sanja Jelača, Danijela Maksimović-Ivanić, Sanja Mijatović, Bojana B. Zmejkovski, Simon H. F. Schreiner, Tobias Rüffer, Nebojša Đ. Pantelić and Goran N. Kaluđerović
Pharmaceuticals 2024, 17(3), 372; https://doi.org/10.3390/ph17030372 - 14 Mar 2024
Cited by 4 | Viewed by 2200
Abstract
A novel trimethyltin(IV) complex (Me3SnL), derived from 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoate ligand, has been synthesized and characterized by elemental microanalysis, UV/Vis spectrophotometry, FT-IR and multinuclear (1H, 13C and 119Sn) NMR spectroscopies. Furthermore, the structure of the ligand precursor [...] Read more.
A novel trimethyltin(IV) complex (Me3SnL), derived from 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoate ligand, has been synthesized and characterized by elemental microanalysis, UV/Vis spectrophotometry, FT-IR and multinuclear (1H, 13C and 119Sn) NMR spectroscopies. Furthermore, the structure of the ligand precursor HL was solved using SC-XRD (single-crystal X-ray diffraction). The prediction of UV/Vis and NMR spectra by quantum-chemical methods was performed and compared to experimental findings. The protein binding affinity of Me3SnL towards BSA was determined by spectrofluorometric titration and subsequent molecular docking simulations. Me3SnL has been evaluated for its in vitro anticancer activity against three human cell lines, MCF-7 (breast adenocarcinoma), A375 (melanoma) and HCT116 (colorectal carcinoma), and three mouse tumor cell lines, 4T1 (breast carcinoma), B16 (melanoma) and CT26 (colon carcinoma), using MTT and CV assays. The strong inhibition of A375 cell proliferation, ROS/RNS upregulation and robust lipid peroxidation lead to autophagic cell death upon treatment with Me3SnL. Full article
(This article belongs to the Special Issue Medicinal Metal Ions and Metal-Based Complex)
Show Figures

Figure 1

27 pages, 3177 KiB  
Review
Organotin (IV) Dithiocarbamate Compounds as Anticancer Agents: A Review of Syntheses and Cytotoxicity Studies
by Nurul Amalina Abd Aziz, Normah Awang, Kok Meng Chan, Nurul Farahana Kamaludin and Nur Najmi Mohamad Anuar
Molecules 2023, 28(15), 5841; https://doi.org/10.3390/molecules28155841 - 3 Aug 2023
Cited by 21 | Viewed by 3360
Abstract
Organotin (IV) dithiocarbamate has recently received attention as a therapeutic agent among organotin (IV) compounds. The individual properties of the organotin (IV) and dithiocarbamate moieties in the hybrid complex form a synergy of action that stimulates increased biological activity. Organotin (IV) components have [...] Read more.
Organotin (IV) dithiocarbamate has recently received attention as a therapeutic agent among organotin (IV) compounds. The individual properties of the organotin (IV) and dithiocarbamate moieties in the hybrid complex form a synergy of action that stimulates increased biological activity. Organotin (IV) components have been shown to play a crucial role in cytotoxicity. The biological effects of organotin compounds are believed to be influenced by the number of Sn-C bonds and the number and nature of alkyl or aryl substituents within the organotin structure. Ligands target and react with molecules while preventing unwanted changes in the biomolecules. Organotin (IV) dithiocarbamate compounds have also been shown to have a broad range of cellular, biochemical, and molecular effects, with their toxicity largely determined by their structure. Continuing the investigation of the cytotoxicity of organotin (IV) dithiocarbamates, this mini-review delves into the appropriate method for synthesis and discusses the elemental and spectroscopic analyses and potential cytotoxic effects of these compounds from articles published since 2010. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

