Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = organic foulants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4356 KiB  
Article
Surfactant-Enhanced Cleaning Solutions for Ceramic Membranes: A Comparative Study on Humic Acid and BSA Fouling
by Navneet Kallapalli and Onita D. Basu
Membranes 2025, 15(3), 73; https://doi.org/10.3390/membranes15030073 - 2 Mar 2025
Cited by 2 | Viewed by 1293
Abstract
Control of natural organic matter (NOM) reversible and irreversible fouling with ceramic membranes for drinking water applications with chemically enhanced backwash (CEB) protocols is limited. This research examines the efficiency of various chemical combinations with non-ionic surfactants to control the NOM fouling caused [...] Read more.
Control of natural organic matter (NOM) reversible and irreversible fouling with ceramic membranes for drinking water applications with chemically enhanced backwash (CEB) protocols is limited. This research examines the efficiency of various chemical combinations with non-ionic surfactants to control the NOM fouling caused by humic acid (HA) and protein foulants. Two commercially available non-ionic surfactants, Tween 80 and Triton X100, combined with conventional cleaning solutions, were analyzed with respect to membrane fouling and cleaning using the resistance in series (RIS) model, membrane permeability, carbon mass balance, and contact angle measurements. The results demonstrated that in all cases, CEB outperformed hydraulic backwashing; in addition, the inclusion of surfactants demonstrated enhanced the fouling control with protein foulants more than humic acid. The transmembrane pressure (TMP) with surfactant CEB was controlled to within a range of 83–105 kPa compared to hydraulic backwash at approx. 128 kPa for HA and BSA. The carbon mass balance analysis indicates that Tween 80 surfactant-based CEB demonstrated effective fouling control, leaving only 20% irreversible fouling with HA and 30% with BSA while the hydraulic backwash resulted in 57% irreversible fouling of carbon on the membrane for HA and BSA. Full article
(This article belongs to the Special Issue Ceramic Membranes for Removal of Emerging Pollutants)
Show Figures

Figure 1

14 pages, 1027 KiB  
Article
Membrane Foulant Removal by Ozone-Biocarrier Pretreatment Technology for Industrial Wastewater Reclamation
by Ting-Ting Chang, Sheng-Yi Chiu, Chun-Chi Lee, Yuan-Liang Tai, Guan-You Lin, Chun-Hsi Lai and Po-Yu Chen
Water 2025, 17(2), 272; https://doi.org/10.3390/w17020272 - 19 Jan 2025
Viewed by 806
Abstract
During wastewater reclamation, organic matter is considered the dominant foulant that shortens the lifetime of ultrafiltration (UF) membranes during operation. Additionally, the mineralization efficiency of organic matter in secondary effluent is typically low due to nonbiodegradable carbon sources. Herein, a combination of ozone [...] Read more.
During wastewater reclamation, organic matter is considered the dominant foulant that shortens the lifetime of ultrafiltration (UF) membranes during operation. Additionally, the mineralization efficiency of organic matter in secondary effluent is typically low due to nonbiodegradable carbon sources. Herein, a combination of ozone and a porous biocarrier reactor was applied as a novel pretreatment system to enhance organic matter removal in the effluent in a lab-scale evaluation and pilot test. The results indicated that 70% of the biopolymer was removed, and the chemical oxygen demand (COD) removal efficiency was 1.8 times higher in this combined process than in the process with a porous biocarrier alone. The UF flux increased by 16% after the combined ozonation and porous biocarrier pretreatment process compared with the process with no pretreatment. Interestingly, the genus Flavobacterium (15.59%), containing biopolymer-degrading bacteria, was observed only in the combined ozone plus porous biocarrier process. Moreover, the results show that biopolymers can be removed through the combined ozone and porous biocarrier process due to partial ozone degradation, confirming that this combined process is one of the better pretreatment procedures for organic matter removal and improves the flux of UF during the wastewater reclamation process. Full article
(This article belongs to the Topic Advanced Oxidation Processes for Wastewater Purification)
Show Figures

