Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = organogelator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1613 KiB  
Article
Olive Oil-Based Lipid Coating as a Precursor Organogel for Postharvest Preservation of Lychee: Efficacy Combined with Polyamide/Polyethylene Packaging Under Passive Atmosphere
by Alessandra Culmone, Roberta Passafiume, Pasquale Roppolo, Ilenia Tinebra, Vincenzo Naselli, Alfonso Collura, Antonino Pirrone, Luigi Botta, Alessandra Carrubba, Nicola Francesca, Raimondo Gaglio and Vittorio Farina
Gels 2025, 11(8), 608; https://doi.org/10.3390/gels11080608 - 2 Aug 2025
Viewed by 333
Abstract
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil [...] Read more.
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil coating (OC), a natural lipidic system with the potential to act as a precursor for organogel development, combined with polyamide/polyethylene (PA/PE) packaging under passive modified atmosphere. Fruits were harvested at commercial maturity and divided into two groups: OC-treated and untreated control (CTR). Both groups were stored at 5 ± 1 °C and 90 ± 5% relative humidity and analyzed on days 0, 3, 6, and 9. The OC-treated fruits showed significantly better retention of physical, chemical, microbiological, and sensory qualities. The coating reduced oxidative stress and enzymatic browning, preserving color and firmness. The PA/PE packaging regulated gas exchange, lowering oxygen levels and delaying respiration and ripening. As a result, OC fruits had lower weight loss, a slower increase in browning index and maturity index, and better visual and sensory scores than the CTR group. This dual strategy proved effective in extending shelf life while maintaining the fruit’s appearance, flavor, and nutritional value. It represents a sustainable and natural approach to enhancing the postharvest stability of lychee. Full article
(This article belongs to the Special Issue Edible Coatings and Film: Gel-Based Innovations)
Show Figures

Figure 1

29 pages, 2969 KiB  
Review
Oleogels: Uses, Applications, and Potential in the Food Industry
by Abraham A. Abe, Iolinda Aiello, Cesare Oliviero Rossi and Paolino Caputo
Gels 2025, 11(7), 563; https://doi.org/10.3390/gels11070563 - 21 Jul 2025
Viewed by 384
Abstract
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of [...] Read more.
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of food products, such as baked goods, processed meats, dairy products, and confectionery, while also improving the nutritional profiles of these food products. The fact that oleogels have the potential to bring about healthier food products, thereby contributing to a better diet, makes interest in the subject ever-increasing, especially due to the global issue of obesity and related health issues. Research studies have demonstrated that oleogels can effectively replace conventional fats without compromising flavor or texture. The use of plant-based gelators brings about a reduction in saturated fat content, as well as aligns with consumer demands for clean-label and sustainable food options. Oleogels minimize oil migration in foods due to their high oil-binding capacity, which in turn enhances food product shelf life and stability. Although oleogels are highly advantageous, their adoption in the food industry presents challenges, such as oil stability, sensory acceptance, and the scalability of production processes. Concerns such as mixed consumer perceptions of taste and mouthfeel and oxidative stability during processing and storage evidence the need for further research to optimize oleogel formulations. Addressing these limitations is fundamental for amplifying the use of oleogels and fulfilling their promise as a sustainable and healthier fat alternative in food products. As the oleogel industry continues to evolve, future research directions will focus on enhancing understanding of their properties, improving sensory evaluations, addressing regulatory challenges, and promoting sustainable production practices. The present report summarizes and updates the state-of-the-art about the structure, the properties, and the applications of oleogels in the food industry to highlight their full potential. Full article
(This article belongs to the Special Issue Functionality of Oleogels and Bigels in Foods)
Show Figures

