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Abstract: In communication links, the presence of atmospheric turbulence leads to crosstalk between
the orbital angular momentum (OAM) states, thereby limiting the performance of information
transmission. Thus, knowledge of the effect of turbulence on the spiral spectrum (also named the
OAM spectrum) is of utmost importance in the field of optical communications. However, most of
the existing studies are limited to weak turbulence calculation models. In this paper, based on the
extended Huygens–Fresnel integral, the analytical expression is derived for the mutual coherence
function of a Laguerre–Gaussian beam carrying the cross-phase and propagating through weak-to-
strong anisotropic Kolmogorov atmospheric turbulence; subsequently, the analytical expression is
used to study the behavior of the spiral spectrum. The discrepancies in the spiral spectrum between
weak and strong turbulence are comparatively studied. The influences of the cross-phase and the
anisotropy of turbulence on the spiral spectrum are investigated through numerical examples. Our
results reveal that the cross-phase determines the distribution of the spiral spectrum. The spiral
spectrum can be tuned to multiple OAM modes through the adaptation of the cross-phase coefficient.
Moreover, increasing the cross-phase coefficient can reduce both the discrepancies of the spiral
spectrum under two computational methods and the effects of the anisotropic factors of turbulence
on the spiral spectrum.

Keywords: atmospheric turbulence; orbital angular momentum; spiral spectrum; cross-phase

1. Introduction

A beam with a spiral phase, described by exp(ilθ), is referred to as a vortex beam [1].
Each photon of the vortex beam carries an orbital angular momentum (OAM) of lh̄, where l
is the topological charge, θ is the azimuthal angle, and h̄ is the reduced Planck constant [2].
Due to carrying discrete topological charges and their close relationship with OAM, the
interest in vortex beams has been increasing and has yielded a significant return in many
applications, including optical imaging [3,4], optical trapping [5–7], holography [8], optical
coding [9], quantum information processing [10] and optical measurement [11]. It is worth
noting that these modes provide a (theoretically) infinite and easily realized alphabet for
encoding information and have been used extensively in both free-space and fiber-optical
communications, in particular through the use of OAM multiplexing and modulation
(encoding/decoding) [12–15]. In addition to amplitude, phase, polarization and frequency,
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OAM modes have been proposed as a new set forming the basis of carrier signals and
allowing, in principle, an increase in the channel transmission capacity [16–19].

However, when vortex beams are used for optical communications, the presence of
atmospheric turbulence in communication links will inevitably induce phase distortion,
beam wander and scintillation, resulting in the dispersion of OAM modes and crosstalk
between OAM states, thereby having the potential to limit the performance of information
transmission [20–23]. Hence, knowledge is essential for understanding the interaction of
turbulence and OAM modes. Up to now, a wide variety of studies has been carried out to
reveal the influence of turbulence on the propagation characteristics of OAM modes [24–29],
including investigations of Laguerre–Gaussian beams, Lommel beams, Airy beams, elliptic
Gaussian vortex beams and Bessel beams. When calculating the spiral spectrum of vortex
beams in turbulence, these studies have adopted the most widely used single-phase screen
perturbation (SPSP) method, that is, regarding the effect of turbulence as a random phase
screen that only exists at the receiver plane and without considering the turbulence between
the transmitter and the receiver. However, strictly speaking, this type of method is only
valid in weak fluctuation ranges because the interaction between turbulence and OAM
modes during propagation is ignored. In actual communications, turbulence pervades the
entire propagation channel, gradually accumulates and becomes stronger as the propaga-
tion distance increases. To take this effect into account, the multiple-phase screen method
has been proposed [30–32]; however, it is a purely numerical simulation approach, which
is relatively time-consuming when calculating complex light sources. In addition to the
above method, only a few studies in the literature have focused on analyzing the spiral
spectrum under high levels of turbulence [33,34].

