Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = orbital angular momentum tuning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2296 KiB  
Article
Effects of Homogeneous Doping on Electron–Phonon Coupling in SrTiO3
by Minwoo Park and Suk Bum Chung
Nanomaterials 2025, 15(2), 137; https://doi.org/10.3390/nano15020137 - 17 Jan 2025
Cited by 1 | Viewed by 1079
Abstract
Bulk n-type SrTiO3 (STO) has long been known to possess a superconducting ground state at an exceptionally dilute carrier density. This has raised questions about the applicability of the BCS-Eliashberg paradigm with its underlying adiabatic assumption. However, recent experimental reports have set [...] Read more.
Bulk n-type SrTiO3 (STO) has long been known to possess a superconducting ground state at an exceptionally dilute carrier density. This has raised questions about the applicability of the BCS-Eliashberg paradigm with its underlying adiabatic assumption. However, recent experimental reports have set the pairing gap to the critical temperature (Tc) ratio at the BCS value for superconductivity in Nb-doped STO, even though the adiabaticity condition the BCS pairing requires is satisfied over the entire superconducting dome only by the lowest branch of optical phonons. In spite of the strong implications these reports have on specifying the pairing glue, they have not proved sufficient in explaining the magnitude of the optimal doping. This motivated us to apply density functional theory to Nb-doped STO to analyze how the phonon band structures and the electron–phonon coupling evolve with doping. To describe the very low doping concentration, we tuned the homogeneous background charge, from which we obtained a first-principles result on the doping-dependent phonon frequency that is in good agreement with experimental data for Nb-doped STO. Using the EPW code, we obtain the doping-dependent phonon dispersion and the electron–phonon coupling strength. Within the framework of our calculation, we found that the electron–phonon coupling forms a dome in a doping range lower than the experimentally observed superconducting dome of the Nb-doped STO. Additionally, we examined the doping dependence of both the orbital angular momentum quenching in the electron–phonon coupling and the phonon displacement correlation length and found the former to have a strong correlation with our electron–phonon coupling in the overdoped region. Full article
(This article belongs to the Special Issue Low-Dimensional Perovskite Materials and Devices)
Show Figures

Figure 1

14 pages, 7337 KiB  
Article
The Design of a Multifunctional Coding Transmitarray with Independent Manipulation of the Polarization States
by Shunlan Zhang, Weiping Cao, Tiesheng Wu, Jiao Wang and Ying Wei
Micromachines 2024, 15(8), 1014; https://doi.org/10.3390/mi15081014 - 7 Aug 2024
Cited by 3 | Viewed by 1369
Abstract
Manipulating orthogonally polarized waves independently in a single metasurface is pivotal. However, independently controlling the phase shifts of orthogonally polarized waves is difficult, especially in the same frequency bands. Here, we propose a receiver-phase shift-transmitter transmitarray with independent control of arbitrary polarization states [...] Read more.
Manipulating orthogonally polarized waves independently in a single metasurface is pivotal. However, independently controlling the phase shifts of orthogonally polarized waves is difficult, especially in the same frequency bands. Here, we propose a receiver-phase shift-transmitter transmitarray with independent control of arbitrary polarization states in the same frequency bands, in which transmission rates reach more than 90% in the frequency bands 4.2~4.9 GHz and 5.3~5.5 GHz. By introducing a phase-regulation structure to each element, phases covering 360° for different polarized incident waves can be independently controlled by different geometric parameters, and two-bit coding phases can be obtained. The design principle based on the two-port network’s scattering matrix has been analyzed. To verify the independent tuning abilities of the proposed transmitarray for different polarization incidences in the same frequency bands, a multifunctional receive-phase shift-radiation coding transmitarray (RPRCT), which is composed of 16×16 elements, with functions of anomalous refraction (for example, orbital angular momentum wave) and focusing transmission for different polarized incident waves was simulated and measured. The measured results agree reasonably well with the simulated ones. Our findings provide a simple method for obtaining a multifunctional metasurface with orthogonal polarization in the same frequency bands, which greatly improves the capacity and spectral efficiency of communication channels. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

