Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = organofunctional silanes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 13665 KiB  
Review
Predicted Corrosion Performance of Organofunctional Silane Coated Steel Reinforcement for Concrete Structures: An Overview
by Petr Pokorný and Milan Kouřil
Buildings 2024, 14(6), 1756; https://doi.org/10.3390/buildings14061756 - 11 Jun 2024
Cited by 3 | Viewed by 2718
Abstract
This article provides a comprehensive overview of the potential use of organofunctional silane coatings in the corrosion protection of concrete reinforcement in close relation to other commercially used coating technologies—i.e., epoxy coatings and bath hot-dip galvanizing coatings. The application technology of the steel [...] Read more.
This article provides a comprehensive overview of the potential use of organofunctional silane coatings in the corrosion protection of concrete reinforcement in close relation to other commercially used coating technologies—i.e., epoxy coatings and bath hot-dip galvanizing coatings. The application technology of the steel surface is described in detail, and the corrosion performance and bond strength in concrete are compared. The paper also points out the possibility of improving the durability of epoxy coatings by the addition of silanes and, in the case of application to the surface of hot-dip galvanized steel, they can prevent corrosion of the coating by hydrogen evolution. The application potential of organofunctional silanes is also presented in the form of hydrophobic coatings on concrete surfaces or as corrosion inhibitors in simulated concrete pore solutions. The use of a suitable type of modified silane coating on the surface of carbon steel reinforcement can increase the corrosion performance and can also increase the bond strength in concrete. However, these facts need to be experimentally verified. Full article
Show Figures

Figure 1

26 pages, 12504 KiB  
Article
Corrosion Properties and Bond Strength in Normal Strength Concrete of Al2O3 Plasma-Sprayed Plain Bars with ZrCC/Organofunctional Silane Coating
by Petr Pokorný, Nikola Prodanovic, Karel Hurtig, Veronika Steinerová, Jaroslav Fojt, Marek Janata and Vlastimil Brožek
Buildings 2024, 14(6), 1543; https://doi.org/10.3390/buildings14061543 - 26 May 2024
Viewed by 1348
Abstract
In this study, the corrosion properties of plasma-sprayed Al2O3 coating (APSS) with a topcoat of zirconium-based conversion coating (ZrCC) and organofunctional silane coating (3-glycidyloxypropyltrimethoxysilane; GPTMS) on carbon steel are investigated in detail. Additionally, the bond strength of plain steel bars [...] Read more.
In this study, the corrosion properties of plasma-sprayed Al2O3 coating (APSS) with a topcoat of zirconium-based conversion coating (ZrCC) and organofunctional silane coating (3-glycidyloxypropyltrimethoxysilane; GPTMS) on carbon steel are investigated in detail. Additionally, the bond strength of plain steel bars coated with this system in normal strength concrete are newly tested. The APSS coating exhibits significant porosity, with unfavourable open pores limiting the barrier protection effect. In contrast, the surface roughness (Ra) significantly increases, improving the bond strength between steel bars and concrete. Such increase in carbon steel roughness improves bond strength in concrete. The synergic application of ZrCC and GPTMS topcoats significantly enhances the corrosion resistance of the base coat (inhibition effect). The character of the GPTMS coating increases the wettability of the APSS coating, which further positively contributes to bond strength between plain bars and concrete. It is demonstrated that when the ZrCC topcoat is applied without GPTMS, the corrosion resistance increases insignificantly and the surface wettability decreases, negatively affecting bond strength in comparison with carbon steel coated using an APSS base coat only. Full article
Show Figures

Figure 1

23 pages, 4044 KiB  
Review
A Comprehensive Review on Processing, Development and Applications of Organofunctional Silanes and Silane-Based Hyperbranched Polymers
by Balaraman Indumathy, Ponnan Sathiyanathan, Gajula Prasad, Mohammad Shamim Reza, Arun Anand Prabu and Hongdoo Kim
Polymers 2023, 15(11), 2517; https://doi.org/10.3390/polym15112517 - 30 May 2023
Cited by 31 | Viewed by 6539
Abstract
Since the last decade, hyperbranched polymers (HBPs) have gained wider theoretical interest and practical applications in sensor technology due to their ease of synthesis, highly branched structure but dimensions within nanoscale, a larger number of modified terminal groups and lowering of viscosity in [...] Read more.
Since the last decade, hyperbranched polymers (HBPs) have gained wider theoretical interest and practical applications in sensor technology due to their ease of synthesis, highly branched structure but dimensions within nanoscale, a larger number of modified terminal groups and lowering of viscosity in polymer blends even at higher HBP concentrations. Many researchers have reported the synthesis of HBPs using different organic-based core-shell moieties. Interestingly, silanes, as organic-inorganic hybrid modifiers of HBP, are of great interest as they resulted in a tremendous improvement in HBP properties like increasing thermal, mechanical and electrical properties compared to that of organic-only moieties. This review focuses on the research progress in organofunctional silanes, silane-based HBPs and their applications since the last decade. The effect of silane type, its bi-functional nature, its influence on the final HBP structure and the resultant properties are covered in detail. Methods to enhance the HBP properties and challenges that need to be overcome in the near future are also discussed. Full article
Show Figures