Recently, the increasing requirements for communication capacity [35] and information
encryption technology [36] have prompted scholars to pay attention to the on-demand
requirements for manipulation of the OAM spectrum. The previous research has provided
a variety of schemes to tailor the OAM spectrum or simultaneously generate multiple OAM
components in one beam, such as the pattern-search algorithm [37], mode iteration [38]
and the use of pinhole plates [39]. In 2022, Fu and colleagues proposed a simple azimuthal
binary phase modulation scheme for a high-dimensional OAM comb, which avoided the
shortcomings of complex systems, these being time-consuming and showing low efficiency,
which was demonstrated in previous schemes [40]. However, their study did not consider
the effect of atmospheric turbulence on the OAM spectrum. On the other hand, a new
type of twisting phase known as the cross-phase has been explored by various research
groups [41–44]. The cross-phase is a quadratic phase structure distinct from the ordinary
twist phase [45], which finds versatile applications in coherent mode conversions [41],
beam rotations [42], optical vortex manipulations [43], and flexible beam focuses [44]. In
particular, the cross-phase has been used to enhance the anti-turbulence ability of light
beams during transmission [46]; however, so far, its use has been limited to non-vortex
circumstances. It is worth mentioning that special structured light fields can effectively
mitigate the negative effects induced by atmospheric turbulence [47]. More recently, DiouF
et al. proposed and demonstrated a new structural light called the space-time light sheet,
which is resistant to atmospheric turbulence and speckle [48,49].

Here, the spiral spectrum of a Laguerre–Gaussian (LG) beam embedded with the
cross-phase propagating in anisotropic Kolmogorov turbulence is the object of our study.
Based on the extended Huygens–Fresnel (eHF) principle, which is applicable to both cases
of weak and strong turbulence, the analytical expression for the mutual coherence function
of an LG beam carrying the cross-phase at the receiver is derived. The effects of turbulence
parameters and the cross-phase on the spiral spectrum are analyzed. Our results show that
a cross-phase can convert a single pure OAM mode into a beam with a wide OAM spectrum,
which can be easily tuned to multiple OAM modes by adapting the cross-phase coefficient.
In addition, by modulating the cross-phase, reductions ensue in the discrepancies in the
spiral spectrum obtained by the SPSP and eHF methods, as well as in the influence of the
anisotropic factors of turbulence on the spiral spectrum.



Photonics 2024, 11, 148 3 of 13

2. Propagation of a Laguerre–Gaussian Beam Carrying the Cross-Phase in
Atmospheric Turbulence

Unlike the twisted phase, which only exists in partially coherent beams, the cross-
phase is a separable secondary phase structure, making it easy to embed in other light
fields [41]. We consider the example of an LG beam carrying the cross-phase with a radial
mode index p = 0 and an azimuthal mode index l, whose electric field in the source plane
has the following form:

E0(r) = Cr|l| exp

(
− r2

w2
0

)
exp(ilφ) exp(iuxy), (1)

where r = (x, y) and φ = arctan(y/x) denote the radial coordinate and azimuthal angle
coordinate, respectively. C and w0 are the normalizing constant and initial beam width,
respectively. The quantity l refers to the topological charge [1]. The last term, exp(iuxy), is
the cross-phase structure, where the quantity u is a measure of the strength of the cross-
phase. When the value of u is equal to zero, Equation (1) reduces to an LG beam with a
radial mode index of p = 0.

It is known that when a vortex light field is transmitted through atmospheric tur-
bulence, its original OAM mode purity will be reduced due to the influence of phase
distortion caused by that atmospheric turbulence. To explore the spiral spectrum of a
beam propagation through atmospheric turbulence, two propagation modes (i.e., the SPSP
method and the eHF method) are commonly used. The SPSP method [24–29] assumes that
the transmission path from the source plane to the receiving plane is in a vacuum without
turbulence, and the cumulative effect of the turbulence on the channel is equivalent to
single random phase perturbation on the beam at the receiving plane, as shown in Figure 1a.
In the eHF method [50,51], the atmospheric turbulence fills the entire propagation path,
and the turbulence thereby affects the beam’s statistical properties during propagation, as
shown in Figure 1b. Compared with the former, which is only effective under conditions
of weak turbulence, here we focus on the calculation method based on the eHF principle,
which is valid from weak to strong turbulence. Based on the eHF integral, the mutual
coherent function of an LG beam carrying the cross-phase in the receiving plane after
propagating in atmospheric turbulence can be written as follows [51]:

Γ(ρ1,ρ2, z) = 1
λ2z2

∫ ∞
−∞

∫ ∞
−∞ E0(r1)E∗

0 (r2) exp
[

ik
2z (ρ1 − r1)

2 − ik
2z (ρ2 − r2)

2
]

×⟨exp[ψ(r1, ρ1, z) + ψ∗(r2, ρ2, z)]⟩d2r1d2r2
, (2)

where ρi = (ρix, ρiy) (i = 1, 2) denote the transverse position vectors in the receiving
plane (z > 0). λ and the asterisk stand for the wavelength of the light beam and the
complex conjugate, respectively. The angle brackets represent the ensemble averaging
over the turbulence fluctuations, where the term ψ (r, ρ, z) is turbulence-induced complex
perturbations of a spherical wave propagating from (r, 0) to (ρ, z).

