Pulsed Optical Vortex Array Generation in a Self-Q-Switched Tm:YALO3 Laser
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- He, H.; Friese, M.E.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 1995, 75, 826–829. [Google Scholar] [CrossRef] [PubMed]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef]
- Barreiro, J.T.; Wei, T.C.; Kwiat, P.G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 2008, 4, 282–286. [Google Scholar] [CrossRef]
- Sit, A.; Bouchard, F.; Fickler, R.; Gagnon-Bischoff, J.; Larocque, H.; Heshami, K.; Elser, D.; Peuntinger, C.; Günthner, K.; Heim, B. High-dimensional intracity quantum cryptography with structured photons. Optica 2017, 4, 1006–1010. [Google Scholar] [CrossRef]
- Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light Sci. Appl. 2018, 7, 17146. [Google Scholar] [CrossRef] [PubMed]
- Allegre, O.J.; Jin, Y.; Perrie, W.; Ouyang, J.; Fearon, E.; Edwardson, S.P.; Dearden, G. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt. Express 2013, 21, 21198–21207. [Google Scholar] [CrossRef]
- Toyoda, K.; Takahashi, F.; Takizawa, S.; Tokizane, Y.; Miyamoto, K.; Morita, R.; Omatsu, T. Transfer of Light Helicity to Nanostructures. Phys. Rev. Lett. 2013, 110, 143603. [Google Scholar] [CrossRef]
- Fürhapter, S.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 2005, 13, 689–694. [Google Scholar] [CrossRef]
- Tamburini, F.; Anzolin, G.; Umbriaco, G.; Bianchini, A.; Barbieri, C. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 2006, 97, 163903. [Google Scholar] [CrossRef] [PubMed]
- Woerdemann, M.; Alpmann, C.; Esseling, M.; Denz, C. Advanced optical trapping by complex beam shaping. Laser Photonics Rev. 2013, 7, 839–854. [Google Scholar] [CrossRef]
- Ladavac, K.; Grier, D. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 2004, 12, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Li, X.K.; Li, Y.; Zeng, X.N.; Han, Y.H. Perfect optical vortex array for optical communication based on orbital angular momentum shift keying. J. Opt. 2018, 20, 125604. [Google Scholar] [CrossRef]
- Lobo, C.; Castin, Y. Nonclassical scissors mode of a vortex lattice in a Bose-Einstein condensate. Phys. Rev. A 2005, 72, 043606. [Google Scholar] [CrossRef]
- Anguita, J.A.; Herreros, J.; Djordjevic, I.B. Coherent Multimode OAM Superpositions for Multidimensional Modulation. IEEE Photon. J. 2014, 6, 1–11. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N. Simple method for efficient reconfigurable optical vortex beam splitting. Opt. Express 2017, 25, 18722–18735. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, C.L.; Yuan, X.Z.; Yuan, C.J.; Feng, S.T.; Nie, S.P.; Ding, J.P. Generation of optical vortex array along arbitrary curvilinear arrangement. Laser Photonics Rev. 2018, 26, 9798–9812. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Wang, L.; Chen, W.D.; Loiko, P.; Mateos, X.; Xu, X.D.; Liu, Y.; Shen, D.Y.; Wang, Z.P.; Xu, X.G.; et al. Structured laser beams: Toward 2-μm femtosecond laser vortices. Photonics Res. 2021, 9, 357–363. [Google Scholar] [CrossRef]
- Chen, D.M.; Miao, Y.J.; Wang, H.J.; Dong, J. Vortex arrays directly generated from an efficient diode-pumped microchip laser. J. Phys. Photonics 2020, 2, 035002. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Wang, Z.P.; Yu, H.H.; Zhuang, S.D.; Zhang, H.J.; Xu, X.D.; Xu, J.; Xu, X.G.; Wang, J.Y. Direct generation of optical vortex pulses. Appl. Phys. Lett. 2012, 101, 031113. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.; Yang, H.; Xie, J.; Jiang, S.; Feng, G.; Zhou, S. Direct emission of chirality controllable femtosecond LG01 vortex beam. Appl. Phys. Lett. 2018, 112, 201110. [Google Scholar] [CrossRef]