8 pages, 4348 KiB  
Article
Optimization of Transverse OAM Transmission through Few-Mode Fiber
by Chong Zhang, Qian Cao and Qiwen Zhan
Photonics 2024, 11(4), 328; https://doi.org/10.3390/photonics11040328 - 1 Apr 2024
Cited by 3 | Viewed by 1485
Abstract
Spatiotemporal optical vortex (STOV) wavepacket is a new type of vortex optical field carrying transverse orbital angular momentum (OAM). Due to the presence of imbalanced dispersion and diffraction phase, the STOV pulse undergoes fragmentation during free space propagation, leading to the disappearance of [...] Read more.
Spatiotemporal optical vortex (STOV) wavepacket is a new type of vortex optical field carrying transverse orbital angular momentum (OAM). Due to the presence of imbalanced dispersion and diffraction phase, the STOV pulse undergoes fragmentation during free space propagation, leading to the disappearance of the spatiotemporal vortex phase structure. For practical applications, having a stable long-distance propagation of STOV pulse is critical. Recent work demonstrates the transmission of transverse OAM in few-mode fiber. However, the maximum transmission distance is limited to 100 cm due to excessive group velocity dispersion between modes. In this work, we optimize the transmission of transverse OAM by engineering fiber parameters. By tuning the radius of the fiber core and the relative refractive index difference, the group time delay difference values between the LP01 and LP11 modes and their corresponding group velocity dispersion coefficients are minimized. The simulation results show that the optimized fiber allows the first-order STOV pulse to propagate up to 500 cm, and the second-order STOV pulse up to 300 cm without distorting the spatiotemporal vortex phase structure. Long-distance propagation of STOV pulse can create new opportunities and facilitate applications such as developing novel transverse OAM lasers and telecommunication approaches. Full article
(This article belongs to the Special Issue Progress in OAM Beams: Recent Innovations and Future Perspectives)
Show Figures

Figure 1

9 pages, 1956 KiB  
Article
Tunable Near and Mid-Infrared (1.3–5 µm) Picosecond Pulsed Optical Vortex Parametric Oscillator
by Mailikeguli Aihemaiti, Dulikun Sulaiman, Dana Jashaner, Yuxia Zhou, Xining Yang, Zhaoxue Li, Bilali Muhutijiang and Taximaiti Yusufu
Photonics 2024, 11(4), 319; https://doi.org/10.3390/photonics11040319 - 29 Mar 2024
Cited by 2 | Viewed by 1543
Abstract
In this paper, we present a picosecond pulsed, synchronously pumped optical parametric oscillator producing vortex beam output with tunable wavelengths in the near- to mid-infrared range. The system utilizes a Nd:YVO4 picosecond pulsed solid-state laser emitting at a wavelength of 1.064 µm [...] Read more.
In this paper, we present a picosecond pulsed, synchronously pumped optical parametric oscillator producing vortex beam output with tunable wavelengths in the near- to mid-infrared range. The system utilizes a Nd:YVO4 picosecond pulsed solid-state laser emitting at a wavelength of 1.064 µm to pump a Z-shaped, singly resonant OPO which contains a MgO:PPLN crystal with a fan-shaped grating. The wavelength tuning characteristics of the OPO output are examined both as a function of the MgO:PPLN grating period and crystal temperature. The orbital angular momentum of the pump field can be selectively transferred to either the signal or idler fields by appropriately adjusting the location of the MgO:PPLN crystal within the OPO cavity. The maximum output power of the signal and idler vortex fields are 5.12 W and 3.46 W, respectively, for an incident pump power of 19 W. Full article
(This article belongs to the Special Issue Structured Light Beams: Science and Applications)
Show Figures