For the propagation of the optical wave in the atmosphere, the refraction index is one
of the core parameters affecting the propagation characteristics of optical waves. This index
is very sensitive to small-scale temperature fluctuations that, combined with turbulent
mixing, lead to the random behavior of the refractive index in the atmosphere. To visualize
the development of a turbulent structure, see the details provided in Figure 1c, based on
the energy cascade theory for the homogeneous and isotropic case. Under the influence of
inertial forces, large eddies split into smaller eddies, forming a continuum of eddy sizes,
which are used to transfer energy from a macroscale L0 (the outer scale of turbulence) to a
microscale l0 (the inner scale of turbulence). The eddies in this model are often assumed,
on average, to be isotropic. However, at ground level, this isotropic behavior is broken
since the temperature of the ground is usually much higher than that of the atmosphere;
this is especially true in the daytime in tropical or desert areas. As a result, the refractive
index fluctuations in the vertical direction are stronger than those in directions that are
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parallel to the ground. Figure 1d shows the development of eddies in the anisotropic
case, in which the eddies become ellipsoids. To generalize our calculation results, we
assume that the turbulence is anisotropic and obeys the Kolmogorov spectrum when
calculating Equation (2). According to the turbulence spectrum model with the power law
index α = 11/3 proposed in reference [26], the second-order statistics of the complex phase
perturbation may be represented as follows:

⟨exp[ψ(r1, ρ1, z) + ψ∗(r2, ρ2, z)]⟩ = exp

[
−Tµz

(
ρ2

xd
µ2

x
+

ρ2
yd

µ2
y
+

x2
d

µ2
x
+

y2
d

µ2
y
+

ρxdxd
µ2

x
+

ρydyd

µ2
y

)]
, (3)

with
ρd = ρ1 − ρ2 =

(
ρxd, ρyd

)
=
(
ρ1x − ρ2x, ρ1y − ρ2y

)
rd = r1 − r2 = (xd, yd) = (x1 − x2, y1 − y2)

T = 0.0033π2k2zC2
n

[
ηκ−5/3

m exp
(
κ2

0/κ2
m
)
Γ1
(
1/6, κ2

0/κ2
m
)
− 2κ1/3

0

]
η = 2κ2

0 + 5/3κ2
m, κ0 = 2π/L0, κm = 5.92/l0

, (4)

where k is the wave number, and C2
n denotes the structure constant of turbulence with unit

m−2/3. L0 and l0 stand for the outer and inner scales of the turbulence, respectively. The
symbol Γ1 is the incomplete Gamma function. Three anisotropic factors, µx, µy and µz,
were introduced in anisotropic turbulence that was pertinent to the size of eddies along
the x, y and z directions [26]. Note that when µx = µy = µz = 1, Equation (3) reduces to
the result corresponding to the conventional isotropic Kolmogorov spectrum. It can be
seen from Equation (3) that even if the proportions of the three anisotropic factors are
the same, their different values will lead to completely different turbulence. For example,
let us compare two sets of coefficients: (µx, µy, µz) = (2,3,2) and (4,6,4). They have the
same ratio, but they cause different complex phase perturbations because the anisotropic
factors are related to other parameters in the power spectrum, such as C2

n, L0 and l0. To
introduce a stronger constraint on the anisotropic factors, we require that the product of
the factors satisfies the condition: µxµyµz = 1. This condition means that the eddies for
isotropic turbulence and anisotropic turbulence at the same altitude have the same volume,
i.e., 4πr3/3 = 4πRaRbRc, where r represents the average radius of eddies in the isotropic
case, and Ra, Rb and Rc denote the average semi-principal axes of eddies in the x, y and z
direction in the anisotropic case, respectively. In the following numerical simulations, this
volume condition is always maintained. For future reference, an atmosphere with µx/µy < 1
has eddies resembling vertically oriented needles, while an atmosphere with µx/µy > 1 has
eddies resembling horizontally extended flat circular pancakes.
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  ρ ρρ ρ
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2 2
0 0 0 0

, ,
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2 5 / 3 , 2 / , 5.92 /

d xd yd x x y y

d d d

n m m m

m m

x y x x y y

T k zC

L l

π ηκ κ κ κ κ κ

η κ κ κ π κ

−

= − = ρ ρ = ρ − ρ ρ − ρ
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 = Γ − 
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cascade theory of turbulence. (c) Isotropic turbulence. (d) Anisotropic turbulence. L0 and l0 denote
the outer and inner scales of turbulence, respectively. Turbulent cells (eddies) between the scale size
L0 and l0 form the inertial subrange. r, Ra, Rb and Rc denote the semi-principal axes of turbulent cells
in different directions, respectively.