Figure 1

22 pages, 1889 KiB  
Article
Development and Characterization of Bigels for the Topical Delivery of Curcumin
by Juan Luis Peréz-Salas, Martha Rocío Moreno-Jiménez, Luis Medina-Torres, Nuria Elizabeth Rocha-Guzmán, María Josefa Bernad-Bernad, Rubén Francisco González-Laredo and José Alberto Gallegos-Infante
Sci. Pharm. 2025, 93(3), 28; https://doi.org/10.3390/scipharm93030028 - 3 Jul 2025
Viewed by 396
Abstract
The topical application of curcumin can act directly on the tissue, but there are problems related to solubility and permeation. Bigels combine hydrogels and organogels to enhance the release and transport of bioactives through the skin. The aim of this study was to [...] Read more.
The topical application of curcumin can act directly on the tissue, but there are problems related to solubility and permeation. Bigels combine hydrogels and organogels to enhance the release and transport of bioactives through the skin. The aim of this study was to develop bigels for the topical delivery of curcumin. Employing a rheology test, it was found that all bigels showed a solid-like behavior structure (G′ > G″) with stiffness increasing with higher organogel content. The principle of time–temperature superposition (TTS) was used to generate master curves. Microscopy revealed a morphological structure that depended on the organogel/hydrogel ratio. The bigels exhibited a pH compatible with that of human skin, and the curcumin content met the standards for uniform dosage. Thermal characterization showed the presence of three peaks in coconut oil bigels and two peaks in castor oil bigels. Bigels with a 45% castor oil organogel/55% hydrogel ratio exhibited a longer controlled release of curcumin, while bigels with coconut oil showed a faster release. The release data were fitted to mathematical models indicating non-Fickian release. The permeability of curcumin through Strat-M membranes was investigated, and greater permeation was observed with increasing organogel content. The developed bigels could be a promising option for the topical delivery of curcumin. Full article
Show Figures

Figure 1

17 pages, 2132 KiB  
Article
Development, Characterization, and Stability of Margarine Containing Oleogels Based on Olive Oil, Coconut Oil, Starch, and Beeswax
by Bárbara Viana Barbosa Naves, Thais Lomonaco Teodoro da Silva, Cleiton Antônio Nunes, Felipe Furtini Haddad and Sabrina Carvalho Bastos
Gels 2025, 11(7), 513; https://doi.org/10.3390/gels11070513 - 2 Jul 2025
Viewed by 487
Abstract
The removal of partially hydrogenated fats, as well as the substitution of saturated fats with healthier alternatives, has become increasingly common due to their well-established association with adverse health effects. As a result, the demand for alternative formulations in the food industry has [...] Read more.
The removal of partially hydrogenated fats, as well as the substitution of saturated fats with healthier alternatives, has become increasingly common due to their well-established association with adverse health effects. As a result, the demand for alternative formulations in the food industry has driven the development of a promising emerging technology: oleogels. Oleogels are a semi-solid material made by trapping liquid oil within a three-dimensional network formed by structuring agents. Within this context, this study aimed to develop and characterize margarines prepared with oleogels formulated from extra virgin olive oil, coconut oil, starch, and beeswax at varying concentrations. The proposed oleogel-based formulations exhibited a high melting temperature range and lower enthalpy. Although lipid oxidation levels differed between the commercial and oleogel-based margarines, they remained within acceptable limits. A significant difference in color was observed, with the oleogel formulations imparting a slight greenish hue compared to the commercial margarine. In terms of microstructure, the commercial margarine presented smaller and more uniformly distributed water droplets. Oleogel-based margarines demonstrated technological feasibility. Considering consumers’ growing interest in food innovation and health-conscious products, olive oil-based oleogel margarines represent a promising alternative, particularly due to the nutritional benefits associated with olive oil. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

