Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = orange juice by-product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 545 KiB  
Article
Blood Orange (Citrus sinensis L. Osbeck) Juice By-Product Extract as a Functional Feed Additive: Effects on Growth Performance, Digestive Enzyme Activity, Antioxidant Status, Immune Parameters, and Disease Resistance Against Vibrio harveyi in Juvenile Black Rockfish (Sebastes schlegelii)
by Ahyeong Yun, Hwa Yong Oh, Tae Hoon Lee, Da Ye Kang, Ki-Tae Kim, Hyun-Soo Kim and Hee Sung Kim
Antioxidants 2025, 14(6), 745; https://doi.org/10.3390/antiox14060745 - 17 Jun 2025
Viewed by 530
Abstract
This study evaluated the antibacterial activity and residual functional compounds of blood orange (Citrus sinensis L. Osbeck) juice by-product extract (BJBE). The effects of dietary BJBE on growth performance, digestive enzyme activity, antioxidant status, immune parameters, and disease resistance against Vibrio harveyi [...] Read more.
This study evaluated the antibacterial activity and residual functional compounds of blood orange (Citrus sinensis L. Osbeck) juice by-product extract (BJBE). The effects of dietary BJBE on growth performance, digestive enzyme activity, antioxidant status, immune parameters, and disease resistance against Vibrio harveyi were examined in juvenile black rockfish (Sebastes schlegelii). In total, 630 juvenile rockfish were randomly assigned to 21 rectangular tanks (50 L) for a feeding trial, with 30 fish per tank in triplicate. Seven isonitrogenous and isolipidic experimental diets were formulated with BJBE at 0 (control, BJBE0), 0.1 (BJBE0.1), 0.2 (BJBE0.2), 0.3 (BJBE0.3), 0.5 (BJBE0.5), 0.7 (BJBE0.7), and 1.0 (BJBE1) g kg−1. A disk diffusion assay confirmed BJBE’s strong antibacterial efficacy against V. harveyi. After an 8-week feeding trial, fish fed BJBE0.7 and BJBE1 exhibited significantly a greater final weight, weight gain, and specific growth rate compared with those fed BJBE0. Feed efficiency was significantly higher in fish fed BJBE0.7 than in those fed BJBE0. The protein efficiency ratio was significantly higher in fish fed BJBE0.3, BJBE0.5, BJBE0.7, and BJBE1 relative to those fed BJBE0. Intestinal amylase activity was significantly higher in fish fed BJBE0.7 and BJBE1 compared with those fed BJBE0, and trypsin activity was significantly higher in BJBE0.7-fed fish than in BJBE0-fed fish. In comparison to the BJBE0 diet, the plasma superoxide dismutase, catalase, and glutathione levels of fish fed BJBE0.7 and BJBE1 diets were significantly higher. Lysozyme activity and immunoglobulin M level in fish fed BJBE0.7 and BJBE1 were significantly higher than that in fish fed BJBE0. After a challenge with V. harveyi, disease resistance was significantly higher in fish fed BJBE0.5, BJBE0.7, and BJBE1 compared with those fed BJBE0. Overall, 0.7–1.0 g kg−1 is proposed as the optimal dietary BJBE inclusion level for enhancing growth performance, digestive enzyme activity, antioxidant status, immune parameters, and disease resistance against V. harveyi infection in juvenile black rockfish. Full article
(This article belongs to the Special Issue Antioxidant Properties in Novel Feed Ingredients for Fish)
Show Figures