Substituting from Equation (1) and Equation (3) into Equation (2), we obtain the
final analytical expression for the mutual coherent function of an LG beam carrying the
cross-phase in the receiving plane after integrating over r1 and r2:

Γ(ρ1,ρ2, z) = |C|2
λ2z2

l
∑

c1=0

l
∑

c2=0

l!ic1
c1!(l−c1)!

l!(−i)c2

c2!(l−c2)!
exp

[
ik
2z
(
ρ2

1 − ρ2
2
)]

exp
[
−aρ2

xd − bρ2
yd

]
× π2(2i)2m1−l−q1−n1−n2

2(l+p1+q1−2m1+p2+n1)/2 N(c1−l−1)/2
1 N−(c1+q1−2m1+1)/2

3 N−(n1+1)/2
4 N−(n2+1)/2

6 exp
[

∆2
x1

4N1
+

∆2
y1

4N3
+

∆2
x2

4N4
+

∆2
y2

4N6

]
×

l−c1
∑

p1=0

p1

∑
q1=0

[q1/2]
∑

m1=0

[(p1−q1)/2]
∑

m2=0

c1+q1−2m1

∑
p2=0

p2

∑
q2=0

[q2/2]
∑

m3=0

[(p2−q2)/2]
∑

m4=0

n1
∑

p3=0

[p3/2]
∑

m5=0

(
l − c1

p1

)(
p1
q1

)(
c1 + q1 − 2m1

p2

)(
p2
q2

)(
n1
p3

)
× (q1)!

m1!(q1−2m1)!
(p1−q1)!

m2!(p1−q1−2m2)!
q2!

m3!(q2−2m3)!
(p2−q2)!

m4!(p2−q2−2m4)!
p3!

m5!(p3−2m5)!

×
(
− 2u√

N1

)q1−2m1
(

i4a√
N1

)p1−q1−2m2
(

4ib√
N3

)q2−2m3
(
− 2ua

N1
√

N3

)p2−q2−2m4
(√

2iN5√
N4

)p3−2m5

×(−1)m1+m2+m3+m4+m5 Hl−c1−p1

(
i∆x1√

2N1

)
Hc1+q1−2m1−p2

(
i∆y1

2
√

N3

)
Hn1−p3

(
i∆x2√

2N4

)
Hn2

(
i∆y2

2
√

N6

)

, (5)

with

a = Tµz
µ2

x
, b = Tµz

µ2
y

N1 =

(
1

w2
0
− ik

2z + a
)

, N2 =

(
1

w2
0
− ik

2z + b
)

, N3 = N2 +
u2

4N1

N4 = N∗
1 − a2

N1
+ u2a2

4N2
1 N3

, N5 = iuab
N1 N3

− iu, N6 = N∗
2 − b2

N3
− N2

5
4N4

∆x1 = − ik
z ρx1 − aρxd, ∆y1 = − ik

z ρy1 − bρyd +
iu∆x1
2N1

∆x2 = ik
z ρx2 + aρxd +

∆x1a
N1

+
∆y1iua
2N1 N3

, ∆y2 = ik
z ρy2 + bρyd +

b∆y1
N3

+ N5∆x2
2N4

n1 = l − c2 + p1 − q1 − 2m2 + p2 − q2 − 2m4, n2 = c2 + q2 − 2m3 + p3 − 2m5

, (6)

where Hn stands for n-order Hermite polynomial. The detailed information for the deriva-
tion of Equation (5) is shown in the Supplementary Materials. In the deduction, we use the
following auxiliary formulas:∫ ∞

−∞
xα exp

[
−(x − β)2

]
dx = (2i)−α√πHα(iβ), (7)

Hα(x + β) =
1

2α/2

α

∑
p=0

(
α
p

)
Hp

(√
2x
)

Hα−p

(√
2β
)

, (8)

Hn(x1) =
[n/2]

∑
m=0

(−1)m n!
m!(n − 2m)!