Figure 1

23 pages, 7243 KiB  
Article
The Operational Performance of an Ultrafiltration Pilot Unit for the Treatment of Ultra-Concentrated Brines
by Giuseppe Scelfo, Paula Serrano-Tari, Ritamaria Raffaelli, Fabrizio Vicari, Isabel Oller, Andrea Cipollina, Alessandro Tamburini and Giorgio Micale
Membranes 2024, 14(12), 276; https://doi.org/10.3390/membranes14120276 - 20 Dec 2024
Viewed by 1132
Abstract
The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. [...] Read more.
The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane. Distinct variations in permeability, fouling resistance and rejection coefficient were observed under operational pressures ranging from 2 to 4 bar. Working at low pressure (2 bar), the pilot plant achieves permeability and rejection coefficient values of 17 L/m2hbar and 95%, respectively. Foulant behavior was characterized by determining a “fouling resistance”, obtaining an average value of 1013 m−1. Tests with three distinct bittern samples were conducted to assess the influence of chemical composition and organic matter content on membrane permeability and fouling characteristics. The collected data enabled a comprehensive characterization of the ultrafiltration pilot unit working with this particular saline feed solution, which has very high technical–economic potential. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 4739 KiB  
Article
Fouling and Chemical Cleaning Strategies for Submerged Ultrafiltration Membrane: Synchronized Bench-Scale, Full-Scale, and Engineering Tests
by Xiwang Zhu, Chengyue Fan, Yichen Fang, Wenqing Yu, Yawei Xie and Hongyuan Liu
Membranes 2024, 14(12), 251; https://doi.org/10.3390/membranes14120251 - 26 Nov 2024
Cited by 1 | Viewed by 2390
Abstract
This study investigated membrane fouling issues associated with the operation of a submerged ultrafiltration membrane in a drinking water treatment plant (DWTP) and optimized the associated chemical cleaning strategies. By analyzing the surface components of the membrane foulant and the compositions of the [...] Read more.
This study investigated membrane fouling issues associated with the operation of a submerged ultrafiltration membrane in a drinking water treatment plant (DWTP) and optimized the associated chemical cleaning strategies. By analyzing the surface components of the membrane foulant and the compositions of the membrane cleaning solution, the primary causes of membrane fouling were identified. Membrane fouling control strategies suitable for the DWTP were evaluated through chemical cleaning tests conducted for bench-scale, full-scale, and engineering cases. The results show that the membrane foulants were primarily composed of a mixture of inorganics and organics; the inorganics were mainly composed of Al and Si, while the organics were primarily humic acid (HA). Sodium citrate proved to be the most effective cleaning agent for inorganic fouling, which was mainly composed of Al, whereas sodium hypochlorite (NaClO) combined with sodium hydroxide (NaOH) showed the best removal efficiency for organic fouling, which predominantly consisted of HA and Si. However, sodium hypochlorite (NaClO) combined with sodium hydroxide (NaOH) showed the best removal efficiency for organic fouling and Si; organic fouling predominantly consisted of HA. Based on the bench-scale test results, flux recovery was verified in the full-scale system. Under a constant pressure of 30 kPa, the combined acid–alkali cleaning achieved the best flux recovery, restoring the flux from 22.8 L/(m2·h) to 66.75 L/(m2·h). In the engineering tests, combined acid–alkali cleaning yielded results consistent with those of the full-scale tests. In the practical engineering cleaning process, adopting a cleaning strategy of alkaline (NaClO + NaOH) cleaning followed by acidic (sodium citrate) cleaning can effectively solve the membrane fouling problem. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