14 pages, 3148 KiB  
Article
Polymorphic Control in Pharmaceutical Gel-Mediated Crystallization: Exploiting Solvent–Gelator Synergy in FmocFF Organogels
by Dong Chen, Koen Robeyns, Tom Leyssens, Basanta Saikia and Stijn Van Cleuvenbergen
Gels 2025, 11(7), 509; https://doi.org/10.3390/gels11070509 - 1 Jul 2025
Viewed by 381
Abstract
FmocFF is a highly versatile gelator whose π–π-stacking fluorenyl group and hydrogen-bonded peptide backbone permit gelation in a wide spectrum of solvents, providing a rich scaffold for crystal engineering. This study explores the synergistic effects of FmocFF organogels and solvent selection on controlling [...] Read more.
FmocFF is a highly versatile gelator whose π–π-stacking fluorenyl group and hydrogen-bonded peptide backbone permit gelation in a wide spectrum of solvents, providing a rich scaffold for crystal engineering. This study explores the synergistic effects of FmocFF organogels and solvent selection on controlling the polymorphic outcomes of nilutamide, a nonsteroidal antiandrogen drug with complex polymorphism. By systematically varying process parameters such as solvent type and concentration, we demonstrate remarkable control over crystal nucleation and growth pathways. Most significantly, we report the first ambient-temperature isolation of pure nilutamide Form II through acetonitrile-based FmocFF organogel, highlighting the unique interplay between solvent properties and gel fiber networks. Thermal analysis reveals that the organogel not only selectively templates Form II but also affects its thermal pathway. We also present compelling evidence for a new polymorph exhibiting second-harmonic generation (SHG) activity. This would represent the first non-centrosymmetric nilutamide form discovered, suggesting the gel matrix induces symmetry breaking during crystallization. We also characterize a previously unreported nilutamide–chloroform solvate through multiple analytical techniques including PXRD, DSC, FTIR, SXRD, and SHG microscopy. Our findings demonstrate that solvent-specific molecular recognition within gel matrices enables access to entirely new regions of polymorphic space, establishing gel-mediated crystallization as a broadly applicable platform technology for pharmaceutical solid form discovery under mild conditions. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

30 pages, 1212 KiB  
Review
New Insights and Strategies in the Nutritional Reformulation of Meat Products Toward Healthier Foods
by Pablo Ayuso, Pascual García-Pérez and Gema Nieto
Molecules 2025, 30(12), 2565; https://doi.org/10.3390/molecules30122565 - 12 Jun 2025
Viewed by 777
Abstract
Meat plays a key role in human nutrition, providing protein of high digestibility and essential micronutrients. However, according to the FAO and WHO, excessive consumption of red and processed meats may increase health risks due to their content of saturated fats, sodium, and [...] Read more.
Meat plays a key role in human nutrition, providing protein of high digestibility and essential micronutrients. However, according to the FAO and WHO, excessive consumption of red and processed meats may increase health risks due to their content of saturated fats, sodium, and E-number additives. For this reason, recent research has focused on the nutritional reformulation of meat products to develop functional and health-promoting alternatives that meet consumer expectations and respond to market trends for healthier and more sustainable foods. However, the addition or elimination of traditional ingredients in meat products leads to problems such as changes in texture, color, or sensory acceptability that must be solved. This review will focus on current reformulation strategies in the meat industry, including the reduction or replacement of animal fat with vegetable oils using technologies such as microencapsulation, or the elaboration of 3D gels using organogelants and hydrocolloids; the replacement of the umami flavor of salt with extracts from seafoods and mushrooms; the replacement of E-number additives with antioxidant and preservative extracts from plants and herbs; and the incorporation of dietary fiber through fruit peels and vegetable by-products. Full article
Show Figures