Figure 1

19 pages, 1444 KiB  
Article
Valorization of Citrus Peel Byproducts: A Sustainable Approach to Nutrient-Rich Jam Production
by Monica Negrea, Ileana Cocan, Calin Jianu, Ersilia Alexa, Adina Berbecea, Mariana-Atena Poiana and Marius Silivasan
Foods 2025, 14(8), 1339; https://doi.org/10.3390/foods14081339 - 13 Apr 2025
Cited by 1 | Viewed by 2177
Abstract
The valorization of citrus peel byproducts presents a sustainable and innovative approach to reducing food waste while improving the nutritional content of fruit-based products. Citrus peels, a significant byproduct of the fruit juice industry, are abundant in bioactive compounds with recognized health benefits [...] Read more.
The valorization of citrus peel byproducts presents a sustainable and innovative approach to reducing food waste while improving the nutritional content of fruit-based products. Citrus peels, a significant byproduct of the fruit juice industry, are abundant in bioactive compounds with recognized health benefits and functional properties, making them particularly suitable for jam production. The global citrus industry generates substantial amounts of waste, with peels accounting for approximately 50% of the total fruit mass. Conventional disposal methods often result in environmental concerns and the underutilization of valuable bioresources. This study aims to investigate the potential of incorporating citrus peel into jam formulations as a means of enhancing their nutritional and functional properties. Jams were prepared using a traditional processing technique (TP) incorporating citrus peel. The experimental jam variants included pomelo peel jam (PPJ), lime peel jam (LiPJ), lemon peel jam (LePJ), clementine peel jam (CPJ), orange peel jam (OPJ), and grapefruit peel jam (GPJ). All jam samples were subjected to comprehensive analyses, including assessments of chemical composition, total soluble solids (TSSs), titrable acidity (g/100 g acid citric), macro- and microelement contents, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity using the FRAP assay. The study revealed high levels of biologically active compounds, such aspolyphenols, flavonoids, and vitamin C, in the jams, highlighting their antioxidant properties and potential health benefits. Among the jams, lemon peel jam (LePJ) exhibited the highest antioxidant activity and polyphenol content, making it a superior choice in terms of functional benefits. In terms of sensory analysis, orange peel jam (OPJ) was the most favored by consumers, demonstrating its high acceptability and potential for market success. Full article
Show Figures

Figure 1

14 pages, 1872 KiB  
Article
Green Extraction and NMR Analysis of Bioactives from Orange Juice Waste
by Paula Scarabotto Penteado, Maria Carolina B. Di-Medeiros Leal, Maria Gabriela Aparecida Carosio, Alef dos Santos, Mateus Lodi Segatto, Daniel Petinatti Pavarini, Danielle Fernandes da Silva, Jéssica Cristina Amaral, Maria Fátima das G. F. da Silva, Vânia G. Zuin Zeidler and Antonio G. Ferreira
Foods 2025, 14(4), 642; https://doi.org/10.3390/foods14040642 - 14 Feb 2025
Viewed by 1118
Abstract
Brazil is a global leader in the orange industry, producing approximately one-fourth of the world’s oranges and generating over 50% of the associated waste. These by-products are rich in bioactive compounds; however, their improper disposal poses environmental risks. This study employs an eco-friendly [...] Read more.
Brazil is a global leader in the orange industry, producing approximately one-fourth of the world’s oranges and generating over 50% of the associated waste. These by-products are rich in bioactive compounds; however, their improper disposal poses environmental risks. This study employs an eco-friendly approach—microwave-assisted extraction—to recover valuable compounds from orange juice production waste. The extracted compounds were analyzed using nuclear magnetic resonance (NMR) and gas chromatography–mass spectrometry (GC–MS). Key bioactives, including D-limonene, valencene, hesperidin, and carbohydrates, were successfully identified. NMR effectively traces and semi-quantifies these compounds, while microwave-assisted extraction enables the sustainable recovery of high-purity hesperidin, confirmed by NMR (87.66%) and HPLC (84.30%) analyses. Full article
Show Figures