Figure 1

12 pages, 4061 KiB  
Article
Pulsed Optical Vortex Array Generation in a Self-Q-Switched Tm:YALO3 Laser
by Luyang Tong, Changdong Chen, Yangjian Cai and Lina Zhao
Materials 2024, 17(5), 1144; https://doi.org/10.3390/ma17051144 - 1 Mar 2024
Cited by 1 | Viewed by 1709
Abstract
Optical vortex arrays are characterized by specific orbital angular momentums, and they have important applications in optical trapping and manipulation, optical communications, secure communications, and high-security information processing. Despite widespread research on optical vortex arrays, the 2 μm wavelength range remains underexplored. Pulsed [...] Read more.
Optical vortex arrays are characterized by specific orbital angular momentums, and they have important applications in optical trapping and manipulation, optical communications, secure communications, and high-security information processing. Despite widespread research on optical vortex arrays, the 2 μm wavelength range remains underexplored. Pulsed lasers at 2 μm are vital in laser medicine, sensing, communications, and nonlinear optic applications. The need for 2 μm-pulsed structured optical vortices, combining the advantages of this wavelength range and optical vortex arrays, is evident. Therefore, using just three elements in the cavity, we demonstrate a compact self-Q-switched Tm:YALO3 vortex laser by utilizing the self-modulation effect of a laser crystal and a defect spot mirror. By tuning the position of the defect spot and the output coupler, the resonator delivers optical vortex arrays with phase singularities ranging from 1 to 4. The narrowest pulse widths of the TEM00 LG0,−1, two-, three-, and four-vortex arrays are 543, 1266, 1281, 2379, and 1615 ns, respectively. All the vortex arrays in our study have relatively high-power outputs, slope efficiencies, and single-pulse energies. This work paves the way for a 2 μm-pulsed structured light source that has potential applications in optical trapping and manipulation, free-space optical communications, and laser medicine. Full article
Show Figures

Figure 1

13 pages, 3535 KiB  
Article
The Spiral Spectrum of a Laguerre–Gaussian Beam Carrying the Cross-Phase Propagating in Weak-to-Strong Atmospheric Turbulence
by Yunxiao Li, Zhao Zhang, Ruyi Li, Dong Xu, Hao Zhang, Yangjian Cai and Jun Zeng
Photonics 2024, 11(2), 148; https://doi.org/10.3390/photonics11020148 - 4 Feb 2024
Cited by 1 | Viewed by 1793
Abstract
In communication links, the presence of atmospheric turbulence leads to crosstalk between the orbital angular momentum (OAM) states, thereby limiting the performance of information transmission. Thus, knowledge of the effect of turbulence on the spiral spectrum (also named the OAM spectrum) is of [...] Read more.
In communication links, the presence of atmospheric turbulence leads to crosstalk between the orbital angular momentum (OAM) states, thereby limiting the performance of information transmission. Thus, knowledge of the effect of turbulence on the spiral spectrum (also named the OAM spectrum) is of utmost importance in the field of optical communications. However, most of the existing studies are limited to weak turbulence calculation models. In this paper, based on the extended Huygens–Fresnel integral, the analytical expression is derived for the mutual coherence function of a Laguerre–Gaussian beam carrying the cross-phase and propagating through weak-to-strong anisotropic Kolmogorov atmospheric turbulence; subsequently, the analytical expression is used to study the behavior of the spiral spectrum. The discrepancies in the spiral spectrum between weak and strong turbulence are comparatively studied. The influences of the cross-phase and the anisotropy of turbulence on the spiral spectrum are investigated through numerical examples. Our results reveal that the cross-phase determines the distribution of the spiral spectrum. The spiral spectrum can be tuned to multiple OAM modes through the adaptation of the cross-phase coefficient. Moreover, increasing the cross-phase coefficient can reduce both the discrepancies of the spiral spectrum under two computational methods and the effects of the anisotropic factors of turbulence on the spiral spectrum. Full article
Show Figures