(2x1)
n−2m. (9)

Now, we turn our attention to the spiral spectrum of an LG beam carrying the cross-
phase at the receiver plane after propagation through the turbulence. The spiral spectrum
refers to the detection probability (or the energy distribution) of OAM modes contained
in a light field. The energy content for a specified OAM mode m can be expressed by the
following integral [20]:

Cm =
1

2π

∫ ∞

0

∫ 2π

0

∫ 2π

0
Γ(ρ, θ1,ρ, θ2, z) exp[−im(θ1 − θ2)]ρdρdθ1dθ2. (10)

By substituting Equation (5) into Equation (10), setting ρ1 = ρ2 = ρ, and integrating
over ρ, θ1 and θ2, the final expression of the Cm can be obtained.



Photonics 2024, 11, 148 6 of 13

The mode weight possessed by the m-order spiral harmonic of an LG beam carrying the
cross-phase is normalized by its total energy carried by the beam, which can be evaluated
by the following expression:

Pm = Cm/
∞

∑
q=−∞

Cq (11)

Equations (10) and (11) establish the relationship between the power proportion of
a specified OAM mode m and the mutual coherent function in the receiver plane, which
provides a way of evaluating the spiral spectrum of a vortex beam in weak-to-strong
atmospheric turbulence. The assumption that should be noted here is that the total energy
of the emitting plane and the total energy of the receiving plane are constant; that is, energy
absorption is not considered. Evidently, if the energy absorption is uniform and only related
to the transmission distance, the results obtained according to Equation (11) will still not
be affected.

3. Numerical Results

In this section, we numerically investigate the spiral spectrum of an LG beam carrying
the cross-phase in weak-to-strong anisotropic atmospheric turbulence and reveal the effect
of the cross-phase on the spiral spectrum in turbulence. In addition, the results obtained by
means of Equations (10) and (11) are compared with those obtained by means of the SPSP
method (i.e., the weak turbulence propagation model). In the following numerical analyses,
the parameters were chosen to be λ = 1550 nm, w0 = 2 cm, l = 1, l0 = 1 cm and L0 = 1 m and
C2

n = 10−14 m−2/3. Specific explanations of the other parameters are provided below.

3.1. Spiral Spectrum of an LG Beam Carrying the Cross-Phase in the Source Plane

We first investigated the spiral spectrum of an LG beam carrying the cross-phase in
the source plane (z = 0). Figure 2 illustrates the spiral spectrum in the source plane for the
different cross-phase coefficients u and l = 1. It can be seen that the spiral spectrum depends
strongly on the cross-phase, and its distributions are in symmetry with respect to Pm=l
(∆l = 0), regardless of the cross-phase. In the absence of the cross-phase (i.e., u = 0 m−2),
the light source is a pure single-mode LG beam; thus, we can see from Figure 1a that
the spiral spectrum contains only one OAM state (m = l) with a mode weight of 1. As
the cross-phase coefficient u increases, the spectra become more dispersed and emerge
as a hill-shaped envelope (see Figure 1b), which implies the energy of the original mode
(∆l = 0) decreases, and more energy enters into other adjacent modes (|∆l| > 0). When u
increases to a certain value (e.g., u = 4 × 104 m−2), the spiral spectrum distribution tends to
be stable and turns out to be structured as a series of equally spaced and nearly equally
weighted OAM components (see Figure 1c,d), i.e., a kind of OAM comb which is akin
to an optical frequency comb [39]. This interaction between OAM state and cross-phase
provides a convenient way to tailor the OAM spectrum, which is expected to be applied
to OAM-based scenarios. For instance, the generated OAM comb can be used to enlarge
the dimensions of OAM-based optical communications and to enable one-to-multichannel
data transmission [35]. Moreover, individual OAM modes of a multi-mode structured light
can be used as encryption carriers to achieve flexible holographic encryption [8,52].
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3.2. Spiral Spectrum of an LG Beam Carrying the Cross-Phase in Weak-to-Strong Anisotropic
Atmospheric Turbulence

Next, we explored the behavior of the spiral spectrum of an LG beam carrying the
cross-phase in isotropic and anisotropic turbulence (z > 0), respectively. The former requires
the anisotropic factors of the turbulence to satisfy µx = µy = µz = 1. When dealing with
the latter’s transmission, we focus on considering the anisotropy in the vertical direction
(i.e., µx =µz ̸= µy) so that we only need to know the ratio of µx to µy to determine the
values of all three factors with the help of the constrained condition of µxµyµz = 1. Here,
we distinguish the strength of atmospheric turbulence based on the well-known Rytov
variance σ2