Figure 1

16 pages, 3472 KiB  
Article
Development of Sodium Alginate Bioplastic Reinforced with Dried Orange Juice By-Product for Use in Packaging
by Pedro H. S. Bezerra, Yves J. Souza-Santos, Eliria M. J. A. Pallone, Rosemary A. Carvalho and Fernanda M. Vanin
Polymers 2024, 16(23), 3382; https://doi.org/10.3390/polym16233382 - 30 Nov 2024
Cited by 2 | Viewed by 2859
Abstract
Pollution caused by nonrenewable plastics has driven the use of natural polymers. Similarly, the disposal of food waste still harms the environment. Considering both aspects, this study aimed to evaluate the effect of incorporating orange by-product powder (OBP) as a reinforcing material into [...] Read more.
Pollution caused by nonrenewable plastics has driven the use of natural polymers. Similarly, the disposal of food waste still harms the environment. Considering both aspects, this study aimed to evaluate the effect of incorporating orange by-product powder (OBP) as a reinforcing material into sodium alginate films with glycerol. Sodium alginate-based films were produced using glycerol and various concentrations of OBP. The films were characterized in terms of thickness, color, water content, mechanical properties, light transmission, transparency, X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), contact angle, solubility, swelling, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The addition of OBP significantly (p < 0.05) reduced the water content of the film from 37.75% ± 5.80a (0-OBP) to 24.49% ± 1.47b (45-OBP). The higher the concentration of OBP, the higher the tensile strength of the films, from 7.99 MPa ± 0.91a (0-OBP) to 18 MPa ± 1.38d (45-OBP), and the higher the hydrophobicity, from 57.60° ± 0.41a (0-OBP) to 70.34° ± 0.98c (45-OBP). From TGA and XRD analyses, it was observed that the incorporation of OBP resulted in less crystalline and more thermally resistant materials. Therefore, this study shows that OBP is a promising reinforcing component for sodium alginate films. Full article
Show Figures

Graphical abstract

17 pages, 2176 KiB  
Article
Evaluation of Polyphenol Profile from Citrus Peel Obtained by Natural Deep Eutectic Solvent/Ultrasound Extraction
by Manuel Octavio Ramírez-Sucre, Kevin Alejandro Avilés-Betanzos, Anahí López-Martínez and Ingrid Mayanin Rodríguez-Buenfil
Processes 2024, 12(10), 2072; https://doi.org/10.3390/pr12102072 - 25 Sep 2024
Cited by 4 | Viewed by 2301
Abstract
Citrus fruits are widely consumed worldwide; however, one of their primary uses is juice production, resulting in over 40 million tons of agro-industrial waste. Citrus peel is the main agro-industrial by-product in citrus production. In recent years, secondary metabolites of interest, mainly polyphenols [...] Read more.
Citrus fruits are widely consumed worldwide; however, one of their primary uses is juice production, resulting in over 40 million tons of agro-industrial waste. Citrus peel is the main agro-industrial by-product in citrus production. In recent years, secondary metabolites of interest, mainly polyphenols such as hesperidin, have been identified in citrus peels. Currently, green alternatives like natural deep eutectic solvents (NADES) based on choline chloride and glucose (Glu), combined with ultrasound-assisted extraction, are studied to obtain polyphenol-rich extracts with potential health applications. This study aims to evaluate the effect of: (1) molar ratios (MR) of 1:0.5, 1:1 or 1:2 mol/mol of choline chloride (ChCl):glucose (Glu); (2) the percentage of added water (WA: 50, 60 or 70%) to NADES; and (3) different citrus peels of Citrus aurantium (bitter orange), Citrus sinensis (sweet orange), and Citrus limon (lemon) used for extraction, on polyphenol profiles, total polyphenol content (TPC), and antioxidant capacity (Ax) of the extracts. The extracts were analyzed using ultra-performance liquid chromatography (UPLC) and evaluated using the Folin–Ciocalteu method for TPC and DPPH assay for quantifying AC. A factorial experimental design 33 was implemented. The extract obtained with an MR of 1:1 (ChCl:Glu) from Citrus aurantium peel exhibited the highest concentration of hesperidin (2003.37 ± 10.91 mg/100 g dry mass), whereas an MR of 1:2 (ChCl:Glu) exhibited the highest concentration of neohesperidin (1045.94 ± 1.27 mg/100 g dry mass), both using 60% WA. This extract also showed the highest antioxidant capacity, achieving 100% inhibition. On the other hand, the highest concentration of total phenolic content (TPC) (96.23 ± 0.83 mg GAE/100 g dry mass) was obtained using C. aurantium peel with an MR of 1:0.5 (ChCl:Glu) and 60% WA. The extracts also presented high concentrations of rutin and catechin. These findings highlight the potential of revalorizing citrus peels, particularly Citrus aurantium, and their extracts obtained with NADES for possible health applications. Full article
Show Figures