Figure 1

15 pages, 4620 KiB  
Article
Influence of Perfluorooctanoic Acid on Structural, Morphological, and Optical Properties of Hybrid Silica Coatings on Glass Substrates
by Violeta Purcar, Valentin Rădiţoiu, Florentina Monica Raduly, Alina Rădiţoiu, Simona Căprărescu, Adriana Nicoleta Frone, Raluca Şomoghi, Mihai Anastasescu, Hermine Stroescu and Cristian-Andi Nicolae
Appl. Sci. 2023, 13(3), 1669; https://doi.org/10.3390/app13031669 - 28 Jan 2023
Cited by 3 | Viewed by 2072
Abstract
In recent years, various coatings based on fluorinated materials, used in a commercial application, have been created through many preparation routes. However, the techniques utilized to realize these coatings required either expensive and complex equipment, imply multiple manufacturing steps, or are time- or [...] Read more.
In recent years, various coatings based on fluorinated materials, used in a commercial application, have been created through many preparation routes. However, the techniques utilized to realize these coatings required either expensive and complex equipment, imply multiple manufacturing steps, or are time- or cost-consuming. In this paper, the major target was to develop fluorinated hybrid coatings presenting sustainable hydrophobicity and good transparency simultaneously. The sol–gel method was proposed to obtain these fluorinated hybrid coatings because it does not require expensive equipment, or the existence of stabilizing agents that reduce the storage period, it consumes less energy, and it is easy to implement. The influence of perfluorooctanoic acid, utilized in the sol–gel processing of hybrid silica materials, on the structural, morphological, and optical properties of coatings deposited on glass substrates, was evaluated. Different silane precursors (tetraethyl orthosilicate (TEOS), triethoxymethylsilane (MTES), and trimethoxyhexadecylsilane (HDTMES)) were utilized to synthesize hybrid silica materials. The properties of the obtained materials were characterized by FTIR, UV–Vis, TEM, TGA, AFM, Ellipsometry, and Contact Angle analyses. FTIR spectroscopy shows the formation of a silica network tailored with organofunctional and fluoroalkyl groups. The fluorinated silica coatings presented smooth surfaces and good transparency, with a transmittance of ~90% in the visible range. It was found that the fluorinated silica materials improved the coating’s hydrophobicity (~110° in contact angle with water). These fluorinated silica materials can create multifunctional structures with antireflective and hydrophobic coatings for possible optical devices. Full article
Show Figures

Figure 1

38 pages, 1817 KiB  
Review
Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review
by Jerzy J. Chruściel
Polymers 2022, 14(20), 4382; https://doi.org/10.3390/polym14204382 - 17 Oct 2022
Cited by 53 | Viewed by 12712
Abstract
General information concerning different kinds of chemical additives used in the textile industry has been described in this paper. The properties and applications of organofunctional silanes and polysiloxanes (silicones) for chemical and physical modifications of textile materials have been reviewed, with a focus [...] Read more.
General information concerning different kinds of chemical additives used in the textile industry has been described in this paper. The properties and applications of organofunctional silanes and polysiloxanes (silicones) for chemical and physical modifications of textile materials have been reviewed, with a focus on silicone softeners, silane, and silicones-based superhydrophobic finishes and coatings on textiles composed of silicone elastomers and rubbers. The properties of textile materials modified with silanes and silicones and their practical and potential applications, mainly in the textile industry, have been discussed. Full article
(This article belongs to the Special Issue Silicon-Based Polymers and Materials)
Show Figures