16 pages, 1657 KiB  
Article
The Synthesis and Biological Activity of Organotin Complexes with Thio-Schiff Bases Bearing Phenol Fragments
by Ivan V. Smolyaninov, Andrey I. Poddel’sky, Daria A. Burmistrova, Yulia K. Voronina, Nadezhda P. Pomortseva, Maria A. Polovinkina, Nailya R. Almyasheva, Maria A. Zamkova, Nadezhda T. Berberova and Igor L. Eremenko
Int. J. Mol. Sci. 2023, 24(9), 8319; https://doi.org/10.3390/ijms24098319 - 5 May 2023
Cited by 13 | Viewed by 3186
Abstract
A number of novel di- and triorganotin(IV) complexes 15 (Ph2SnL1, Ph2SnL2, Et2SnL2, Ph3SnL3, Ph3SnL4) with mono- or dianionic forms of thio-Schiff [...] Read more.
A number of novel di- and triorganotin(IV) complexes 15 (Ph2SnL1, Ph2SnL2, Et2SnL2, Ph3SnL3, Ph3SnL4) with mono- or dianionic forms of thio-Schiff bases containing antioxidant sterically hindered phenol or catechol fragments were synthesized. Compounds 15 were characterized by 1H, 13C NMR, IR spectroscopy, and elemental analysis. The molecular structures of complexes 1 and 2 in the crystal state were established by single-crystal X-ray analysis. The antioxidant activity of new complexes as radical scavengers was estimated in DPPH and ABTS assays. It was found that compounds 4 and 5 with free phenol or catechol fragments are more active in these tests than complexes 13 with tridentate O,N,S-coordinated ligands. The effect of compounds 15 on the promoted oxidative damage of the DNA by 2,2’-azobis(2-amidinopropane) dihydrochloride and in the process of rat liver (Wistar) homogenate lipid peroxidation in vitro was determined. Complexes 4 and 5 were characterized by more pronounced antioxidant activity in the reaction of lipid peroxidation in vitro than compounds 13. The antiproliferative activity of compounds 15 was investigated against MCF-7, HTC-116, and A-549 cell lines by an MTT test. The values of IC50 are significantly affected by the presence of free antioxidant fragments and the coordination site for binding. Full article
(This article belongs to the Special Issue Metal-Based Drugs and Research on Mechanisms of Action)
Show Figures

Figure 1

20 pages, 2770 KiB  
Article
Biological Evaluation of Triorganotin Derivatives as Potential Anticancer Agents
by Valeria Stefanizzi, Antonella Minutolo, Elena Valletta, Martina Carlini, Franca M. Cordero, Anna Ranzenigo, Salvatore Pasquale Prete, Daniel Oscar Cicero, Erica Pitti, Greta Petrella, Claudia Matteucci, Francesca Marino-Merlo, Antonio Mastino and Beatrice Macchi
Molecules 2023, 28(9), 3856; https://doi.org/10.3390/molecules28093856 - 2 May 2023
Cited by 2 | Viewed by 2346
Abstract
Metal-derived platinum complexes are widely used to treat solid tumors. However, systemic toxicity and tumor resistance to these drugs encourage further research into similarly effective compounds. Among others, organotin compounds have been shown to inhibit cell growth and induce cell death and autophagy. [...] Read more.
Metal-derived platinum complexes are widely used to treat solid tumors. However, systemic toxicity and tumor resistance to these drugs encourage further research into similarly effective compounds. Among others, organotin compounds have been shown to inhibit cell growth and induce cell death and autophagy. Nevertheless, the impact of the ligand structure and mechanisms involved in the toxicity of organotin compounds have not been clarified. In the present study, the biological activities of commercially available bis(tributyltin) oxide and tributyltin chloride, in comparison to those of specially synthesized tributyltin trifluoroacetate (TBT-OCOCF3) and of cisplatin, were assessed using cells with different levels of tumorigenicity. The results show that tributyltins were more cytotoxic than cisplatin in all the tested cell lines. NMR revealed that this was not related to the interaction with DNA but to the inhibition of glucose uptake into the cells. Moreover, highly tumorigenic cells were less susceptible than nontumorigenic cells to the nonunique pattern of death induced by TBT-OCOCF3. Nevertheless, tumorigenic cells became sensitive when cotreated with wortmannin and TBT-OCOCF3, although no concomitant induction of autophagy by the compound was detected. Thus, TBT-OCOCF3 might be the prototype of a family of potential anticancer agents. Full article
(This article belongs to the Special Issue Shaping Medicinal Chemistry for the New Decade)
Show Figures