Figure 1

16 pages, 2456 KiB  
Article
Technical Feasibility Study of Orange Wood Residues (Citrus sinensis) for Bioenergy Generation
by Luciano C. Dias, Damaris Guimarães, Ananias F. Dias Júnior and Michel P. Oliveira
Energies 2024, 17(12), 3056; https://doi.org/10.3390/en17123056 - 20 Jun 2024
Cited by 1 | Viewed by 1237
Abstract
The production of orange (Citrus sinensis) generates many residues, and the few that are used are usually by-products of the fruit juice processing industry. Among the residues, wood is potentially advantageous for use in bioenergy, but with few records in the [...] Read more.
The production of orange (Citrus sinensis) generates many residues, and the few that are used are usually by-products of the fruit juice processing industry. Among the residues, wood is potentially advantageous for use in bioenergy, but with few records in the literature. In this sense, this study sought to evaluate the feasibility of using orange wood for energy purposes by performing chemical characterization, immediate analysis, FTIR, calorific value, thermogravimetry and bulk and energetic densities for three compositions: 100% trunk (100T), 90% trunk + 10% bark (90T10B) and 100% bark (100B). 100T showed a higher fixed carbon content (16.76%) and equality with 90T10B in lignin, holocellulose, useful calorific value and volatile materials. 100B presented higher extractives and ash contents of 19.67% and 10.35%, respectively. The FTIR spectra and thermogravimetric curves were similar in 100T and 90T10B. 100B showed more stages of degradation and a higher incidence of peaks in the range 780–612 cm−1. The bulk density was equal in 100T and 90T10B, but the energy density was higher in 100T (6.16 Gj.m−3). 100T and 90T10B are good options for bioenergy and the chemical composition and thermal degradation of 100B point to new investigations in this composition. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