Figure 1

13 pages, 1786 KiB  
Article
Infrared Spectroscopy Studies of Aluminum Oxide and Metallic Aluminum Powders, Part II: Adsorption Reactions of Organofunctional Silanes
by Bellamarie Ludwig
Powders 2022, 1(2), 75-87; https://doi.org/10.3390/powders1020007 - 1 Apr 2022
Cited by 23 | Viewed by 9464
Abstract
A gas phase, probe molecule doser was fabricated and connected to a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reaction chamber to study the reactions and stability of two organosilanes with the surfaces of metallic aluminum and boehmite powders in situ. Two metallic [...] Read more.
A gas phase, probe molecule doser was fabricated and connected to a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reaction chamber to study the reactions and stability of two organosilanes with the surfaces of metallic aluminum and boehmite powders in situ. Two metallic aluminum powder surfaces were studied, including an as-received, native oxide layer surface, and a laboratory prepared, boehmite-like surface. Neat boehmite powder was also used for reference and comparison to the laboratory prepared surface. We found that the metalloxane bond (Al-O-Si) was observed in the 1100–950 cm−1 region for all surfaces, which indicates chemisorption between the adsorbate and available surface hydroxyls. We were also able to draw correlations between the loss of surface –OH and the subsequent growth of –CH for additional confirmation of adsorbate retention. Hydrothermal stability was probed through intentional exposure to water after chlorotrimethyl silane dosing, which showed adsorbate loss through fractional decreases in intensity of the –CH stretches. These results provide clear evidence of metalloxane bonds formed on aluminum powder and insight into their stability, supporting the identification of these bonds on bulk scale silane treated powders. Full article
(This article belongs to the Special Issue Feature Papers in Powders)
Show Figures

Figure 1

25 pages, 4311 KiB  
Article
Engineering Properties of New-Age (Nano) Modified Emulsion (NME) Stabilised Naturally Available Granular Road Pavement Materials Explained Using Basic Chemistry
by Gerrit J. Jordaan and Wynand J. vdM. Steyn
Appl. Sci. 2021, 11(20), 9699; https://doi.org/10.3390/app11209699 - 18 Oct 2021
Cited by 5 | Viewed by 4676
Abstract
Nanoscale organofunctional silanes have been developed, tested and successfully applied to protect stone buildings in Europe against climatic effects since the 1860s. The same nanotechnologies can also be used in pavement engineering to create strong chemical bonds between a stabilising agent and granular [...] Read more.
Nanoscale organofunctional silanes have been developed, tested and successfully applied to protect stone buildings in Europe against climatic effects since the 1860s. The same nanotechnologies can also be used in pavement engineering to create strong chemical bonds between a stabilising agent and granular material. The attachment of the organofunctional silane to a material also changes the surface of the material to become hydrophobic, thereby considerably reducing future chemical weathering. These properties allow naturally available materials to be used in any pavement layer at a low risk. In the built environment, scientists soon determined that the successful use of an organo-silane depends on the type and condition of the stone to be treated. The same principles apply to the implementation of applicable nanotechnologies in pavement engineering. Understanding the basic chemistry, determining the properties of the stabilising agent and the organofunctional modifying agent and the chemical interaction with the primary and secondary minerals of the material are essential for the successful application of these technologies in pavement engineering. This paper explains some basic chemistry, which fundamentally influences engineering outputs that can be achieved using New-age (Nano) Modified Emulsions (NME) stabilising agents with naturally available granular materials in all road pavement layers below the surfacing. Full article
Show Figures

Figure 1

42 pages, 30371 KiB  
Article
Nanotechnology Incorporation into Road Pavement Design Based on Scientific Principles of Materials Chemistry and Engineering Physics Using New-Age (Nano) Modified Emulsion (NME) Stabilisation/Enhancement of Granular Materials
by Gerrit J. Jordaan and Wynand J. vdM Steyn
Appl. Sci. 2021, 11(18), 8525; https://doi.org/10.3390/app11188525 - 14 Sep 2021
Cited by 7 | Viewed by 6100
Abstract
The use of naturally available materials not conforming to traditional specifications or standards in the base and sub-base layers of road pavement structures and stabilised with New-age (Nano) Modified Emulsions (NME) have been tested, implemented and successfully verified through Accelerated Pavement Testing (APT) [...] Read more.
The use of naturally available materials not conforming to traditional specifications or standards in the base and sub-base layers of road pavement structures and stabilised with New-age (Nano) Modified Emulsions (NME) have been tested, implemented and successfully verified through Accelerated Pavement Testing (APT) in South Africa. This was made possible through the development and use of a materials design procedure addressing fundamental principles and based on scientific concepts which are universally applicable. The understanding and incorporation of the chemical interactions between the mineralogy of the materials and an NME stabilising agent (compatibility between the chemistry of the reactive agents and material mineralogy) into the design approach is key to achieving the required engineering properties. The evaluation of the stabilised materials is performed using tests indicative of the basic engineering properties (physics) of compressive strengths, tensile strengths and durability. This article describes the basic materials design approach that was developed to ensure that organofunctional nano-silane modified emulsions can successfully be used for pavement layer construction utilising naturally available materials at a low risk. The enablement of the use of naturally available materials in all pavement layers can have a considerable impact on the unit cost and lifecycle costs of road transportation infrastructure. Full article
Show Figures