- Liang, H.C.; Huang, Y.J.; Lin, Y.C.; Lu, T.H.; Chen, Y.F.; Huang, K.F. Picosecond optical vortex converted from multigigahertz self-mode-locked high-order Hermite-Gaussian Nd:GdVO4 lasers. Opt. Lett. 2009, 34, 3842–3844. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, Z.G.; Ito, I.; Kobayashi, Y. Direct generation of femtosecond vortex beam from a Yb:KYW oscillator featuring a defect-spot mirror. OSA Continuum 2019, 2, 523–530. [Google Scholar] [CrossRef]
- Qiao, Z.; Xie, G.; Wu, Y.; Yuan, P.; Ma, J.; Qian, L.; Fan, D. Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order. Laser Photonics Rev. 2018, 12, 1800019. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.Y.; Sheng, Q.; He, X.; Liu, J.J.; Shi, W.; Yao, J.Q.; Omatsu, T. Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration. Opt. Express 2021, 29, 27783. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, M.; Battipede, F.; Lugiato, L.A.; Penna, V.V.; Prati, F.; Tamm, C.; Weiss, C.O. Transverse laser patterns. I. Phase singularity crystals. Phys. Rev. A 1991, 43, 5090–5113. [Google Scholar] [CrossRef]
- Scheuer, J.; Orenstein, M. Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities. Science 1999, 285, 230–233. [Google Scholar] [CrossRef]
- Chen, Y.F.; Lan, Y.P. Formation of optical vortex lattices in solid-state microchip lasers: Spontaneous transverse mode locking. Phys. Rev. A 2001, 64, 063807. [Google Scholar] [CrossRef]
- Dong, J.; Ueda, K.I. Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser. Phys. Rev. A 2006, 73, 053824. [Google Scholar] [CrossRef]
- Otsuka, K.; Chu, S.C. Generation of vortex array beams from a thin-slice solid-state laser with shaped wide-aperture laser-diode pumping. Opt. Lett. 2009, 34, 10–12. [Google Scholar] [CrossRef]
- Kong, W.P.; Sugita, A.; Taira, T. Generation of Hermite–Gaussian modes and vortex arrays based on two-dimensional gain distribution controlled microchip laser. Opt. Lett. 2012, 37, 2661–2663. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, X.L.; Zhang, M.M.; Wang, X.J.; He, H.S. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser. Appl. Phys. Lett. 2018, 112, 161108. [Google Scholar] [CrossRef]
- Shen, Y.J.; Wan, Z.S.; Fu, X.; Liu, Q.; Gong, M.L. Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser. J. Opt. Soc. Am. B 2018, 35, 2940–2944. [Google Scholar] [CrossRef]
- Tong, L.Y.; Yuan, Y.; Zhang, W.Y.; Chen, C.D.; Cai, Y.J.; Zhao, L.N. High-power picosecond structured optical vortices directly generated in an all-solid-state laser. Opt. Laser Technol. 2022, 155, 108396. [Google Scholar] [CrossRef]
- Niu, Z.K.; Tong, L.Y.; Cao, X.H.; Chen, C.D.; Cai, Y.J.; Zhao, L.N. Inner-cavity generation of mid-infrared optical vortex arrays from an Er:CaF2 laser. Infrared Phys. Technol. 2023, 133, 104863. [Google Scholar] [CrossRef]
- Hutfilz, A.; Theisen-Kunde, D.; Bonsanto, M.M.; Brinkmann, R. Pulsed thulium laser blood vessel haemostasis as an alternative to bipolar forceps during neurosurgical tumour resection. Lasers Med. Sci. 2023, 38, 94. [Google Scholar] [CrossRef] [PubMed]
- Steinlechner, J.; Martin, I.W.; Bell, A.S.; Hough, J.; Fletcher, M.; Murray, P.G.; Robie, R.; Rowan, S.; Schnabel, R. Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing. Phys. Rev. Lett. 2018, 120, 263602. [Google Scholar] [CrossRef] [PubMed]