Figure 1

15 pages, 6425 KiB  
Article
Broadband Achromatic Metalens for Tunable Focused Vortex Beam Generation in the Near-Infrared Range
by Lvrong Zhao, Xiaoqiang Jiang, Zhihai Wang, Yuwei Chen, Lu Chen, Bo Gao and Weixing Yu
Nanomaterials 2023, 13(20), 2765; https://doi.org/10.3390/nano13202765 - 15 Oct 2023
Cited by 7 | Viewed by 2113
Abstract
Vortex beams accompanied with orbital angular momentum have attracted significant attention in research fields due to their formidable capabilities in various crucial applications. However, conventional devices for generating vortex beams still suffer from bulky sizes, high cost, and confined performances. Metalens, as an [...] Read more.
Vortex beams accompanied with orbital angular momentum have attracted significant attention in research fields due to their formidable capabilities in various crucial applications. However, conventional devices for generating vortex beams still suffer from bulky sizes, high cost, and confined performances. Metalens, as an advanced platform to arbitrarily control the optical waves, has promising prospects to address the predicament for conventional devices. Although great progress has been demonstrated in the applications of vortex beams, they are still confronted with fixed functionality after fabrication that severely hinders their application range. In this work, the phase-change material of Ge2Sb2Te5 (GST) is employed to design the meta-atoms to realize tunable optical responses. Moreover, the focused vortex beam can be accomplished by superimposing a helical phase and hyperbolic phase, and the chromatic aberrations in near-infrared (NIR) range can be corrected by introducing an additional phase compensation. And the design strategy is validated by two different metalenses (BAMTF-1 and BAMTF-2). The numerical results indicate that the chromatic aberrations for two metalens can be corrected in 1.33–1.60 μm covering the telecom range. Moreover, the average focusing efficiency of BAMTF-1 is 51.4%, and that of BAMTF-2 is 39.9%, indicating the favorable performances of designed BAMTF. More importantly, their average focal lengths have a relative tuning range of 38.82% and 33.17% by altering the crystallization ratio of GST, respectively. This work may provide a significant scheme for on-chip and tunable devices for NIR imaging and communication systems. Full article
(This article belongs to the Special Issue Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends)
Show Figures

Figure 1

7 pages, 2471 KiB  
Communication
An Orbital-Angular-Momentum- and Wavelength-Tunable 2 μm Vortex Laser
by Xinmiao Zhao, Jingliang Liu, Mingming Liu, Ruobing Li, Luan Zhang and Xinyu Chen
Photonics 2022, 9(12), 926; https://doi.org/10.3390/photonics9120926 - 1 Dec 2022
Cited by 3 | Viewed by 1660
Abstract
In this paper, dual tuning of orbital angular momentum (OAM) and the wavelength of a Tm:YLF vortex laser was realized by off-axis pumping and F-P etalon. The tuning of Hermite–Gaussian (HG) modes by off-axis pumping was theoretically analyzed. In the experiment, the highest [...] Read more.
In this paper, dual tuning of orbital angular momentum (OAM) and the wavelength of a Tm:YLF vortex laser was realized by off-axis pumping and F-P etalon. The tuning of Hermite–Gaussian (HG) modes by off-axis pumping was theoretically analyzed. In the experiment, the highest 17th order HG17,0 mode was realized by off-axis pumping. The threshold power increased from 2 to 17.51 W with the increase in off-axis distance, and the curve of threshold power vs. off-axis distance was partially consistent with the theoretical simulation analysis. The Laguerre–Gaussian (LG) modes carrying OAM were produced by mode converter, and the beam quality of LG modes was good. The phase distribution of the LG modes was verified by interference. Subsequently, an F-P etalon was inserted into the resonant cavity to tune the wavelength. Finally, the OAM tuning of the vortex beam from LG1,0(OAM = 1) to LG16,0(OAM = 16) was realized, and the corresponding wavelength tuning range was from 1898–1943 nm to 1898–1937 nm. Full article
(This article belongs to the Special Issue Vortex Beams: Fundamentals and Applications)
Show Figures