15 pages, 4512 KiB  
Article
Production of Polymeric Films from Orange and Ginger Waste for Packaging Application and Investigation of Mechanical and Thermal Characteristics of Biofilms
by Raouf Moaveni, Mohammad Ghane, Parham Soltani, Akram Zamani and Sunil Kumar Ramamoorthy
Appl. Sci. 2024, 14(11), 4670; https://doi.org/10.3390/app14114670 - 29 May 2024
Cited by 3 | Viewed by 2005
Abstract
Citrus waste has been used as a source of bioplastics for research in different ways. Because the juice industry produces significant amounts of residue each year, it would be advantageous to use the byproducts in the creation of new materials. Researchers have long [...] Read more.
Citrus waste has been used as a source of bioplastics for research in different ways. Because the juice industry produces significant amounts of residue each year, it would be advantageous to use the byproducts in the creation of new materials. Researchers have long explored eco-friendly methods to convert citrus and other organic waste into polymers for producing biodegradable films. The goal of this study is to create biofilms from orange waste (OW) and ginger waste (GW) using an ultrafine grinder and study the films’ properties. Since pectin has the ability to gel, and because cellulosic fibers are strong, citrus waste has been studied for its potential to produce biofilms. After being washed, dried, and milled, orange and ginger waste was shaped into films using a casting process. Tensile testing was used to determine the mechanical properties of biofilms, while dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to determine their thermal properties. As the number of grinding cycles increased, the suspension’s viscosity increased from 29 mPa.s to 57 mPa.s for OW and from 217 mPa.s to 376 mPa.s for GW, while the particle size in the suspension significantly decreased. For OW and GW films, the highest tensile strength was 17 MPa and 15 MPa, respectively. The maximum strain obtained among all films was 4.8%. All the tested films were stable up to 150 °C, and maximum degradation occured after 300 °C. Full article
(This article belongs to the Special Issue Advances in Biopolymer Composites and Their Applications)
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Effects of Orange Waste Extract Produced by Hydrodynamic Cavitation on the Germination of Chenopodium album L. and Lactuca sativa L.
by Francesca Ugolini, Alfonso Crisci, Silvia Baronti, Gabriele Cencetti, Aldo Dal Prà, Lorenzo Albanese, Marco Michelozzi, Federica Zabini and Francesco Meneguzzo
Sustainability 2024, 16(7), 3039; https://doi.org/10.3390/su16073039 - 5 Apr 2024
Cited by 2 | Viewed by 1597
Abstract
A byproduct from orange juice processing known as pastazzo represents a significant organic waste stream. Rich in essential oils and known for its inhibitory effect on plant germination, pastazzo could serve as a valuable input for agricultural purposes. This study assesses the effects [...] Read more.
A byproduct from orange juice processing known as pastazzo represents a significant organic waste stream. Rich in essential oils and known for its inhibitory effect on plant germination, pastazzo could serve as a valuable input for agricultural purposes. This study assesses the effects of a 40% w/v orange pastazzo water extract (OPWE) produced by hydrodynamic cavitation on the germination of two species, one of economic interest (Lactuca sativa L.) and one common weed (Chenopodium album L.). Three dilutions of OPWE in water (25%; 50%; 75%) were compared to a control treatment in four experiments, using (i) seeds in Petri dishes; (ii) seeds in commercial substrate; (iii) C. album seeds and transplanted L. sativa in commercial substrate; and (iv) other weeds in an open-field plantation of L. sativa. Highly rich in limonene, OPWE applied at higher concentrations in Petri dishes caused the effective inhibition of germination in C. album and a germination delay in L. sativa. Similar results were observed in the germination of the two species in commercial substrate, with none of the dilutions affecting L. sativa biomass. In the field experiment, despite a relatively low number of weeds in the control treatment, higher OPWE concentrations reduced the number of grasses and forbs, largely confirming the inhibitory effects. We conclude that OPWE produced with hydrodynamic cavitation, an efficient and affordable method of extraction, represents an effective crop treatment due to the species-specific effects of its constituent limonene on plant germination. Further tests are essential to understand the extent to which OPWE interacts with other species and types of substrate. Full article
(This article belongs to the Special Issue Strengthening the Circular Economy: The Reuse of Agri-Food Waste)
Show Figures

Figure 1

14 pages, 1226 KiB  
Article
Valorization of Spent Grains from Beer Production through β-Glucan Extraction
by Natcha Jantason, Manop Suphantharika, Angkana Wipatanawin, Suwan Chansong and Panwajee Payongsri
Foods 2024, 13(3), 440; https://doi.org/10.3390/foods13030440 - 29 Jan 2024
Cited by 4 | Viewed by 2778
Abstract
Brewers’ spent grains (BSG) are the major byproduct of the brewing industry. Recently, it has been found that β-glucan, which can be used as a food supplement, can be extracted from BSG and offers the greatest added value. This study aimed to investigate [...] Read more.
Brewers’ spent grains (BSG) are the major byproduct of the brewing industry. Recently, it has been found that β-glucan, which can be used as a food supplement, can be extracted from BSG and offers the greatest added value. This study aimed to investigate the effects of temperature (45–90 °C) and time (30–120 min) on β-glucan extraction efficiency when using hot water extraction. β-glucan was precipitated upon 80% ethanol addition. The chemical compositions were examined. The highest β-glucan concentration and yield were obtained at a temperature and time of 60 °C and 90 min, respectively. The functional properties of the extracted β-glucan were analyzed and compared with other commercial stabilizers such as sodium carboxymethyl cellulose (CMC), xanthan gum, gum arabic, and oat β-glucan. All stabilizers exhibited non-Newtonian flow behavior, except for gum arabic, which exhibited Newtonian flow behavior. The water holding capacity of BSG β-glucan was 6.82 g/g and the creaming index of the emulsions stabilized with BSG β-glucan was 89.05%. BSG β-glucan improved the color and stability of orange juice by reducing the precipitation of orange pulp. This study illustrated that BSG β-glucan can be used as a stabilizer and viscosity enhancer in foods, depending on the concentration, which can be applied to a variety of foods. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

