From Single-Chain Polymeric Nanoparticles to Interpenetrating Polymer Network Organogels: A One-Pot Fabrication Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of SCNP
2.2. Preparation and Characterization of SCNP-IPN Gels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Instruments
4.3. Synthesis of Poly(methyl methacrylate-co-glycidyl methacrylate) (PMGA)
4.4. Formation of Single-Chain Polymeric Nanoparticles (SCNPs) from Poly(methyl methacrylate-co-glycidyl methacrylate)
4.5. Synthesis of Furfuryl Methacrylate (FMA)
4.6. Preparation of Single-Chain Nanogel (SCNG)
4.7. Preparation of FMA-BMI Gel
4.8. One-Pot SCNP-IPN Gel Preparation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alqarni, M.A.M.; Waldron, C.; Yilmaz, G.; Becer, C.R. Synthetic routes to single chain polymer nanoparticles (SCNPs): Current status and perspectives. Macromol. Rapid Commun. 2021, 42, 2100035. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Yang, Z. Progress in polymer single-chain based hybrid nanoparticles. Prog. Polym. Sci. 2022, 133, 101593. [Google Scholar] [CrossRef]
- De-La-Cuesta, J.; González, E.; Moreno, A.J.; Arbe, A.; Colmenero, J.; Pomposo, J.A. Size of elastic single-chain nanoparticles in solution and on surfaces. Macromolecules 2017, 50, 6323–6331. [Google Scholar] [CrossRef]
- Mundsinger, K.; Tuten, B.T.; Wang, L.; Neubauer, K.; Kropf, C.; O’Mara, M.L.; Barner-Kowollik, C. Visible-Light-Reactive Single-Chain Nanoparticles. Angew. Chem. Int. Ed. 2023, 62, e202302995. [Google Scholar] [CrossRef]
- Dashan, I.; Balta, D.K.; Temel, B.A.; Temel, G. Preparation of single chain nanoparticles via photoinduced radical coupling process. Eur. Polym. J. 2019, 113, 183–191. [Google Scholar] [CrossRef]
- Bilgi, M.; Karaca Balta, D.; Temel, B.A.; Temel, G. Single-Chain Folding Nanoparticles as Carbon Nanotube Catchers. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 2709–2714. [Google Scholar] [CrossRef]
- Kröger, A.P.P.; Paulusse, J.M. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. J. Control. Release 2018, 286, 326–347. [Google Scholar] [CrossRef] [PubMed]
- Alkan, B.; Temel, B.A.; Durmaz, H.; Temel, G. Preparation of poly (oxanorbornene) based single and double-folding polymers via nucleophilic aromatic substitution reaction. Eur. Polym. J. 2024, 203, 112694. [Google Scholar] [CrossRef]
- Keklik, M.; Akar, I.; Temel, B.A.; Balta, D.K.; Temel, G. Single-chain polymer nanoparticles via click crosslinking and effect of photoinduced radical combination on crosslink points. Polym. Int. 2020, 69, 1018–1023. [Google Scholar] [CrossRef]
- Frank, P.; Prasher, A.; Tuten, B.; Chao, D.; Berda, E. Characterization of single-chain polymer folding using size exclusion chromatography with multiple modes of detection. Appl. Petrochem. Res. 2015, 5, 9–17. [Google Scholar] [CrossRef]
- Hamelmann, N.M. Single-Chain Polymer Nanoparticles in Controlled Drug Delivery. Ph.D. Thesis, Universiteit Twente, Enschede, The Netherlands, 2022. [Google Scholar]
- Fan, W.; Tong, X.; Yan, Q.; Fu, S.; Zhao, Y. Photodegradable and size-tunable single-chain nanoparticles prepared from a single main-chain coumarin-containing polymer precursor. Chem. Commun. 2014, 50, 13492–13494. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.L.; Tang, Z.; Wen, Z.; Chang, C.; Wang, C.; Sun, D.; Ye, Y.; Qiu, D.; Ke, Y. Scalable Synthesis of Photoluminescent Single-Chain Nanoparticles by Electrostatic-Mediated Intramolecular Crosslinking. Angew. Chem. 2022, 134, e202205183. [Google Scholar] [CrossRef]
- Kröger, A.P.P.; Paats, J.-W.D.; Boonen, R.J.; Hamelmann, N.M.; Paulusse, J.M. Pentafluorophenyl-based single-chain polymer nanoparticles as a versatile platform towards protein mimicry. Polym. Chem. 2020, 11, 6056–6065. [Google Scholar] [CrossRef]
- Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Akil, H.M. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 2015, 57, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Dragan, E.S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243, 572–590. [Google Scholar] [CrossRef]