Figure 1

12 pages, 3531 KiB  
Article
Metasurfaces for Amplitude-Tunable Superposition of Plasmonic Orbital Angular Momentum States
by Yuqin Zhang, Jianshan An, Xingqi An, Xiangyu Zeng, Changwei He, Guiyuan Liu, Chuanfu Cheng and Hongsheng Song
Materials 2022, 15(18), 6334; https://doi.org/10.3390/ma15186334 - 13 Sep 2022
Viewed by 1892
Abstract
The superposition of orbital angular momentum (OAM) in a surface plasmon polariton (SPP) field has attracted much attention in recent years for its potential applications in classical physics problems and quantum communications. The flexible adjustment of the amplitudes of two OAM states can [...] Read more.
The superposition of orbital angular momentum (OAM) in a surface plasmon polariton (SPP) field has attracted much attention in recent years for its potential applications in classical physics problems and quantum communications. The flexible adjustment of the amplitudes of two OAM states can provide more freedom for the manipulation of superposed states. Here, we propose a type of plasmonic metasurface consisting of segmented spiral-shaped nanoslits that not only can generate the superposition of two OAM states with arbitrary topological charges (TCs), but also can independently modulate their relative amplitudes in a flexible manner. The TCs of two OAM states can be simultaneously modulated by incident light, the rotation rate of the nanoslits, and the geometric parameters of the segmented spiral. The relative amplitudes of the two OAM states are freely controllable by meticulously tuning the width of the nanoslits. Under a circularly polarized beam illumination, two OAM states of opposite TCs can be superposed with various weightings. Furthermore, hybrid superposition with different TCs is also demonstrated. The presented design scheme offers an opportunity to develop practical plasmonic devices and on-chip applications. Full article
(This article belongs to the Special Issue Metamaterials and Metasurfaces: Fundamentals and Applications)
Show Figures

Figure 1

13 pages, 10867 KiB  
Article
Wavelength-Tunable Vortex Beam Emitter Based on Silicon Micro-Ring with PN Depletion Diode
by Ivan V. Stepanov, Denis M. Fatkhiev, Vladimir S. Lyubopytov, Ruslan V. Kutluyarov, Elizaveta P. Grakhova, Niels Neumann, Svetlana N. Khonina and Albert K. Sultanov
Sensors 2022, 22(3), 929; https://doi.org/10.3390/s22030929 - 25 Jan 2022
Cited by 12 | Viewed by 4323
Abstract
Herein we propose a design of a wavelength-tunable integrated vortex beam emitter based on the silicon-on-insulator platform. The emitter is implemented using a PN-depletion diode inside a microring resonator with the emitting hole grating that was used to produce a vortex beam. The [...] Read more.
Herein we propose a design of a wavelength-tunable integrated vortex beam emitter based on the silicon-on-insulator platform. The emitter is implemented using a PN-depletion diode inside a microring resonator with the emitting hole grating that was used to produce a vortex beam. The resonance wavelengths can be shifted due to the refractive index change associated with the free plasma dispersion effect. Obtained numerical modeling results confirm the efficiency of the proposed approach, providing a resonance wavelength shift while maintaining the required topological charge of the emitted vortex beam. It is known that optical vortices got a lot of attention due to extensive telecommunication and biochemical applications, but also, they have revealed some beneficial use cases in sensors. Flexibility in spectral tuning demonstrated by the proposed device can significantly improve the accuracy of sensors based on fiber Bragg gratings. Moreover, we demonstrate that the proposed device can provide a displacement of the resonance by the value of the free spectral range of the ring resonator, which means the possibility to implement an ultra-fast orbital angular momentum (de)multiplexing or modulation. Full article
(This article belongs to the Special Issue Fiber Bragg Grating Sensors: Recent Advances and Future Perspectives)
Show Figures