Figure 1

14 pages, 3382 KiB  
Article
Structure and Oligonucleotide Binding Efficiency of Differently Prepared Click Chemistry-Type DNA Microarray Slides Based on 3-Azidopropyltrimethoxysilane
by Emilia Frydrych-Tomczak, Tomasz Ratajczak, Łukasz Kościński, Agnieszka Ranecka, Natalia Michalak, Tadeusz Luciński, Hieronim Maciejewski, Stefan Jurga, Mikołaj Lewandowski and Marcin K. Chmielewski
Materials 2021, 14(11), 2855; https://doi.org/10.3390/ma14112855 - 26 May 2021
Cited by 1 | Viewed by 3380
Abstract
The structural characterization of glass slides surface-modified with 3-azidopropyltrimethoxysilane and used for anchoring nucleic acids, resulting in the so-called DNA microarrays, is presented. Depending on the silanization conditions, the slides were found to show different oligonucleotide binding efficiency, thus, an attempt was made [...] Read more.
The structural characterization of glass slides surface-modified with 3-azidopropyltrimethoxysilane and used for anchoring nucleic acids, resulting in the so-called DNA microarrays, is presented. Depending on the silanization conditions, the slides were found to show different oligonucleotide binding efficiency, thus, an attempt was made to correlate this efficiency with the structural characteristics of the silane layers. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray reflectometry (XRR) measurements provided information on the surface topography, chemical composition and thickness of the silane films, respectively. The surface for which the best oligonucleotides binding efficiency is observed, has been found to consist of a densely-packed silane layer, decorated with a high-number of additional clusters that are believed to host exposed azide groups. Full article
(This article belongs to the Special Issue Functional Surface Structures and Thin Solid Films)
Show Figures

Figure 1

18 pages, 4505 KiB  
Article
The Rapeseed Oil Based Organofunctional Silane for Stainless Steel Protective Coatings
by Karol Szubert, Jarosław Wojciechowski, Łukasz Majchrzycki, Wojciech Jurczak, Grzegorz Lota and Hieronim Maciejewski
Materials 2020, 13(10), 2212; https://doi.org/10.3390/ma13102212 - 12 May 2020
Cited by 8 | Viewed by 2775
Abstract
The earlier obtained organosilicon derivatives of rapeseed oil were used for the production of coatings protecting steel surface against corrosion. Vegetable oils have been hitherto used for temporary protection of metals against corrosion, while thanks to the synthesis of appropriate organosilicon derivatives, it [...] Read more.
The earlier obtained organosilicon derivatives of rapeseed oil were used for the production of coatings protecting steel surface against corrosion. Vegetable oils have been hitherto used for temporary protection of metals against corrosion, while thanks to the synthesis of appropriate organosilicon derivatives, it is now possible to create durable protective coatings. Due to the presence of alkoxysilyl groups and the use of the sol-gel process, the coatings obtained were bonded to the steel surface. The effectiveness of the coatings was checked by electrochemical methods and steel surface analysis. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

41 pages, 12661 KiB  
Review
Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review
by Ahmed A. Issa and Adriaan S. Luyt
Polymers 2019, 11(3), 537; https://doi.org/10.3390/polym11030537 - 21 Mar 2019
Cited by 251 | Viewed by 25828
Abstract
Scientists from various different fields use organo-trialkoxysilanes and tetraalkoxysilanes in a number of applications. The silica-based materials are sometimes synthesized without a good understanding of the underlying reaction kinetics. This literature review attempts to be a comprehensive and more technical article in which [...] Read more.
Scientists from various different fields use organo-trialkoxysilanes and tetraalkoxysilanes in a number of applications. The silica-based materials are sometimes synthesized without a good understanding of the underlying reaction kinetics. This literature review attempts to be a comprehensive and more technical article in which the kinetics of alkoxysilanes polymerization are discussed. The kinetics of polymerization are controlled by primary factors, such as catalysts, water/silane ratio, pH, and organo-functional groups, while secondary factors, such as temperature, solvent, ionic strength, leaving group, and silane concentration, also have an influence on the reaction rates. Experiments to find correlations between these factors and reaction rates are restricted to certain conditions and most of them disregard the properties of the solvent. In this review, polymerization kinetics are discussed in the first two sections, with the first section covering early stage reactions when the reaction medium is homogenous, and the second section covering when phase separation occurs and the reaction medium becomes heterogeneous. Nuclear magnetic resonance (NMR) spectroscopy and other techniques are discussed in the third section. The last section summarizes the study of reaction mechanisms by using ab initio and Density Functional Theory (DFT) methods alone, and in combination with molecular dynamics (MD) or Monte Carlo (MC) methods. Full article
(This article belongs to the Special Issue Kinetics of Polymerization Reactions)
Show Figures