18 pages, 4476 KiB  
Article
Competitive Effect of Zinc and Cadmium on the Biosorption of Chromium by Orange Waste
by Ana Belén Pérez-Marín, Juan Francisco Ortuño, María Isabel Aguilar, Mercedes Lloréns and Víctor Francisco Meseguer
Processes 2024, 12(1), 148; https://doi.org/10.3390/pr12010148 - 8 Jan 2024
Cited by 5 | Viewed by 2271
Abstract
Batch experiments were conducted to test orange waste (OW), an agricultural solid waste byproduct from the orange juice manufacturing industry, as adsorbent for binary solutions of Cd2+-Cr3+ and Zn2+-Cr3+. Fourier transform infrared spectroscopy (FTIR) and the [...] Read more.
Batch experiments were conducted to test orange waste (OW), an agricultural solid waste byproduct from the orange juice manufacturing industry, as adsorbent for binary solutions of Cd2+-Cr3+ and Zn2+-Cr3+. Fourier transform infrared spectroscopy (FTIR) and the point of zero charge (pHpzc) were used to identify the functional groups on the OW surface involved in biosorption. The biosorption equilibrium data for both binary-metal solutions were obtained and fitted to various isotherm models. The extended Sips and the non-modified Redlich-Peterson isotherm models gave the best fit for the experimental data. According to the extended Sips model, the maximum biosorption capacity of OW was 0.573 mmol·g−1 for Cd2+, 0.453 mmol·g−1 for Zn2+, and 1.96 mmol·g−1 for Cr3+. The sorption capacity dropped to 0.061 mmol·g−1 for Cd2+ and to 0.101 mmol·g1 for Zn2+ in their binary systems with Cr3+ for the higher initial metal concentrations in the solution. However, the maximum sorption capacity of chromium was only slightly affected by the presence of Cd2+ or Zn2+. For both binary systems, the presence of a second metal ion in the solution always conduces to a reduction in the sorption of the other metal in the solution. The presence of Cr3+ decreased the sorption of Cd2+ and Zn2+ more than vice versa. Conclusively, effective removal of Cr3+ ions from an aqueous solution can still be achieved in the presence of Cd2+ or Zn2+. Full article
Show Figures

Graphical abstract

21 pages, 4374 KiB  
Article
Stable Supercapacitors Based on Activated Carbon Prepared from Italian Orange Juice
by Andrea Scarcello, Francesca Alessandro, Yolenny Cruz Salazar, Melvin Arias Polanco, Cristian Vacacela Gomez, Talia Tene, Marco Guevara, Stefano Bellucci, Salvatore Straface and Lorenzo S. Caputi
Nanomaterials 2024, 14(1), 71; https://doi.org/10.3390/nano14010071 - 26 Dec 2023
Cited by 4 | Viewed by 2035
Abstract
The development of efficient energy storage systems is critical in the transition towards sustainable energy solutions. In this context, the present work investigates the viability of using orange juice, as a promising and sustainable precursor, for the synthesis of activated carbon electrodes for [...] Read more.
The development of efficient energy storage systems is critical in the transition towards sustainable energy solutions. In this context, the present work investigates the viability of using orange juice, as a promising and sustainable precursor, for the synthesis of activated carbon electrodes for supercapacitor technologies. Through the carbonization-activation process and controlling the preparation parameters (KOH ratio and activation time), we have tailored the specific surface area (SSA) and pore size distribution (PSD) of the resulting carbon materials—crucial parameters that support supercapacitive performance. Several spectroscopic, morphological, and electrochemical techniques are used to characterize the obtained carbon materials. In particular, our optimization efforts revealed that a 5:1 KOH ratio with an activation time up to 120 min produced the highest SSA of about 2203 m2/g. Employing these optimal conditions, we fabricated symmetric coin cell supercapacitors using Na2SO4 as the electrolyte, which exhibited interesting specific capacitance (~56 F/g). Durability testing over 5000 cycles sustained the durability of the as-made activated carbon electrodes, suggesting an excellent retention of specific capacitance. This study not only advances the field of energy storage by introducing a renewable material for electrode fabrication but also contributes to the broader goal of waste reduction through the repurposing of food byproducts. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