- Petrovich, M.N.; Poletti, F.; Wooler, J.P.; Heidt, A.M.; Baddela, N.K.; Li, Z.; Gray, D.R.; Slavík, R.; Parmigiani, F.; Wheeler, N.V.; et al. Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber. Opt. Express 2013, 21, 28559–28569. [Google Scholar] [CrossRef]
- Titterton, D.H.; Elder, I.; Thorne, D.; Jones, I.; Bell, D. Thulium fibre laser pumped mid-IR source. In Technologies for Optical Countermeasures III; SPIE: Zürich, Switzerland, 2006; Volume 6397, p. 639703. [Google Scholar]
- Razdobreev, I.; Shestakov, A. Self-pulsing of a monolithic Tm-doped YAlO3 microlaser. Phys. Rev. A 2006, 73, 053815. [Google Scholar] [CrossRef]
- Wu, K.S.; Henderson-Sapir, O.; Veitch, P.J.; Hamilton, M.; Munch, J.; Ottaway, D.J. Self-pulsing in Tm-doped YAlO3 lasers: Excited-state absorption and chaos. Phys. Rev. A 2015, 91, 043819. [Google Scholar] [CrossRef]
- Cai, W.; Liu, J.; Li, C.; Zhu, H.T.; Ge, P.G.; Zheng, L.H.; Su, L.B.; Xu, J. Compact self-Q-switched laser near 2 μm. Opt. Commun. 2015, 334, 287–289. [Google Scholar] [CrossRef]
- Zhang, B.; Li, L.; He, C.J.; Tian, F.J.; Yang, X.T.; Cui, J.H.; Zhang, J.Z.; Sun, W.M. Compact self-Q-switched Tm:YLF laser at 1.91 μm. Opt. Laser Technol. 2018, 100, 103–108. [Google Scholar] [CrossRef]
- Feng, X.Y.; Li, F.; Wang, C.; Zhang, Z.; Liu, J.J.; Liu, J.; Su, L.B.; Zhang, H. Broadband MIR SnSe nanosheets nonlinear saturable absorber for high peak power pulsed lasers. Opt. Laser Technol. 2023, 163, 109343. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, M.M.; Wang, J.L.; Wang, L.; Liu, Q.Y.; Zhao, Y.G.; Liu, Y.; Shen, D.Y.; Wang, Z.P.; Xu, X.G.; et al. High-energy 2 microm pulsed vortex beam excitation from a Q-switched Tm:LuYAG laser. Opt. Lett. 2020, 45, 722–725. [Google Scholar] [CrossRef] [PubMed]
X1 (μm) | Y1 (μm) | X2 (μm) | Y2 (μm) | |
---|---|---|---|---|
LG0,−1 | 0 | 0 | 0 | 0 |
Two-VA | 80 | 0 | 0 | 0 |
Three-VA | 160 | 0 | 50 | 0 |
Four-VA | 120 | 90 | 70 | 0 |
Laser Medium | Output Mode | Q-Switch Approach | Output Power (W) | Pulse Width (ns) | Repetition Rate (kHz) | Peak Power (W) | Single-Pulse Energy (μJ) | Ref. |
---|---|---|---|---|---|---|---|---|
Tm:YAP | TEM00 | SQS | 5.6 | 543 | 143 | 71.7 | 38.9 | This work |
Tm:YAP | LG0,−1 | SQS | 4.8 | 1266 | 122.8 | 30.6 | 38.8 | |
Tm:YAP | Two-VA | SQS | 4.07 | 1281 | 141 | 22.5 | 28.8 | |
Tm:YAP | Three-VA | SQS | 3.84 | 2379 | 88.5 | 18.2 | 43.3 | |
Tm:YAP | Four-VA | SQS | 3.59 | 1615 | 126.5 | 17.6 | 28.3 | |
Tm:YAP | TEM00 | SQS | 1.68 | 1640 | 82.25 | 15.64 | 25.7 | [43] |
Tm:YLF | TEM00 | SQS | 0.61 | 1500 | 21 | 19.36 | 29 | [44] |
Tm:YAP | TEM00 | SA | 0.72 | 1090 | 82.25 | 7.11 | 8.86 | [45] |
Tm:LuYAG | LG0,−1 | A-O | 0.74 | 366 | 0.5 | 3800 | 1510 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, L.; Chen, C.; Cai, Y.; Zhao, L. Pulsed Optical Vortex Array Generation in a Self-Q-Switched Tm:YALO3 Laser. Materials 2024, 17, 1144. https://doi.org/10.3390/ma17051144
Tong L, Chen C, Cai Y, Zhao L. Pulsed Optical Vortex Array Generation in a Self-Q-Switched Tm:YALO3 Laser. Materials. 2024; 17(5):1144. https://doi.org/10.3390/ma17051144
Chicago/Turabian StyleTong, Luyang, Changdong Chen, Yangjian Cai, and Lina Zhao. 2024. "Pulsed Optical Vortex Array Generation in a Self-Q-Switched Tm:YALO3 Laser" Materials 17, no. 5: 1144. https://doi.org/10.3390/ma17051144
APA StyleTong, L., Chen, C., Cai, Y., & Zhao, L. (2024). Pulsed Optical Vortex Array Generation in a Self-Q-Switched Tm:YALO3 Laser. Materials, 17(5), 1144. https://doi.org/10.3390/ma17051144