R = 1.23C2
nk7/6z11/7, which represents the intensity scintillation index of a plane

wave [51]. Weak fluctuations are associated with σ2
R < 1, moderate fluctuation conditions

are characterized by σ2
R ∼ 1, and strong fluctuations fall in the region of σ2

R > 1.
Figure 3 displays the spiral spectrum of an LG beam carrying the cross-phase with

different factors u in a state of isotropic turbulence for different strengths of turbulence
using the eHF method (Method B marked in blue). In comparison, the corresponding
results calculated using the SPSP method (Method A marked in pink) are also illustrated.
In our calculations, the Rytov variance σ2

R = 1.23C2
nk7/6z11/7 for z = 100 m, 1500 m, 2200 m

and 3000 m are 0.003, 0.419, 0.845 and 1.492, respectively, ranging from weak to strong
fluctuations. In the absence of the cross-phase (u = 0 m−2) and when the strength of
turbulence is very weak σ2

R~0.003 (z = 100 m), the spiral spectrums obtained with the two
calculation methods are symmetrical with respect to Pm=1 (i.e., ∆l = 0) (see Figure 3(a1)).
As the strength of turbulence increases (i.e., the propagation distance increases), the spectra
obtained by Method B (blue histograms) become asymmetric (see Figure 3(b1–d1)), which
is consistent with the experimental results reported by Ren et al. [53]. The energy spread
on both sides with respect to Pm=1 (i.e., ∆l = 0) is non-uniform, resulting in a mode weight
Pm=0 (i.e., ∆l = −1) greater than Pm=2 (i.e., ∆l = 1). This phenomenon is quite different from
that predicated by Method A (pink histograms), where the spectra are always symmetrical
with respect to Pm=1 (i.e., ∆l = 0). This implies that the discrepancies between the two
methods gradually become apparent as the turbulence strength increases. The reason for
this phenomenon is that Method B fully considers the interaction between turbulence and
the OAM modes during the transmission process. In addition, it was found that regardless
of the strength of the turbulence, as the cross-phase factor increases, the spiral spectrum is
gradually regulated to a wide OAM spectrum containing multiple helical harmonic modes
with equal intensity weights, i.e., an OAM comb (see Figure 3(a3–d3)). This means that
increasing the cross-phase factor u can reduce the discrepancies between the two methods
and show the ability of the cross-phase on the redistribution of energy. Meanwhile, with
the increase in the strength of turbulence, the mode spacing of a modulated OAM comb
changed from the original two (see Figure 3(a3)) to one (see Figure 3(d3)). This is because
as the transmission distance increases, the perturbations caused by turbulence accumulate
more strongly, resulting in more energy to spread to adjacent modes.

Figure 4 shows the variation in the central mode Pm=l (∆l = 0) with the propagation
distance z for different values of cross-phase factor u. The results of the numerical calcu-
lations obtained by the two methods (A and B) are displayed through different curves.
As expected, in the absence of the cross-phase (u = 0 m−2), the values of Pm=l calculated
by the single-phase screen perturbation propagation model are always larger than those
via the use of the extended Huygens–Fresnel propagation model, irrespective of z. This is
because the former does not consider the effect of turbulence on the OAM mode during
propagation. It is also clearly shown that the difference between the results calculated
by the two methods decreases as u increases. In particular, when u is large enough (e.g.,
u = 4 × 104 m−2), the curves obtained with the two methods basically overlap (see blue
curves). Moreover, with the increase in u, the falling range of central mode Pm=l caused by
the increase in turbulence (increase in transmission distance) will gradually decrease. This
is because the enhanced cross-phase effect will gradually distribute the total energy evenly
to each mode.
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We now investigate the influence of the anisotropic factors of turbulence on the spiral
spectrum. The following calculation results are obtained based on the extended Huygens–
Fresnel method. Figure 4 presents the changes in the spiral spectrum with the anisotropic
condition µx/µy and propagation distance z. The cross-phase factor in the calculation is
set as u = 5 × 103 m−2. When the strength of the turbulence is weak (z = 500 m for
σ2