Figure 1

14 pages, 3185 KiB  
Article
Series of Organotin(IV) Compounds with Different Dithiocarbamate Ligands Induced Cytotoxicity, Apoptosis and Cell Cycle Arrest on Jurkat E6.1, T Acute Lymphoblastic Leukemia Cells
by Nur Rasyiqin Rasli, Asmah Hamid, Normah Awang and Nurul Farahana Kamaludin
Molecules 2023, 28(8), 3376; https://doi.org/10.3390/molecules28083376 - 11 Apr 2023
Cited by 8 | Viewed by 2335
Abstract
The discovery of cisplatin has influenced scientists to study the anticancer properties of other metal complexes. Organotin(IV) dithiocarbamate compounds are gaining attention as anticancer agents due to their potent cytotoxic properties on cancer cells. In this study, a series of organotin compounds were [...] Read more.
The discovery of cisplatin has influenced scientists to study the anticancer properties of other metal complexes. Organotin(IV) dithiocarbamate compounds are gaining attention as anticancer agents due to their potent cytotoxic properties on cancer cells. In this study, a series of organotin compounds were assessed for their toxic effects on the Jurkat E6.1 cell line. WST-1 assay was used to determine the cytotoxic effect of the compounds and showed that six out of seven organotin(IV) dithiocarbamate compounds exhibited potent cytotoxic effects toward T-lymphoblastic leukemia cells, Jurkat E6.1 with the concentration of IC50 ranging from 0.67–0.94 µM. The apoptosis assay by Annexin V-FITC/PI staining showed that all tested compounds induced cell death mainly via apoptosis. Cell cycle analysis assessed using RNase/PI staining showed that organotin(IV) dithiocarbamate compounds induced cell cycle arrest at different phases. In conclusion, the tested organotin(IV) dithiocarbamate compounds demonstrated potent cytotoxicity against Jurkat E6.1 cells via apoptosis and cell cycle arrest at low IC50 value. However, further studies on the mechanisms of action are required to probe the possible potential of these compounds on leukemia cells before they can be developed into anti-leukemic agents. Full article
(This article belongs to the Special Issue Metal-Based Drugs Ⅱ)
Show Figures

Figure 1

15 pages, 2600 KiB  
Article
Triphenyltin(IV) Carboxylates with Exceptionally High Cytotoxicity against Different Breast Cancer Cell Lines
by Ivana Predarska, Mohamad Saoud, Ibrahim Morgan, Peter Lönnecke, Goran N. Kaluđerović and Evamarie Hey-Hawkins
Biomolecules 2023, 13(4), 595; https://doi.org/10.3390/biom13040595 - 26 Mar 2023
Cited by 14 | Viewed by 2925
Abstract
Organotin(IV) carboxylates are a class of compounds explored as alternatives to platinum-containing chemotherapeutics due to propitious in vitro and in vivo results, and distinct mechanisms of action. In this study, triphenyltin(IV) derivatives of non-steroidal anti-inflammatory drugs (indomethacin (HIND) and flurbiprofen (HFBP)) are synthesized [...] Read more.
Organotin(IV) carboxylates are a class of compounds explored as alternatives to platinum-containing chemotherapeutics due to propitious in vitro and in vivo results, and distinct mechanisms of action. In this study, triphenyltin(IV) derivatives of non-steroidal anti-inflammatory drugs (indomethacin (HIND) and flurbiprofen (HFBP)) are synthesized and characterized, namely [Ph3Sn(IND)] and [Ph3Sn(FBP)]. The crystal structure of [Ph3Sn(IND)] reveals penta-coordination of the central tin atom with almost perfect trigonal bipyramidal geometry with phenyl groups in the equatorial positions and two axially located oxygen atoms belonging to two distinct carboxylato (IND) ligands leading to formation of a coordination polymer with bridging carboxylato ligands. Employing MTT and CV probes, the antiproliferative effects of both organotin(IV) complexes, indomethacin, and flurbiprofen were evaluated on different breast carcinoma cells (BT-474, MDA-MB-468, MCF-7 and HCC1937). [Ph3Sn(IND)] and [Ph3Sn(FBP)], unlike the inactive ligand precursors, were found extremely active towards all examined cell lines, demonstrating IC50 concentrations in the range of 0.076–0.200 µM. Flow cytometry was employed to examine the mode of action showing that neither apoptotic nor autophagic mechanisms were triggered within the first 48 h of treatment. However, both tin(IV) complexes inhibited cell proliferation potentially related to the dramatic reduction in NO production, resulting from downregulation of nitric oxide synthase (iNOS) enzyme expression. Full article
Show Figures