Figure 1

15 pages, 5780 KiB  
Article
Thermally Tunable Orbital Angular Momentum Mode Generator Based on Dual-Core Photonic Crystal Fibers
by Lianzhen Zhang, Xuedian Zhang, Xuejing Liu, Jun Zhou, Na Yang, Jia Du and Xin Ding
Nanomaterials 2021, 11(12), 3256; https://doi.org/10.3390/nano11123256 - 30 Nov 2021
Cited by 2 | Viewed by 2384
Abstract
The combination of mode division multiplexing (MDM) based on orbital angular momentum (OAM) modes with wavelength division multiplexing (WDM) has attracted considerable attention due to its ability to increase optical transmission capacity. However, the switching of the multi-wavelength and multi-order OAM mode in [...] Read more.
The combination of mode division multiplexing (MDM) based on orbital angular momentum (OAM) modes with wavelength division multiplexing (WDM) has attracted considerable attention due to its ability to increase optical transmission capacity. However, the switching of the multi-wavelength and multi-order OAM mode in an all-fiber structure has always been a challenge. As a solution, a thermally tunable dual-core photonic crystal fiber (DC-PCF) is proposed to achieve multi-order and multi-wavelength switching of the OAM mode. The results show that the OAM mode with topological charge m = ±1 can be excited with the linear polarization fundamental mode (LPFM) and circular polarization fundamental mode (CPFM). In addition, the device can effectively excite a high-purity ±1st order OAM mode with wavelengths ranging from 1520 to 1575 nm by thermal tuning. The purity of the mode is in excess of 99%, and the energy conversion efficiency (ECE) is above 95%. The proposed design is expected to be applied in all-fiber communication systems combined with MDM and WDM. Full article
(This article belongs to the Special Issue Design of Nanostructured Optic and Optoelectronic Devices)
Show Figures

Figure 1

12 pages, 8183 KiB  
Article
An Inner- and Outer-Fed Dual-Arm Archimedean Spiral Antenna for Generating Multiple Orbital Angular Momentum Modes
by Lulu Wang, Huiyong Chen, Kai Guo, Fei Shen and Zhongyi Guo
Electronics 2019, 8(2), 251; https://doi.org/10.3390/electronics8020251 - 22 Feb 2019
Cited by 31 | Viewed by 5652
Abstract
Orbital angular momentum (OAM) beams have attracted great attention owing to their excellent performances in imaging and communication. In this paper, a dual-arm Archimedean spiral antenna (DASA) is proposed to generate multiple OAM states with positive and negative values by feeding at the [...] Read more.
Orbital angular momentum (OAM) beams have attracted great attention owing to their excellent performances in imaging and communication. In this paper, a dual-arm Archimedean spiral antenna (DASA) is proposed to generate multiple OAM states with positive and negative values by feeding at the inner and outer ends, respectively. The topological charge of radiated vortex waves is reconfigurable by tuning the operating frequency. Dual-mode OAM states are generated at different working frequencies (l = ±1 at 3 GHz, l = ±2 at 4 GHz, and l = ±3 at 4.8 GHz). Both the simulation and measurement results demonstrate that OAM beams can be generated effectively by the DASA. In addition, a conical cavity is used to increase the gain of the proposed DASA for more than 5 dBi in comparison to the traditional cylindrical cavity. Furthermore, the qualities of the generated OAM modes by the proposed DASA have been evaluated at different operating frequencies of 3 GHz, 4 GHz, and 4.8 GHz, respectively. The OAM modes purities of l = −1, −2, −3, 1, 2, and 3 are predominate with the proportion of about 81%, 70%, 74%, 78%, 77%, and 75%, respectively. Our results demonstrate that the proposed DASA has great potentials in OAM multiplexing communication systems. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 4006 KiB  
Article
Galactic Density and Evolution Based on the Virial Theorem, Energy Minimization, and Conservation of Angular Momentum
by Robert E. Criss and Anne M. Hofmeister
Galaxies 2018, 6(4), 115; https://doi.org/10.3390/galaxies6040115 - 15 Nov 2018
Cited by 10 | Viewed by 4847
Abstract
Spiral galaxies are spinning, internally densified objects. The Virial Theorem explains galactic rotation curves via its linkage of the rotation rate to the gravitational self-potential (Ug) and the moment of inertia of oblate spheroids. We devise a new analytical solution [...] Read more.
Spiral galaxies are spinning, internally densified objects. The Virial Theorem explains galactic rotation curves via its linkage of the rotation rate to the gravitational self-potential (Ug) and the moment of inertia of oblate spheroids. We devise a new analytical solution that allows galactic mass and volumetric density (kg m−3) profiles to be extracted from velocity and its derivative as functions of equatorial radius. This inverse model of rotation curves is direct, unambiguous, and parameter-free. To probe galactic evolution, we combine energy minimization, angular momentum conservation, and the Virial Theorem. The characteristic flat shape of spiral galaxies results from an initial vertical collapse of a spinning, colossal molecular cloud, which reduces Ug while conserving angular momentum. Subsequent inward densification further lowers Ug, producing bulges, but conserving angular momentum requires mass loss, achieved by the outward movement of the distal parts of the spiral arms. Many of the evolutionary patterns of spiral galaxies are exhibited by the changing shapes of hurricanes during formation and dissipation. In contrast, elliptical galaxies evolve from a cloud with roughly random orbits into progressively rounder, internally denser objects, with angular momentum conserved by the development of vertically oriented jets. Galactic evolution is governed by the initial inventory of mass and angular momentum, resulting in separate paths for elliptical and spiral galaxies, as is codified in Hubble’s tuning fork diagram. Full article
Show Figures