R = 0.0558), it can be seen that the anisotropic condition (the ratio of µx/µy) plays a certain
role in determining the spiral spectrum distribution (see Figure 5(a1–d1)). The weight of
each order mode will change significantly due to different anisotropic conditions. As the
strength of turbulence (or the propagation distance) increases, the effect of the anisotropy
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condition on the OAM spectrum decreases, especially in strong turbulence, where the
distribution of the OAM spectrum is almost unchanged for different anisotropic conditions
(see Figure 5(a3–d3)). As a remarkable feature of this effect, it is approximately the same
for different values of cross-phase. This was tested for values of the cross-phase ranging
from u = 5 × 103 m−2 to u = 2 × 104 m−2.
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To further reveal the effect of cross-phase and anisotropic conditions on the central
mode Pm=l (∆l = 0) in anisotropic turbulence, in Figure 6, we show the variation in Pm=l
with the propagation distance for different values of µx/µy and cross-phase factors u. In
the absence of the cross-phase (u = 0 m−2), one can find that the central mode Pm=l (∆l = 0)
depends strongly on this ratio. As the ratio of µx/µy increases, Pm=l decreases. Due to the
effect of the cross-phase, the difference in Pm=l under different anisotropic conditions has
been significantly reduced (see Figure 6b). With a further increase in the cross-phase factor
u (e.g., u = 4 × 104 m−2), the mode weight Pm=l for different anisotropic cases become close
to each other, especially in the case of moderate to strong turbulence (z > 2000 m), where
the anisotropy hardly affects the mode weight Pm=l (see Figure 6c). This indicates that by
modulating the cross-phase, the effects of the anisotropic factors of turbulence on the spiral
spectrum can be weakened.

Photonics 2024, 11, x FOR PEER REVIEW 11 of 14 
 

 

Figure 5. Spiral spectrum of an LG beam carrying the cross-phase in anisotropic turbulence with 
different values of µx/µy for u = 5 × 103 m−2. (a1–d1) z = 500 m; (a2–d2) z = 1500 m; (a3–d3) z = 3000 m. 

To further reveal the effect of cross-phase and anisotropic conditions on the central 
mode Pm=l (Δl = 0) in anisotropic turbulence, in Figure 6, we show the variation in Pm=l with 
the propagation distance for different values of µx/µy and cross-phase factors u. In the ab-
sence of the cross-phase (u = 0 m−2), one can find that the central mode Pm=l (Δl = 0) depends 
strongly on this ratio. As the ratio of µx/µy increases, Pm=l decreases. Due to the effect of the 
cross-phase, the difference in Pm=l under different anisotropic conditions has been signifi-
cantly reduced (see Figure 6b). With a further increase in the cross-phase factor u (e.g., u 
= 4 × 104 m−2), the mode weight Pm=l for different anisotropic cases become close to each 
other, especially in the case of moderate to strong turbulence (z > 2000 m), where the ani-
sotropy hardly affects the mode weight Pm=l (see Figure 6c). This indicates that by modu-
lating the cross-phase, the effects of the anisotropic factors of turbulence on the spiral 
spectrum can be weakened. 

 
Figure 6. Variation in Pm=l of an LG beam carrying the cross-phase with different factors u in aniso-
tropic turbulence with different values of μx/μy as a function of propagation distance z. (a) u = 0 m−2; 
(b) u = 5 × 103 m−2; (c) u = 4 × 104 m−2. 

OAM detection underpins almost all aspects of the advances in vortex beams, such 
as communication. Although this paper is only a theoretical work, the direction of future 
experimental research can be envisioned as follows. To study the impact of a turbulent 
atmosphere on vortex beams, the first matter to deal with is the generation of the turbu-
lence. One can consider using a hot plate [54,55] or random complex phase screens [31] to 
simulate the turbulent environment in the laboratory. The former can effectively achieve 
quantitative control over the strength of turbulence by adjusting the hotplate temperature 
(the specific quantitative relationship can be inverted using the scintillation index [54] or 
Fried’s coherence length [56]). The latter takes into account more turbulence parameters 
based on the adjustability of the hologram. Secondly, this research involves the measure-
ment of the mutual coherence function. Since the mutual coherence function is a complex 
valued function of four scalar arguments, it is hard to directly obtain full information 
about it in an experiment. Fortunately, the proposal of the phase perturbation method 
[57,58] and generalized Arago spot experiment [59] provide possibilities for our future 
experimental research. In addition, the recently reported multi-mode ptychography tech-
nology [60] and intelligent optoelectronic processor [61] also provide more options for 
directly measuring the orbital angular momentum spiral spectrum distribution of OAM 
beams in turbulence. 