12 pages, 3222 KiB  
Article
Study on an Integrated Water Treatment System by Simultaneously Coupling Granular Activated Carbon (GAC) and Powdered Carbon with Ultrafiltration
by Yi Wang, Sijia Yu and Weiwei Cai
Separations 2024, 11(11), 312; https://doi.org/10.3390/separations11110312 - 30 Oct 2024
Cited by 2 | Viewed by 1117
Abstract
The process of using powdered activated carbon (PAC) in conjunction with ultrafiltration (UF) has been widely adopted for the treatment of various types of water and wastewater. However, during the application of this integrated PAC-UF process, PAC tends to adhere significantly to the [...] Read more.
The process of using powdered activated carbon (PAC) in conjunction with ultrafiltration (UF) has been widely adopted for the treatment of various types of water and wastewater. However, during the application of this integrated PAC-UF process, PAC tends to adhere significantly to the surface of the UF membrane, which exacerbates membrane fouling. To tackle this issue, this study proposed an innovative water treatment approach that simultaneously integrated granular activated carbon (GAC) and PAC/biochar with UF. In this setup, PAC/biochar was intended to enhance water quality, while the fluidized GAC particles were aimed at reducing membrane fouling and the deposition of PAC/biochar on the membrane surface. We systematically analyzed the operational performance of the integrated systems concerning fouling formation, PAC/biochar attachment, effluent quality, and foulant components. The results indicate that both PAC and biochar effectively improved effluent quality in terms of chemical oxygen demand (COD) and hardness, although they significantly deposited on the membrane surface during operation. Notably, PAC was more prone to attach to the membrane than biochar, and the fouling in biochar-UF systems was primarily attributed to the attachment of organic foulants rather than biochar itself. By combining with GAC, up to 46.01% of membrane fouling and 96.11% of PAC/biochar attachment were mitigated due to the strong mechanical action of the fluidized GAC particles. Importantly, the inclusion of fluidized GAC did not significantly affect effluent quality. Consequently, the GAC-PAC/biochar systems proposed in this study demonstrated dual benefits of improving effluent quality and ensuring stable operation, thereby providing a viable solution for efficient and sustainable water treatment. Full article
(This article belongs to the Special Issue Advanced Research in Desalination)
Show Figures

Figure 1

83 pages, 5867 KiB  
Review
Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism
by Yasushi Maeda
Membranes 2024, 14(10), 221; https://doi.org/10.3390/membranes14100221 - 17 Oct 2024
Cited by 6 | Viewed by 6262
Abstract
Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As [...] Read more.
Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As concerns grow over the depletion of precious freshwater resources, a global movement is gaining momentum to utilize previously overlooked or challenging water sources, collectively known as “marginal water”. Fouling is a serious concern when treating marginal water. In RO/NF, biofouling, organic and colloidal fouling, and scaling are particularly problematic. Of these, organic fouling, along with biofouling, has been considered difficult to manage. The major organic foulants studied are natural organic matter (NOM) for surface water and groundwater and effluent organic matter (EfOM) for municipal wastewater reuse. Polymeric substances such as sodium alginate, humic acid, and proteins have been used as model substances of EfOM. Fouling by low molecular weight organic compounds (LMWOCs) such as surfactants, phenolics, and plasticizers is known, but there have been few comprehensive reports. This review aims to shed light on fouling behavior by LMWOCs and its mechanism. LMWOC foulants reported so far are summarized, and the role of LMWOCs is also outlined for other polymeric membranes, e.g., UF, gas separation membranes, etc. Regarding the mechanism of fouling, it is explained that the fouling is caused by the strong interaction between LMWOC and the membrane, which causes the water permeation to be hindered by LMWOCs adsorbed on the membrane surface (surface fouling) and sorbed inside the membrane pores (internal fouling). Adsorption amounts and flow loss caused by the LMWOC fouling were well correlated with the octanol-water partition coefficient (log P). In part 2, countermeasures to solve this problem and applications using the LMWOCs will be outlined. Full article
(This article belongs to the Collection Featured Reviews in Membrane Science)
Show Figures

Figure 1

13 pages, 2896 KiB  
Article
Influence of Iron and Magnesium on Fouling Properties of Organic Matter Solution in Membrane Process
by Mohammad T. Alresheedi
Membranes 2024, 14(7), 150; https://doi.org/10.3390/membranes14070150 - 7 Jul 2024
Cited by 1 | Viewed by 1438
Abstract
Organic matter has been identified as a significant type of foulant in membrane processes for water treatment. Its fouling tendency is highly affected by the presence of ions and inorganics. While the effects of ions addition on organic fouling have been extensively researched [...] Read more.
Organic matter has been identified as a significant type of foulant in membrane processes for water treatment. Its fouling tendency is highly affected by the presence of ions and inorganics. While the effects of ions addition on organic fouling have been extensively researched in the past, studies on the effect of positively-charged inorganics, such as Fe2+ and Mg2+, on organic fouling are limited. This study investigates the influence of Fe2+ and Mg2+ addition on fouling properties of the Suwannee River Organic Matter (SROM) solution in the MF process, with and without Ca2+ ions. Results showed that increasing the concentration of Fe2+ and Mg2+ from 0–5 mM promoted SROM fouling, and resulted in an increased flux decline up to 33% and 58%, respectively. Cake layer resistance became more dominant with the addition of Fe2+ and Mg2+, and was counted for more than 60% of the fouling. Mg2+, however, caused higher internal pore blocking, and facilitated the formation of a less permeable cake layer, compared to Fe2+. This was evident in the analysis of the cake layer properties and the visualization of the fouling layer. In all cases, SROM fouling with Fe2+ and Mg2+ worsened with the addition of Ca2+ ions. The results of the study indicated the importance of understanding the interaction between organic matter and Fe2+ and Mg2+, which would provide useful insights on their fouling mechanism and control. Full article
Show Figures