Figure 1

25 pages, 6616 KiB  
Article
Optimization and Characterization of Crosslinked Chitosan-Based Oleogels Based on Mechanical Properties of Conventional Solid Fats
by Gabriela Baptista Brito, Jorge da Silva Pinho-Jr, André da Silva Guimarães, Carlos Adam Conte-Júnior, Marcio Nele, Daniel Perrone and Vanessa Naciuk Castelo-Branco
Polymers 2025, 17(11), 1526; https://doi.org/10.3390/polym17111526 - 29 May 2025
Viewed by 533
Abstract
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological [...] Read more.
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological properties of solid fats. Oleogelation, especially using polymer-based networks, offers a promising solution. This study optimized chitosan-based oleogels crosslinked with vanillin to mimic the texture of butter, partially hydrogenated fat, margarine, and palm fat while minimizing oil loss. Oleogels were prepared via the emulsion-template method and optimized through a central composite design combined with a desirability function, evaluating the effects of chitosan, vanillin, Tween® 60 concentrations, oil type (canola or soybean), and storage temperature (4 °C or 25 °C). Optimized oleogels were characterized for their rheological and microstructural properties. Chitosan concentration primarily governed oil loss, hardness, and adhesiveness of oleogels, independent of the oil phase and storage temperature. However, storage at 4 °C reduced oil loss but increased the hardness and adhesiveness compared to storage at 25 °C. The highest desirability scores (0.72 to 0.94) were achieved in soybean oil oleogels with 0.99% chitosan, 0.24–0.32% vanillin, and 0.17–0.18% Tween® 60, closely mimicking the texture of butter and margarine. These oleogels demonstrated stronger networks, enhanced gel strength, and elasticity, positioning them as viable alternatives to conventional solid fats. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

21 pages, 4118 KiB  
Article
Bicontinuous Nanophasic Conetworks of Polystyrene with Poly(dimethylsiloxane) and Divinylbenzene: From Macrocrosslinked to Hypercrosslinked Double-Hydrophobic Conetworks and Their Organogels with Solvent-Selective Swelling
by Anna Petróczy, István Szanka, András Wacha, Zoltán Varga, Yi Thomann, Ralf Thomann, Rolf Mülhaupt, Laura Bereczki, Nóra Hegyesi and Béla Iván
Gels 2025, 11(5), 318; https://doi.org/10.3390/gels11050318 - 24 Apr 2025
Cited by 1 | Viewed by 793
Abstract
Polymer conetworks, which consist of two or more covalently crosslinked polymer chains, not only combine the individual characteristics of their components, but possess various unique structural features and properties as well. In this study, we report on the successful synthesis of a library [...] Read more.
Polymer conetworks, which consist of two or more covalently crosslinked polymer chains, not only combine the individual characteristics of their components, but possess various unique structural features and properties as well. In this study, we report on the successful synthesis of a library of polystyrene-l-poly(dimethylsiloxane) (PSt-l-PDMS) (“l” stands for “linked by”) and polystyrene-l-poly(dimethylsiloxane)/divinylbenzene (PSt-l-PDMS/DVB) polymer conetworks. These conetworks were prepared via free radical copolymerization of styrene (St) with methacryloxypropyl-telechelic poly(dimethylsiloxane) (MA-PDMS-MA) as macromolecular crosslinker in the absence and presence of DVB with 36:1 and 5:1 St/DVB ratios (m/m), the latter leading to hypercrosslinked conetworks. Macroscopically homogeneous, transparent conetworks with high gel fractions were obtained over a wide range of PDMS contents from 30 to 80 m/m%. The composition of the conetworks determined by elemental analysis was found to be in good agreement with that obtained from the 1H NMR spectra of the extraction residues, as a new method which can be widely used to easily determine the composition of multicomponent networks and gels. DSC, SAXS, and AFM measurements clearly indicate bicontinuous disordered nanophase separated morphology for all the investigated conetworks with domain sizes in the range of 3–30 nm, even for the hypercrosslinked PSt-l-PDMS/DVB conetworks with extremely high crosslinking density. The cocontinuous morphology is also proved by selective, composition-dependent uniform swelling in hexane for the PDMS and in 1-nitropropane for the PSt domains. The Korsmeyer–Peppas type evaluation of the swelling data indicates hindered Fickian diffusion of both solvents in the conetwork organogels. The unique nanophasic bicontinuous morphology and the selective swelling behavior of the PSt-l-PDMS and PSt-l-PDMS/DVB conetworks and their gels offer a range of various potential applications. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Graphical abstract