19 pages, 1844 KiB  
Article
Sweet Orange Juice Processing By-Product Extracts: A Caries Management Alternative to Chlorhexidine
by Suvro Saha, Christine Boesch, Joanne Maycock, Simon Wood and Thuy Do
Biomolecules 2023, 13(11), 1607; https://doi.org/10.3390/biom13111607 - 2 Nov 2023
Viewed by 1946
Abstract
Dental caries is one of the most prevalent chronic diseases globally in both children and adults. This study investigated the potential of industrial sweet orange waste extracts (ISOWE) as a substitute for chlorhexidine (CHX) in managing dental caries. First, the cytotoxicity of ISOWE [...] Read more.
Dental caries is one of the most prevalent chronic diseases globally in both children and adults. This study investigated the potential of industrial sweet orange waste extracts (ISOWE) as a substitute for chlorhexidine (CHX) in managing dental caries. First, the cytotoxicity of ISOWE (40, 80, 120 mg/mL) and CHX (0.1 and 0.2%) on buccal epithelial cells was determined. ISOWE exhibited no overall toxicity, whereas CHX strongly affected cell viability. The combination of ISOWE and CHX significantly enhanced cell proliferation compared to CHX alone. Next, the antimicrobial efficacy of ISOWE, CHX, and their combination was assessed against a 7-day complex biofilm model inoculated with oral samples from human volunteers. CHX exhibited indiscriminate antimicrobial action, affecting both pathogenic and health-associated oral microorganisms. ISOWE demonstrated lower antimicrobial efficacy than CHX but showed enhanced efficacy against pathogenic species while preserving the oral microbiome’s balance. When applied to a cariogenic biofilm, the combined treatment of ISOWE with 0.1% CHX showed similar efficacy to 0.2% CHX treatment alone. Overall, the findings suggest that ISOWE is a promising natural anti-cariogenic agent with lower toxicity and enhanced selectivity for pathogenic species compared to CHX. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Agents)
Show Figures

Figure 1

15 pages, 1872 KiB  
Article
Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Nannochloropsis oculata
by Giuseppe Tardiolo, Marco Sebastiano Nicolò, Carmelo Drago, Claudia Genovese, Giovanni Fava, Concetta Gugliandolo and Nicola D’Antona
Molecules 2023, 28(19), 6846; https://doi.org/10.3390/molecules28196846 - 28 Sep 2023
Cited by 7 | Viewed by 2700
Abstract
The bioconversion of agri-food waste into high-value products is gaining growing interest worldwide. Orange peel waste (OPW) is the main by-product of orange juice production and contains high levels of moisture and carbohydrates. In this study, the orange waste extract (OWE) obtained through [...] Read more.
The bioconversion of agri-food waste into high-value products is gaining growing interest worldwide. Orange peel waste (OPW) is the main by-product of orange juice production and contains high levels of moisture and carbohydrates. In this study, the orange waste extract (OWE) obtained through acid hydrolysis of OPW was used as a substrate in the cultivation of the marine microalgae Nannochloropsis oculata. Photoheterotrophic (PH) and Photoautotrophic (PA) cultivations were performed in OWE medium and f/2 medium (obtained by supplementing OWE with macro- and micronutrients of f/2 medium), respectively, for 14 days. The biomass yields in PA and PH cultures were 390 mg L−1 and 450 mg L−1, while oil yields were 15% and 28%, respectively. The fatty acid (FA) profiles of PA cultures were mostly represented by saturated (43%) and monounsaturated (46%) FAs, whereas polyunsaturated FAs accounted for about 10% of the FAs. In PH cultures, FA profiles changed remarkably, with a strong increase in monounsaturated FAs (77.49%) and reduced levels of saturated (19.79%) and polyunsaturated (2.72%) FAs. Lipids obtained from PH cultures were simultaneously extracted and converted into glycerol-free biodiesel using an innovative microwave-assisted one-pot tandem protocol. FA methyl esters were then analyzed, and the absence of glycerol was confirmed. The FA profile was highly suitable for biodiesel production and the microwave-assisted one-pot tandem protocol was more effective than traditional extraction techniques. In conclusion, N. oculata used OWE photoheterotrophically, resulting in increased biomass and oil yield. Additionally, a more efficient procedure for simultaneous oil extraction and conversion into glycerol-free biodiesel is proposed. Full article
Show Figures