Figure 1

19 pages, 5937 KiB  
Article
Study on UF PES Membranes Spray-Coated with Polymerizable Bicontinuous Microemulsion Materials for Low-Fouling Behavior
by Sneha De, Jonathan Heer, Suwetha Sankar, Fabian Geiger, Ephraim Gukelberger, Francesco Galiano, Raffaella Mancuso, Bartolo Gabriele, Alberto Figoli and Jan Hoinkis
Membranes 2023, 13(12), 893; https://doi.org/10.3390/membranes13120893 - 29 Nov 2023
Cited by 3 | Viewed by 2433
Abstract
The low-fouling propensity of commercially available polyethersulfone (PES) membranes was studied after modification of the membrane surface via coating with polymerizable bicontinuous microemulsion (PBM) materials. The PBM coating was polymerized within 1 min using ultraviolet (UV) light exposure. It was detected on the [...] Read more.
The low-fouling propensity of commercially available polyethersulfone (PES) membranes was studied after modification of the membrane surface via coating with polymerizable bicontinuous microemulsion (PBM) materials. The PBM coating was polymerized within 1 min using ultraviolet (UV) light exposure. It was detected on the PES membrane surface via attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The PBM coating led to an average 10% increase in the hydrophilicity of the PES membrane surface and an increase in total organic content (TOC) removal by more than 15%. Flux-step tests were conducted with model foulant comprising 100 mg L−1 humic acid (HA) solution to detect the onset of critical fouling, characterized by a rapid and substantial increase in TMP, and to compare the fouling propensity of commercially available PES membranes with PBM-coated membranes. The critical flux was found to be about 40% higher for PBM spray-coated membrane and 20% lower for PBM casting-coated membrane than the commercial PES membrane. This demonstrates the performance advantages of the thin PBM layer spray-coated on PES membrane compared to the thick casting-coated PBM layer. The study showcases the potential of PBM spray-coated membranes over commercial PES membranes for use in membrane bioreactors (MBR) for wastewater treatment systems with reduced maintenance over longer operation periods. Full article
Show Figures

Graphical abstract

23 pages, 6065 KiB  
Article
Evaluation of Organic and Inorganic Foulant Interaction Using Modified Fouling Models in Constant Flux Dead-End Operation with Microfiltration Membranes
by Muhammad Qasim, Ali Akbar, Imtiaz Afzal Khan, Mumtaz Ali, Eui-Jong Lee and Kang Hoon Lee
Membranes 2023, 13(11), 853; https://doi.org/10.3390/membranes13110853 - 25 Oct 2023
Cited by 4 | Viewed by 2089
Abstract
The goal of this study was to elucidate the interaction of complex feed solutions under modified membrane fouling models for constant flux operation. The polyvinylidene fluoride membrane (PVDF) was tested for three types of solutions containing inorganic foulants (Al, Mn, and Fe), organic [...] Read more.
The goal of this study was to elucidate the interaction of complex feed solutions under modified membrane fouling models for constant flux operation. The polyvinylidene fluoride membrane (PVDF) was tested for three types of solutions containing inorganic foulants (Al, Mn, and Fe), organic foulants, and suspended solids at 0.5 mM Ca2+ ionic strength. The membrane’s performance was evaluated by measuring the increase in transmembrane pressure (TMP) during two different filtration scenarios: continuous filtration lasting 1 h and cyclic filtration lasting 12 min, with 3 min backwashing cycles included. Statistical analysis (linear regression results (R2), p-value) was used to verify the fouling model propagation along with the determination of the contributing constant of each fouling model. An increasing TMP percentage of 164–302%, 155–300%, and 208–378% for S1 (HA + Ca2+), S2 (inorganics + kaolin + Ca2+), and S3 (HA + inorganics + kaolin + Ca2+) was recorded for 1 h filtration, respectively. Furthermore, a five percent increase in irreversible resistance was noted for the S3 solution due to the strong adsorption potential of foulants for the PVDF membrane caused by the electrostatic and hydration forces of foulants. In addition to that, the participation equation elucidated the contribution of the fouling model and confirmed that complete blocking and cake layer contribution were dominant for the S1 and S3 solutions, while standard blocking was dominant for the S2 solution with a high significance ratio. Moreover, R2 and cyclic filtration analysis also confirmed the propagation of these fouling models. The statistical confirmation and regression results analysis of the modified model gave comparative results and satisfied the filtration mechanism and can be used for the constant flux dead filtration analysis of water treatment. Full article
Show Figures