16 pages, 4614 KiB  
Article
Production and Characterization of Semi-Solid Formulations for the Delivery of the Cosmetic Peptide Palmitoyl-GHK
by Valentyn Dzyhovskyi, Federico Santamaria, Erika Marzola, Leda Montesi, Irene Donelli, Stefano Manfredini, Remo Guerrini and Elisabetta Esposito
Cosmetics 2025, 12(2), 50; https://doi.org/10.3390/cosmetics12020050 - 13 Mar 2025
Viewed by 1342
Abstract
In this study, vesicular lipid systems and semi-solid formulations for the skin application of Palmitoyl-GHK were formulated and characterized. Palmitoyl-GHK is a cosmetic peptide with anti-aging action, capable of treating the signs of skin aging by mainly stimulating collagen synthesis in the dermis. [...] Read more.
In this study, vesicular lipid systems and semi-solid formulations for the skin application of Palmitoyl-GHK were formulated and characterized. Palmitoyl-GHK is a cosmetic peptide with anti-aging action, capable of treating the signs of skin aging by mainly stimulating collagen synthesis in the dermis. The so-called “ethosomes” were evaluated as nanovesicular systems constituted of phosphatidylcholine, organized in vesicles, ethanol, and water. In addition, semi-solid systems were produced and characterized, namely an organogel based on phosphatidylcholine, isopropyl palmitate, and water, a gel based on Poloxamer 407, and the poloxamer organogel, created by combining organogel and Poloxamer gel. To make the ethosomal dispersions suitable for skin application, xanthan gum was added as a gelling agent. Studies were therefore carried out on semi-solid formulations to determine (i) the spreadability, a key factor that influences various aspects of a topical/transdermal formulation, (ii) the occlusive factor, important to guarantee good effectiveness of a dermocosmetic product, and finally, (iii) the hydrating power, to study the effect of a formulation applied to the skin. A formulation study enabled the selection of the most suitable formulations for the incorporation of the active ingredient of interest. Palmitoyl-GHK was found to be soluble both in ethosomes and in the poloxamer organogel. In vitro studies were therefore conducted to evaluate the release kinetics of Palmitoyl-GHK from the formulations, via Franz cells. The qualitative–quantitative analysis, through analytical HPLC, highlighted that the active ingredient is released more slowly from semi-solid formulations compared to vesicular systems; in particular, the presence of poloxamer allows a controlled release of the peptide. Further studies will be necessary to verify the anti-aging efficacy of formulations containing the peptide. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

12 pages, 3532 KiB  
Article
Observation of Molecular Complexes in Oligo-Phenylenevinylene (OPV) Organogels by Neutron Diffraction
by Jean-Michel Guenet, Ayyappanpillai Ajayaghosh and Vakayil K. Praveen
Gels 2025, 11(2), 137; https://doi.org/10.3390/gels11020137 - 15 Feb 2025
Viewed by 649
Abstract
In an earlier report, we conjectured that oligo-phenylenevinylene (OPV) molecules bearing terminal OH groups may form molecular complexes in organogels prepared in benzyl alcohol. This assumption was based on circumstantial evidence only. In this paper, we report on new experimental evidence by means [...] Read more.
In an earlier report, we conjectured that oligo-phenylenevinylene (OPV) molecules bearing terminal OH groups may form molecular complexes in organogels prepared in benzyl alcohol. This assumption was based on circumstantial evidence only. In this paper, we report on new experimental evidence by means of neutron diffraction that unambiguously demonstrates this conjecture. After ascertaining that the thermodynamic properties of OPV gels are not altered by the use of a solvent isotope (hydrogenous vs. deuterated benzyl alcohol), we show that the neutron diffraction pattern in hydrogenous benzyl alcohol differs from that in deuterated benzyl alcohol. These patterns also exhibit additional peaks with respect to those obtained by X-ray. Comparison is further achieved with an OPV molecule without hydrogen bond terminal groups. In the latter case, no molecular complex is formed. These molecular structures may have a direct bearing on the differences observed in the gel morphologies. Full article
Show Figures