Figure 1

20 pages, 3327 KiB  
Article
Pentacoordinated Organotin(IV) Complexes as an Alternative in the Design of Highly Efficient Optoelectronic and Photovoltaic Devices: Synthesis and Photophysical Characterization
by María Elena Sánchez Vergara, Elizabeth Gómez, Emiliano Toledo Dircio, José Ramón Álvarez Bada, Samuel Cuenca Pérez, José Miguel Galván Hidalgo, Arturo González Hernández and Simón Hernández Ortega
Int. J. Mol. Sci. 2023, 24(6), 5255; https://doi.org/10.3390/ijms24065255 - 9 Mar 2023
Cited by 13 | Viewed by 2671
Abstract
The synthesis of four pentacoordinated organotin(IV) complexes prepared in a one-pot reaction from 2-hydroxy-1-naphthaldehyde, 2-amino-3-hydroxypyridine and organotin oxides is reported. The complexes were characterized by UV-Vis, IR, MS, 1H, 13C and 119Sn NMR techniques. The compound based on 2,2-diphenyl-6-aza-1,3-dioxa-2-stannanaphtho[1,2-h]pyrido[3,2-d]cyclononene revealed [...] Read more.
The synthesis of four pentacoordinated organotin(IV) complexes prepared in a one-pot reaction from 2-hydroxy-1-naphthaldehyde, 2-amino-3-hydroxypyridine and organotin oxides is reported. The complexes were characterized by UV-Vis, IR, MS, 1H, 13C and 119Sn NMR techniques. The compound based on 2,2-diphenyl-6-aza-1,3-dioxa-2-stannanaphtho[1,2-h]pyrido[3,2-d]cyclononene revealed the formation of a monomeric complex with a distorted five-coordinated molecular geometry intermediate between the trigonal bipyramidal and square pyramidal. In order to find possible applications in photovoltaic devices, hybrid films of organotin(IV) complexes embedded in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with graphene were deposited. The topographic and mechanical properties were examined. The film with the complex integrated into the cyclohexyl substituent has high plastic deformation, with a maximum stress of 1.69 × 107 Pa and a Knoop hardness of 0.061. The lowest values of 1.85 eV for the onset gap and 3.53 eV for the energy gap were obtained for the heterostructure having the complex with the phenyl substituent. Bulk heterojunction devices were fabricated; these devices showed ohmic behavior at low voltages and a space-charge-limited current (SCLC) conduction mechanism at higher voltages. A value of 0.02 A was found for the maximum carried current. The SCLC mechanism suggests hole mobility values of between 2.62 × 10−2 and 3.63 cm2/V.s and concentrations of thermally excited holes between 2.96 × 1018 and 4.38 × 1018 m−3. Full article
(This article belongs to the Special Issue Advancements in Solar Cells and Materials for Photovoltaics)
Show Figures