Figure 1

15 pages, 2596 KiB  
Review
A Comprehensive Analysis of the Impact of Inorganic Matter on Membrane Organic Fouling: A Mini Review
by Qiusheng Gao, Liang Duan, Yanyan Jia, Hengliang Zhang, Jianing Liu and Wei Yang
Membranes 2023, 13(10), 837; https://doi.org/10.3390/membranes13100837 - 20 Oct 2023
Cited by 14 | Viewed by 3231
Abstract
Membrane fouling is a non-negligible issue affecting the performance of membrane systems. Particularly, organic fouling is the most persistent and severe form of fouling. The complexation between inorganic and organic matter may exacerbate membrane organic fouling. This mini review systematically analyzes the role [...] Read more.
Membrane fouling is a non-negligible issue affecting the performance of membrane systems. Particularly, organic fouling is the most persistent and severe form of fouling. The complexation between inorganic and organic matter may exacerbate membrane organic fouling. This mini review systematically analyzes the role of inorganic matter in membrane organic fouling. Inorganic substances, such as metal ions and silica, can interact with organic foulants like humic acids, polysaccharides, and proteins through ionic bonding, hydrogen bonding, coordination, and van der Waals interactions. These interactions facilitate the formation of larger aggregates that exacerbate fouling, especially for reverse osmosis membranes. Molecular simulations using molecular dynamics (MD) and density functional theory (DFT) provide valuable mechanistic insights complementing fouling experiments. Polysaccharide fouling is mainly governed by transparent exopolymer particle (TEP) formations induced by inorganic ion bridging. Inorganic coagulants like aluminum and iron salts mitigate fouling for ultrafiltration but not reverse osmosis membranes. This review summarizes the effects of critical inorganic constituents on fouling by major organic foulants, providing an important reference for membrane fouling modeling and fouling control strategies. Full article
(This article belongs to the Special Issue Membrane Separation Systems: Design and Applications)
Show Figures