4. Conclusions 
In summary, we developed a theoretical model for calculating the spiral spectrum 

(OAM spectrum) of an LG beam carrying the cross-phase and propagating in isotropic 
and anisotropic Kolmogorov turbulence. The method makes use of the extended Huy-
gens–Fresnel integral and is applicable to a wide range of turbulent flows from weak to 
strong. In the source plane, the OAM spiral spectrum of an LG beam carrying the cross-
phase strictly depends on that cross-phase. As the value of the cross-phase factor increases, 

Figure 6. Variation in Pm=l of an LG beam carrying the cross-phase with different factors u
in anisotropic turbulence with different values of µx/µy as a function of propagation distance z.
(a) u = 0 m−2; (b) u = 5 × 103 m−2; (c) u = 4 × 104 m−2.



Photonics 2024, 11, 148 10 of 13

OAM detection underpins almost all aspects of the advances in vortex beams, such
as communication. Although this paper is only a theoretical work, the direction of future
experimental research can be envisioned as follows. To study the impact of a turbulent
atmosphere on vortex beams, the first matter to deal with is the generation of the turbu-
lence. One can consider using a hot plate [54,55] or random complex phase screens [31] to
simulate the turbulent environment in the laboratory. The former can effectively achieve
quantitative control over the strength of turbulence by adjusting the hotplate temperature
(the specific quantitative relationship can be inverted using the scintillation index [54] or
Fried’s coherence length [56]). The latter takes into account more turbulence parameters
based on the adjustability of the hologram. Secondly, this research involves the measure-
ment of the mutual coherence function. Since the mutual coherence function is a complex
valued function of four scalar arguments, it is hard to directly obtain full information about
it in an experiment. Fortunately, the proposal of the phase perturbation method [57,58] and
generalized Arago spot experiment [59] provide possibilities for our future experimental
research. In addition, the recently reported multi-mode ptychography technology [60] and
intelligent optoelectronic processor [61] also provide more options for directly measuring
the orbital angular momentum spiral spectrum distribution of OAM beams in turbulence.

4. Conclusions

In summary, we developed a theoretical model for calculating the spiral spectrum
(OAM spectrum) of an LG beam carrying the cross-phase and propagating in isotropic and
anisotropic Kolmogorov turbulence. The method makes use of the extended Huygens–
Fresnel integral and is applicable to a wide range of turbulent flows from weak to strong.
In the source plane, the OAM spiral spectrum of an LG beam carrying the cross-phase
strictly depends on that cross-phase. As the value of the cross-phase factor increases, the
distribution of the spiral spectrum is gradually expanded into a comb-like OAM spectrum.
Compared with previous schemes to tailor the OAM spectrum, such as the pattern-search
algorithm [37], mode iteration method [38] and use of pinhole plates [39], the cross-phase
control scheme we have demonstrated is simpler and is expected to avoid long response or
calculation times, complex systems and lower diffraction efficiency. Furthermore, based on
the derived model, the specific impact of cross-phase and the strength of turbulence (i.e., the
propagation distance) on the spiral spectrum have been investigated in isotropic turbulence
using some numerical examples. As a comparison, the corresponding results calculated
based on the single-phase screen perturbation method, which is the most widely used, are
also presented. These two sets of results reveal that as turbulence increases, the differences
between the results obtained by the two methods gradually become apparent. In particular,
in moderate to strong turbulence, the symmetry of the spiral spectrum obtained based on
the extended Huygens–Fresnel method is even destroyed. However, we were pleasantly
surprised to find that the discrepancies between the calculation results of the two methods
can be reduced through the choice of an appropriate cross-phase factor. Moreover, even
in turbulence, the OAM comb spiral spectrum distribution obtained through cross-phase
control can still be maintained, and its mode spacing will decrease due to the enhancement
of turbulence. Finally, the effect of the anisotropic conditions of turbulence on the spiral
spectrum is also analyzed. The results show that anisotropic conditions play a certain role
in determining the distribution of the OAM spectrum, and increasing the cross-phase factor
can effectively reduce the impact of anisotropy on the OAM spectrum. Our findings present
a simple approach for OAM spectrum manipulation and may be helpful in a variety of
OAM-based applications, such as free-space optical communications and data information
transfer in anisotropic turbulence.
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