Figure 1

35 pages, 5990 KiB  
Review
Gels as Promising Delivery Systems: Physicochemical Property Characterization and Recent Applications
by Enzhao Wang, Zhaoying Qi, Yuzhou Cao, Ruixiang Li, Jing Wu, Rongshuang Tang, Yi Gao, Ruofei Du and Minchen Liu
Pharmaceutics 2025, 17(2), 249; https://doi.org/10.3390/pharmaceutics17020249 - 14 Feb 2025
Cited by 3 | Viewed by 3394
Abstract
Gels constitute a versatile class of materials with considerable potential for applications in both technical and medical domains. Physicochemical property characterization is a critical evaluation method for gels. Common characterization techniques include pH measurement, structural analysis, mechanical property assessment, rheological analysis, and phase [...] Read more.
Gels constitute a versatile class of materials with considerable potential for applications in both technical and medical domains. Physicochemical property characterization is a critical evaluation method for gels. Common characterization techniques include pH measurement, structural analysis, mechanical property assessment, rheological analysis, and phase transition studies, among others. While numerous research articles report characterization results, few reviews comprehensively summarize the appropriate numerical ranges for these properties. This lack of standardization complicates harmonized evaluation methods and hinders direct comparisons between different gels. To address this gap, it is essential to systematically investigate characterization methods and analyze data from the extensive body of literature on gels. In this review, we provide a comprehensive summary of general characterization methods and present a detailed analysis of gel characterization data to support future research and promote standardized evaluation protocols. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

13 pages, 3985 KiB  
Article
From Single-Chain Polymeric Nanoparticles to Interpenetrating Polymer Network Organogels: A One-Pot Fabrication Approach
by Selin Daglar, Demet Karaca Balta, Binnur Aydogan Temel and Gokhan Temel
Gels 2025, 11(2), 122; https://doi.org/10.3390/gels11020122 - 7 Feb 2025
Cited by 1 | Viewed by 964
Abstract
In this study, we developed a novel one-pot synthesis method to fabricate well-defined single-chain polymeric nanoparticles (SCNPs) integrated with interpenetrating polymer network (IPN) systems. The synthesis process involved an initial intramolecular crosslinking of poly(methyl methacrylate-co-glycidyl methacrylate) to form SCNP followed by [...] Read more.
In this study, we developed a novel one-pot synthesis method to fabricate well-defined single-chain polymeric nanoparticles (SCNPs) integrated with interpenetrating polymer network (IPN) systems. The synthesis process involved an initial intramolecular crosslinking of poly(methyl methacrylate-co-glycidyl methacrylate) to form SCNP followed by intermolecular crosslinking to produce single-chain nanogel (SCNG) structures. In addition, the achieved single-chain polymeric nanoparticle was subsequently incorporated into an IPN structure through urethane bond formation and a Diels–Alder click reaction involving furfuryl methacrylate (FMA) and bismaleimide (BMI). The thermal properties, swelling behaviors, and morphologies of the resulting SCNP-IPN systems were investigated. This work presents a novel strategy that integrates the single-chain folding concept with IPN systems, providing a promising platform for the development of robust and functional polymeric materials with potential applications in advanced materials science. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

14 pages, 8006 KiB  
Article
Stability and Rheological Properties of the Novel Silica-Based Organogel—A Drug Carrier with High Solubilization Potential
by Grzegorz Suwiński and Izabela Nowak
Materials 2025, 18(2), 266; https://doi.org/10.3390/ma18020266 - 9 Jan 2025
Viewed by 974
Abstract
Dissolution of a poorly soluble active pharmacological substance in a drug carrier usually requires advanced techniques and production equipment. The use of novel carriers such as microemulsions, vesicles, or nanocarriers might entail various limitations concerning production cost, formulation stability, or active substance capacity. [...] Read more.
Dissolution of a poorly soluble active pharmacological substance in a drug carrier usually requires advanced techniques and production equipment. The use of novel carriers such as microemulsions, vesicles, or nanocarriers might entail various limitations concerning production cost, formulation stability, or active substance capacity. In this paper, we present a novel fumed silica-based organogel as a low-cost, simple preparation drug or cosmetic carrier with interesting rheological properties and high solubilization capacity. The objective of the study was to characterize the utility aspects of the new dermatological base with special emphasis on stability, rheology, and release studies. Various formulations of a silica organogel base with poorly soluble active pharmacological substances such as propolis or ibuprofen were prepared and tested. The studies of thermal stress, enforced syneresis, and long-term stability were performed along with analyses of rheological profiles of alkali-dependent sol–gel transformation and organogel release. The new drug vehicle shows high thermodynamic stability, thixotropic rheology and first-order release profile. Such properties are promising for commercial utility as a dermatologically applied base for poorly soluble substances. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