Figure 1

13 pages, 1920 KiB  
Article
Effect of Electrochemical Pre-Oxidation for Mitigating Ultrafiltration Membrane Fouling Caused by Extracellular Organic Matter
by Shunkai Xu, Guangchao Li, Shiqing Zhou, Zhou Shi and Bin Liu
Water 2023, 15(12), 2235; https://doi.org/10.3390/w15122235 - 14 Jun 2023
Cited by 2 | Viewed by 1813
Abstract
Algal extracellular organic matter (EOM) will cause grievous membrane fouling during the filtration of algae-laden water; hence, boron-doped diamond (BDD) anodizing was selected as the pretreatment process before the ultrafiltration, and the EOM fouling mitigation mechanism and the purification efficiency were systematically investigated. [...] Read more.
Algal extracellular organic matter (EOM) will cause grievous membrane fouling during the filtration of algae-laden water; hence, boron-doped diamond (BDD) anodizing was selected as the pretreatment process before the ultrafiltration, and the EOM fouling mitigation mechanism and the purification efficiency were systematically investigated. The results showed that BDD oxidation could significantly alleviate the decline of membrane flux and reduce membrane fouling, and the effect was more notable with an increase in oxidation time. Less than 10% flux loss happened when oxidation duration was 100 min. The dominant fouling model was gradually replaced by standard blocking. BDD anodizing preferentially oxidizes hydrophobic organic matter and significantly reduces the DOC concentration in EOM. The effluent DOC was reduced to less than 1 mg/L when 100 min of BDD anodizing was applied. After the pre-oxidation of BDD, the zeta potential and interfacial free energy, including the cohesive and adhesive free energy, were all constantly increasing, which implied that the pollutants would agglomerate and deposit, and the repulsion between foulants and the ultrafiltration membrane was augmented with the extensive oxidation time. This further confirms the control of BDD on membrane fouling. In addition, the BDD anodizing coupled ultrafiltration process also showed excellent performance in removing disinfection by-product precursors. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 7014 KiB  
Article
ZnO/PDA/Mesoporous Cellular Foam Functionalized Thin-Film Nanocomposite Membrane towards Enhanced Nanofiltration Performance
by Jenny Nambikkattu, Anoopa Ann Thomas, Noel Jacob Kaleekkal, Thanigaivelan Arumugham, Shadi W. Hasan and Saravanamuthu Vigneswaran
Membranes 2023, 13(5), 486; https://doi.org/10.3390/membranes13050486 - 29 Apr 2023
Cited by 7 | Viewed by 2776
Abstract
Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability–selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare [...] Read more.
Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability–selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare TFN membranes. Incorporating the nanomaterial onto the TFN-2 membrane resulted in a decrease in the water contact angle and suppression of the membrane surface roughness. The pure water permeability of 6.40 LMH bar−1 at the optimal loading ratio of 0.25 wt.% obtained was higher than the TFN-0 (4.20 LMH bar−1). The optimal TFN-2 demonstrated a high rejection of small-sized organics (>95% rejection for 2,4-dichlorophenol over five cycles) and salts—Na2SO4 (≈95%) > MgCl2 (≈88%) > NaCl (86%) through size sieving and Donnan exclusion mechanisms. Furthermore, the flux recovery ratio for TFN-2 increased from 78.9 to 94.2% when challenged with a model protein foulant (bovine serum albumin), indicating improved anti-fouling abilities. Overall, these findings provided a concrete step forward in fabricating TFN membranes that are highly suitable for wastewater treatment and desalination applications. Full article
Show Figures

Figure 1

13 pages, 2904 KiB  
Article
Understanding Protein and Polysaccharide Fouling with Silicon Dioxide and Aluminum Oxide in Low-Pressure Membranes
by Mohammad T. Alresheedi
Membranes 2023, 13(5), 476; https://doi.org/10.3390/membranes13050476 - 28 Apr 2023
Cited by 1 | Viewed by 1596
Abstract
Humic, protein, and polysaccharide substances have been recognized as significant types of foulants in membrane systems. Despite the remarkable amount of research that has been performed on the interaction of these foulants, particularly humic and polysaccharide substances, with inorganic colloids in RO systems, [...] Read more.
Humic, protein, and polysaccharide substances have been recognized as significant types of foulants in membrane systems. Despite the remarkable amount of research that has been performed on the interaction of these foulants, particularly humic and polysaccharide substances, with inorganic colloids in RO systems, little attention has been paid to the fouling and cleaning behavior of proteins with inorganic colloids in UF membranes. This research examined the fouling and cleaning behavior of bovine serum albumin (BSA) and sodium alginate (SA) with silicon dioxide (SiO2) and α-aluminum oxide (Al2O3) in individual and combined solutions during dead-end UF filtration. The results showed that the presence of SiO2 or Al2O3 in water alone did not cause significant fouling or a flux decline in the UF system. However, the combination of BSA and SA with inorganics was observed to have a synergistic effect on membrane fouling, in which the combined foulants caused higher irreversibility than individual foulants. Analysis of blocking laws demonstrated that the fouling mechanism shifted from cake filtration to complete pore blocking when the combined organics and inorganics were present in water, which resulted in higher BSA and SA fouling irreversibility. The results suggest that membrane backwash needs to be carefully designed and adjusted for better control of BSA and SA fouling with SiO2 and Al2O3. Full article
(This article belongs to the Special Issue Membrane Technologies: Application in Water Treatment/Purification)
Show Figures