Figure 1

17 pages, 3119 KiB  
Article
Biological Activity of Novel Organotin Compounds with a Schiff Base Containing an Antioxidant Fragment
by Taisiya A. Antonenko, Yulia A. Gracheva, Dmitry B. Shpakovsky, Mstislav A. Vorobyev, Dmitrii M. Mazur, Victor A. Tafeenko, Yury F. Oprunenko, Elena F. Shevtsova, Pavel N. Shevtsov, Alexey A. Nazarov and Elena R. Milaeva
Int. J. Mol. Sci. 2023, 24(3), 2024; https://doi.org/10.3390/ijms24032024 - 19 Jan 2023
Cited by 20 | Viewed by 2886
Abstract
A series of novel organotin(IV) complexes on the base of 2-(N-3′,5′-di-tert-butyl-4′-hydroxyphenyl)-iminomethylphenol (L) of formulae Me2SnBr2(L)2 (1), Bu2SnCl2(L)2(2), Ph2SnCl2(L) (3 [...] Read more.
A series of novel organotin(IV) complexes on the base of 2-(N-3′,5′-di-tert-butyl-4′-hydroxyphenyl)-iminomethylphenol (L) of formulae Me2SnBr2(L)2 (1), Bu2SnCl2(L)2(2), Ph2SnCl2(L) (3), Ph2SnCl2(L)2 (4) Ph3SnBr(L)2 (5) were synthesized and characterized by 1H, 13C, 119Sn NMR, IR, ESI-MS and elemental analysis. The crystal structures of initial L and complex 2 were determined by XRD method. It was found that L crystallizes in the orthorhombic syngony. The distorted octahedron geometry around Sn center is observed in the structure of complex 2. Intra- and inter-molecular hydrogen bonds were found in both structures. The antioxidant activity of new complexes as reducing agents, radical scavengers and lipoxygenase inhibitors was estimated spectrophotometrically in CUPRAC and DPPH tests (compounds 1 and 5 were found to be the most active in both methods), and in the process of enzymatic oxidation in vitro of linoleic acid under the action of lipoxygenase LOX 1-B (EC50 > 33.3 μM for complex 2). Furthermore, compounds 1–5 have been investigated for their antiproliferative activity in vitro towards HCT-116, MCF-7 and A-549 and non-malignant WI-38 human cell lines. Complexes 2 and 5 demonstrated the highest activity. The plausible mechanisms of the antiproliferative activity of compounds, including the influence on the polymerization of Tb+MAP, are discussed. Some of the synthesized compounds have also actively induced apoptosis and blocked proliferation in the cell cycle G2/M phase. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

20 pages, 2985 KiB  
Article
Organotin Antifouling Compounds and Sex-Steroid Nuclear Receptor Perturbation: Some Structural Insights
by Mohd A. Beg, Md A. Beg, Ummer R. Zargar, Ishfaq A. Sheikh, Osama S. Bajouh, Adel M. Abuzenadah and Mohd Rehan
Toxics 2023, 11(1), 25; https://doi.org/10.3390/toxics11010025 - 27 Dec 2022
Cited by 9 | Viewed by 3324
Abstract
Organotin compounds (OTCs) are a commercially important group of organometallic compounds of tin used globally as polyvinyl chloride stabilizers and marine antifouling biocides. Worldwide use of OTCs has resulted in their ubiquitous presence in ecosystems across all the continents. OTCs have metabolic and [...] Read more.
Organotin compounds (OTCs) are a commercially important group of organometallic compounds of tin used globally as polyvinyl chloride stabilizers and marine antifouling biocides. Worldwide use of OTCs has resulted in their ubiquitous presence in ecosystems across all the continents. OTCs have metabolic and endocrine disrupting effects in marine and terrestrial organisms. Thus, harmful OTCs (tributyltin) have been banned by the International Convention on the Control of Harmful Antifouling Systems since 2008. However, continued manufacturing by non-member countries poses a substantial risk for animal and human health. In this study, structural binding of common commercial OTCs, tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), monophenyltin (MPT), and azocyclotin (ACT) against sex-steroid nuclear receptors, androgen receptor (AR), and estrogen receptors (ERα, ERβ) was performed using molecular docking and MD simulation. TBT, DBT, DPT, and MPT bound deep within the binding sites of AR, ERα, and Erβ, showing good dock score, binding energy and dissociation constants that were comparable to bound native ligands, testosterone and estradiol. The stability of docking complex was shown by MD simulation of organotin/receptor complex with RMSD, RMSF, Rg, and SASA plots showing stable interaction, low deviation, and compactness of the complex. A high commonality (50–100%) of interacting residues of ERα and ERβ for the docked ligands and bound native ligand (estradiol) indicated that the organotin compounds bound in the same binding site of the receptor as the native ligand. The results suggested that organotins may interfere with the natural steroid/receptor binding and perturb steroid signaling. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health)
Show Figures

Figure 1

Back to TopTop