Figure 1

35 pages, 7816 KiB  
Review
Light Trapping above the Light Cone in One-Dimensional Arrays of Dielectric Spheres
by Evgeny N. Bulgakov, Almas F. Sadreev and Dmitrii N. Maksimov
Appl. Sci. 2017, 7(2), 147; https://doi.org/10.3390/app7020147 - 8 Feb 2017
Cited by 7 | Viewed by 5614
Abstract
We demonstrate bound states in the radiation continuum (BSC) in a linear periodic array of dielectric spheres in air above the light cone. We classify the BSCs by orbital angular momentum m = 0,±1,±2 according to the rotational symmetry of the array, Bloch [...] Read more.
We demonstrate bound states in the radiation continuum (BSC) in a linear periodic array of dielectric spheres in air above the light cone. We classify the BSCs by orbital angular momentum m = 0,±1,±2 according to the rotational symmetry of the array, Bloch wave vector ꞵ directed along the array according to the translational symmetry, and polarization. The most simple symmetry protectedBSCshavem = 0,ꞵ = 0 and occur in a wide range of the radius of the spheres and dielectric constant. More sophisticated BSCs with m 6= 0,ꞵ = 0 exist only for a selected radius of spheres at fixed dielectric constant. We also find robust Bloch BSCs with ꞵ 6= 0,m = 0. All BSCs reside within the first but below the other diffraction continua. We show that the BSCs can be easily detected by bright features in scattering of different plane waves by the array as dependent on type of the BSC. The symmetry protected TE/TMBSCs can be traced by collapsing Fano resonance in cross-sections of normally incident TE/TM plane waves. When plane wave with circular polarization with frequency tuned to the bound states with OAM illuminates the array the spin angular momentum of the incident wave transfers into the orbital angular momentum of the BSC.This ,inturn, gives rise to giant vortical power currents rotating around the array. Incident wave with linear polarization with frequency tuned to the Bloch bound state in the continuum induces giant laminar power currents. At last, the plane wave with linear polarization incident under tilt relative to the axis of array excites Poynting currents spiralling around the array. It is demonstrated numerically that quasi-bound leaky modes of the array can propagate both stationary waves and light pulses to a distance of 60 wavelengths at the frequencies close to the bound states in the radiation continuum. A semi-analytical estimate for decay rates of the guided waves is found to match the numerical data to a good accuracy. Full article
(This article belongs to the Special Issue Guided-Wave Optics)
Show Figures

Figure 1

Back to TopTop