Figure 1

17 pages, 4039 KiB  
Article
UV/Fe(II)/S(IV) Pretreatment for Ultrafiltration of Microcystis aeruginosa-Laden Water: Fe(II)/Fe(III) Triggered Synergistic Oxidation and Coagulation
by Huarong Yu, Haiyang Yang, Guangmei Wei, Naresh Mameda, Fangshu Qu and Hongwei Rong
Membranes 2023, 13(5), 463; https://doi.org/10.3390/membranes13050463 - 25 Apr 2023
Viewed by 1782
Abstract
Ultrafiltration (UF) has been proven effective in removing algae during seasonal algal blooms, but the algal cells and the metabolites can induce severe membrane fouling, which undermines the performance and stability of the UF. Ultraviolet-activated sulfite with iron (UV/Fe(II)/S(IV)) could enable an oxidation-reduction [...] Read more.
Ultrafiltration (UF) has been proven effective in removing algae during seasonal algal blooms, but the algal cells and the metabolites can induce severe membrane fouling, which undermines the performance and stability of the UF. Ultraviolet-activated sulfite with iron (UV/Fe(II)/S(IV)) could enable an oxidation-reduction coupling circulation and exert synergistic effects of moderate oxidation and coagulation, which would be highly preferred in fouling control. For the first time, the UV/Fe(II)/S(IV) was systematically investigated as a pretreatment of UF for treating Microcystis aeruginosa–laden water. The results showed that the UV/Fe(II)/S(IV) pretreatment significantly improved the removal of organic matter and alleviated membrane fouling. Specifically, the organic matter removal increased by 32.1% and 66.6% with UV/Fe(II)/S(IV) pretreatment for UF of extracellular organic matter (EOM) solution and algae-laden water, respectively, while the final normalized flux increased by 12.0–29.0%, and reversible fouling was mitigated by 35.3–72.5%. The oxysulfur radicals generated in the UV/S(IV) degraded the organic matter and ruptured the algal cells, and the low-molecular-weight organic matter generated in the oxidation penetrated the UF and deteriorated the effluent. The over-oxidation did not happen in the UV/Fe(II)/S(IV) pretreatment, which may be attributed to the cyclic redox Fe(II)/Fe(III) coagulation triggered by the Fe(II). The UV-activated sulfate radicals in the UV/Fe(II)/S(IV) enabled satisfactory organic removal and fouling control without over-oxidation and effluent deterioration. The UV/Fe(II)/S(IV) promoted the aggregation of algal foulants and postponed the shift of the fouling mechanisms from standard pore blocking to cake filtration. The UV/Fe(II)/S(IV) pretreatment proved effective in enhancing the UF for algae-laden water treatment. Full article
Show Figures

Figure 1

14 pages, 5701 KiB  
Article
Alleviating Ultrafiltration Membrane Fouling Caused by Effluent Organic Matter Using Pre-Ozonation: A Perspective of EEM and Molecular Weight Distribution
by Kuo Gao, Hong Yang, Haichen Liu and Bingzhi Dong
Membranes 2023, 13(4), 452; https://doi.org/10.3390/membranes13040452 - 21 Apr 2023
Cited by 8 | Viewed by 2250
Abstract
Wastewater reclamation has gradually become an important way to cope with the global water crisis. Ultrafiltration plays an imperative part as a safeguard for the aim but is often limited by membrane fouling. Effluent organic matter (EfOM) has been known to be a [...] Read more.
Wastewater reclamation has gradually become an important way to cope with the global water crisis. Ultrafiltration plays an imperative part as a safeguard for the aim but is often limited by membrane fouling. Effluent organic matter (EfOM) has been known to be a major foulant during ultrafiltration. Hence, the primary aim of this study was to investigate the effects of pre-ozonation on the membrane fouling caused by EfOM in secondary wastewater effluents. In addition, the physicochemical property changes of EfOM during pre-ozonation and the subsequent influence on membrane fouling were systemically investigated. The combined fouling model and the morphology of fouled membrane were adopted to scrutinize the fouling alleviation mechanism by pre-ozonation. It was found that membrane fouling by EfOM was dominated by hydraulically reversible fouling. In addition, an obvious fouling reduction was achieved by pre-ozonation with 1.0 mg O3/mg DOC. The resistance results showed that the normalized hydraulically reversible resistance was reduced by ~60%. The water quality analysis indicated that ozone degraded high molecular weight organics such as microbial metabolites and aromatic protein and medium molecular weight organics (humic acid-like) into smaller fractions and formed a looser fouling layer on the membrane surface. Furthermore, pre-ozonation made the cake layer foul towards pore blocking, thereby reducing fouling. In addition, there was a little degradation in the pollutant removal performance with pre-ozonation. The DOC removal rate decreased by more than 18%, while UV254 decreased by more than 20%. Full article
(This article belongs to the Topic Membrane Separation Technology Research)
Show Figures

Figure 1

Back to TopTop