- Zoratto, N.; Matricardi, P. Semi-IPNs and IPN-based hydrogels. In Polymer Gels: Characterization, Properties and Biomedical Applications; Woodhead Publishing: Cambridge, MA, USA, 2018; ISBN 9780081021804. [Google Scholar]
- Zou, Z.; Zhang, B.; Nie, X.; Cheng, Y.; Hu, Z.; Liao, M.; Li, S. A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Adv. 2020, 10, 39722–39730. [Google Scholar] [CrossRef]
- Neugebauer, D.; Bury, K.; Wlazło, M. Atom transfer radical copolymerization of glycidyl methacrylate and methyl methacrylate. J. Appl. Polym. Sci. 2012, 124, 2209–2215. [Google Scholar] [CrossRef]
- Abdollahi, H.; Najafi, V.; Amiri, F. Determination of monomer reactivity ratios and thermal properties of poly (GMA-co-MMA) copolymers. Polym. Bull. 2021, 78, 493–511. [Google Scholar] [CrossRef]
- Dashan, I.; Balta, D.K.; Temel, B.A.; Temel, G. Preparation of single chain nanoparticles via photoinduced double collapse process. Macromol. Chem. Phys. 2019, 220, 1900116. [Google Scholar] [CrossRef]
- Kilic, D.; Pamukcu, C.; Balta, D.K.; Temel, B.A.; Temel, G. Rapid synthesis of fluorescent single-chain nanoparticles via photoinduced step-growth polymerization of pendant carbazole units. Eur. Polym. J. 2020, 125, 109469. [Google Scholar] [CrossRef]
- Lee, T.; Kim, B.; Kim, S.; Han, J.H.; Jeon, H.B.; Lee, Y.S.; Paik, H.-j. Fabrication of flexible, transparent and conductive films from single-walled carbon nanotubes with high aspect ratio using poly ((furfuryl methacrylate)-co-(2-(dimethylamino) ethyl methacrylate)) as a new polymeric dispersant. Nanoscale 2015, 7, 6745–6753. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, D.; Webster, D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
- Dashan, I.; Elverici, M.; Balta, D.K.; Temel, B.A.; Temel, G. Versatile light-responsive organogels: Evaluation of their dye releasing and photoinitiation behaviors. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 1275–1282. [Google Scholar] [CrossRef]
- Stouten, J.; Vanpoucke, D.E.; Van Assche, G.; Bernaerts, K.V. UV-curable biobased polyacrylates based on a multifunctional monomer derived from furfural. Macromolecules 2020, 53, 1388–1404. [Google Scholar] [CrossRef] [PubMed]
- Giroto, A.S.; do Valle, S.F.; Ribeiro, T.; Ribeiro, C.; Mattoso, L.H. Towards urea and glycerol utilization as “building blocks” for polyurethane production: A detailed study about reactivity and structure for environmentally friendly polymer synthesis. React. Funct. Polym. 2020, 153, 104629. [Google Scholar] [CrossRef]
- Galbis, J.A.; de Gracia García-Martín, M.; de Paz, M.V.; Galbis, E. Bio-based polyurethanes from carbohydrate monomers. In Aspects of Polyurethanes; IntechOpen: London, UK, 2017; pp. 155–192. [Google Scholar]
Run | Mn a (Da) | Mw (Da) | Đ a | Tg b (°C) | DH c (nm) |
---|---|---|---|---|---|
PMGA | 55,600 | 161,240 | 2.9 | 84.62 | 11.69 |
SCNP | 32,300 | 83,980 | 2.6 | 96.95 | 11.10 |
Entry | SCNP (mg) | Ongronat 3600 (mg) | Glycerin (mg) | FMA (mg) | MMA (mL) | BMI (mg) |
---|---|---|---|---|---|---|
G1 | 50 | 150 | 110 | 50 | 1.10 | 10 |
G2 | 50 | 150 | 110 | 25 | 0.55 | 5 |
G3 | 25 | 75 | 55 | 50 | 1.10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daglar, S.; Balta, D.K.; Temel, B.A.; Temel, G. From Single-Chain Polymeric Nanoparticles to Interpenetrating Polymer Network Organogels: A One-Pot Fabrication Approach. Gels 2025, 11, 122. https://doi.org/10.3390/gels11020122
Daglar S, Balta DK, Temel BA, Temel G. From Single-Chain Polymeric Nanoparticles to Interpenetrating Polymer Network Organogels: A One-Pot Fabrication Approach. Gels. 2025; 11(2):122. https://doi.org/10.3390/gels11020122
Chicago/Turabian StyleDaglar, Selin, Demet Karaca Balta, Binnur Aydogan Temel, and Gokhan Temel. 2025. "From Single-Chain Polymeric Nanoparticles to Interpenetrating Polymer Network Organogels: A One-Pot Fabrication Approach" Gels 11, no. 2: 122. https://doi.org/10.3390/gels11020122
APA StyleDaglar, S., Balta, D. K., Temel, B. A., & Temel, G. (2025). From Single-Chain Polymeric Nanoparticles to Interpenetrating Polymer Network Organogels: A One-Pot Fabrication Approach. Gels, 11(2), 122. https://doi.org/10.3390/gels11020122