Figure 1

16 pages, 4467 KiB  
Article
The Synthesis of Low-Viscosity Organotin-Free Moisture-Curable Silane-Terminated Poly(Urethane-Urea)s
by Chen Tan, Viivi Luona, Teija Tirri and Carl-Eric Wilen
Polymers 2018, 10(7), 781; https://doi.org/10.3390/polym10070781 - 16 Jul 2018
Cited by 16 | Viewed by 7810
Abstract
This work explores the possibility of synthesizing moisture-curable silane-terminated poly(urethane-urea)s (SPURs) of low viscosity. First, NCO-terminated urethane prepolymers were prepared, followed by silane end-capping. The impact of polyol molecular weight and the ratio of isocyanate to polyol (NCO/OH) on viscosity and the properties [...] Read more.
This work explores the possibility of synthesizing moisture-curable silane-terminated poly(urethane-urea)s (SPURs) of low viscosity. First, NCO-terminated urethane prepolymers were prepared, followed by silane end-capping. The impact of polyol molecular weight and the ratio of isocyanate to polyol (NCO/OH) on viscosity and the properties of SPUR were examined. As alternatives to the organotin catalysts traditionally used for the polyurethane synthesis and curing processes, bismuth carboxylate catalysts were evaluated. In addition, the effect of organofunctional groups in the aminosilane structure (R1–NH–R2–Si(OR3)3), i.e., R1 (alkyl, aryl or trimethoxysilyl-propyl), the spacer R2 (α or γ) and alkyl group R3 (methyl or ethyl), was examined. The chemical and physical structures of the SPUR were investigated by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and the mechanical properties were evaluated by tensile tests. The results reveal that silane-terminated, moisture-curable polyurethanes can be successfully synthesized and cured with bismuth carboxylate catalysts. SPUR exhibiting low viscosity, with adequate tensile strength and elongation can be prepared using environmentally benign bismuth carboxylate catalyst having a high metal content of 19%–21%, by utilizing secondary aminosilane end-cappers and an optimal combination of the polyol molecular weight and NCO/OH ratio. Full article
(This article belongs to the Collection Polymeric Adhesives)
Show Figures

Graphical abstract

12 pages, 5531 KiB  
Article
A Study on the Rheological and Mechanical Properties of Photo-Curable Ceramic/Polymer Composites with Different Silane Coupling Agents for SLA 3D Printing Technology
by Se Yeon Song, Min Soo Park, Jung Woo Lee and Ji Sun Yun
Nanomaterials 2018, 8(2), 93; https://doi.org/10.3390/nano8020093 - 7 Feb 2018
Cited by 65 | Viewed by 9448
Abstract
Silane coupling agents (SCAs) with different organofunctional groups were coated on the surfaces of Al2O3 ceramic particles through hydrolysis and condensation reactions, and the SCA-coated Al2O3 ceramic particles were dispersed in a commercial photopolymer based on interpenetrating [...] Read more.
Silane coupling agents (SCAs) with different organofunctional groups were coated on the surfaces of Al2O3 ceramic particles through hydrolysis and condensation reactions, and the SCA-coated Al2O3 ceramic particles were dispersed in a commercial photopolymer based on interpenetrating networks (IPNs). The organofunctional groups that have high radical reactivity and are more effective in UV curing systems are usually functional groups based on acryl, such as acryloxy groups, methacrloxy groups, and acrylamide groups, and these silane coupling agents seem to improve interfacial adhesion and dispersion stability. The coating morphology and the coating thickness distribution of SCA-coated Al2O3 ceramic particles according to the different organofunctional groups were observed by FE-TEM. The initial dispersibility and dispersion stability of the SCA-coated Al2O3/High-temp composite solutions were investigated by relaxation NMR and Turbiscan. The rheological properties of the composite solutions were investigated by viscoelastic analysis and the mechanical properties of 3D-printed objects were observed with a nanoindenter. Full article
Show Figures

Graphical abstract

Back to TopTop