20 pages, 8396 KiB  
Article
Columnar Mesophases and Organogels Formed by H-Bound Dimers Based on 3,6-Terminally Difunctionalized Triphenylenes
by Nahir Vadra, Lisandro J. Giovanetti, Pablo H. Di Chenna and Fabio D. Cukiernik
Gels 2025, 11(1), 9; https://doi.org/10.3390/gels11010009 - 27 Dec 2024
Viewed by 745
Abstract
A series of triphenylene (TP) compounds—denoted 3,6-THTP-DiCnOH—bearing four hexyloxy ancillary chains and two variable-length alkoxy chains terminally functionalized with hydroxyl groups have been synthesized and characterized. The shorter homologs revealed mesogenic characteristics, giving rise to thermotropic mesophases in which π-stacked columns [...] Read more.
A series of triphenylene (TP) compounds—denoted 3,6-THTP-DiCnOH—bearing four hexyloxy ancillary chains and two variable-length alkoxy chains terminally functionalized with hydroxyl groups have been synthesized and characterized. The shorter homologs revealed mesogenic characteristics, giving rise to thermotropic mesophases in which π-stacked columns of H-bound dimers self-organize yielding superstructures. Molecular-scale models are proposed to account for their structural features. The three studied compounds yielded supramolecular gels in methanol; their ability to gelify higher alcohols was found to be enhanced by the presence of water. The intermediate homolog also gelled n-hexane. Compared to their isomeric 2,7-THTP-DiCnOH analogs, the 3,6-derivatives showed a higher tendency to give rise to LC phases (wider thermal ranges) and a lower organogelling ability (variety of gelled solvents, lower gels stabilities). The overall results are analyzed in terms of different kinds of competing H-bonds: intramolecular, face-to-face dimeric, lateral polymeric, and solvent–TP interactions. Full article
(This article belongs to the Special Issue Advances in Organogelators: Preparation, Properties, and Applications)
Show Figures

Graphical abstract

17 pages, 4670 KiB  
Article
Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 mg with Enhanced Solubility, Dissolution, and Physical Stability
by Jin Woo Park, Sa-Won Lee, Jun Hak Lee, Sung Mo Park, Sung Jun Cho, Han-Joo Maeng and Kwan Hyung Cho
Gels 2024, 10(12), 837; https://doi.org/10.3390/gels10120837 - 19 Dec 2024
Cited by 1 | Viewed by 1288
Abstract
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due [...] Read more.
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.2). Among the various molecular weights of polyethylene glycols (PEGs) and surfactants, PEG 200 and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as the solubilizer and precipitation inhibitor for ATR, respectively. PEG 200 demonstrated very high solubility for ATR (>60%, w/w), and the combined use of TPGS and PEG 200 formed an organogel state and suppressed ATR precipitation, showing 15-fold higher dispersion solubility in buffer solution at pH 1.2 compared to the formulation with PEG 200 alone. The optimal SGF composition (ATR/PEG 200/TPGS = 10/60/30, w/w) exhibited an over 95% dissolution rate within 2 h at pH 1.2, compared to less than 50% for the original commercial product. In a transmission electron microscope analysis, the SGF suppressed ATR precipitation and revealed smaller precipitated particles (<300 nm) compared to the control samples. In the XRD analysis, the SGF was physically stable for 100 days at room temperature without the recrystallization of ATR. In conclusion, the SGF suggested in this work would be an alternative formulation for the treatment of dyslipidemia with enhanced solubility, dissolution, and physical stability. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Graphical abstract

Back to TopTop