Figure 1

17 pages, 2956 KiB  
Article
Effectiveness of Natural-Based Coatings on Sweet Oranges Post-Harvest Life and Antioxidant Capacity of Obtained By-Products
by Deived Uilian de Carvalho, Carmen Silvia Vieira Janeiro Neves, Maria Aparecida da Cruz, Ronan Carlos Colombo, Fernando Alferez and Rui Pereira Leite Junior
Horticulturae 2023, 9(6), 635; https://doi.org/10.3390/horticulturae9060635 - 29 May 2023
Cited by 4 | Viewed by 3007
Abstract
The use of natural-based coatings is an eco-friendly approach that can be applied in citrus postharvest to preserve fruit quality and to prolong shelf life. Additionally, the study of antioxidant capacity of obtained by-products from fruits is of great value to mitigate better [...] Read more.
The use of natural-based coatings is an eco-friendly approach that can be applied in citrus postharvest to preserve fruit quality and to prolong shelf life. Additionally, the study of antioxidant capacity of obtained by-products from fruits is of great value to mitigate better practices to manage the residues left from the juice processing industry. Under this context, the aim of this study was to investigate the use of carnauba wax/wood resin-based coating and cold storage on postharvest life of Valencia Late and Natal IAC sweet oranges, as well as the physicochemical quality and antioxidant capacity of its by-products. Mature fruits were harvested in 2019 and 2020 seasons. Initially, fruits were assessed for physicochemical quality and antioxidant capacity. Then, fruits were treated with carnauba wax and wood resin mixture and stored for 0, 15, 30, 45 and 60 days in a cold chamber. Fruit color index, weight loss, physicochemical quality and sensory profile of the fruits were monitored at harvest and during each cold storage period. Evaluations were performed in triplicates of 10-fruit. Valencia Late and Natal IAC fruits had proper quality in both years, attending the requirements of the fresh market and processing industry. Flavedo and albedo section displayed the highest concentration of bioactive compounds such as phenolics, flavonoids and antioxidant activity. The coating treatment associated with cold storage was efficient to preserve fruit color and to retard weight loss for both varieties up to 60 days. The sensory profile and quality of the carnauba wax/wood resin treated fruits were preserved all over the cold storage period, while uncoated fruits ranked low for most of the sensory attributes. Together, Valencia Late and Natal IAC fruits contain a high level of healthy beneficial compounds, which may be exploited as a natural source of low-cost antioxidants. Further, carnauba wax/wood resin coating associated with cold storage effectively reduce weight loss and color progression in sweet orange fruits, in addition to preserving overall physicochemical and sensory quality. Full article
Show Figures

Figure 1

12 pages, 828 KiB  
Article
Composition of Powdered Freeze-Dried Orange Juice Co-Product as Related to Glucose Absorption In Vitro
by María del Mar Camacho, Juan José Martínez-Lahuerta, Isabel Ustero, Eva García-Martínez and Nuria Martínez-Navarrete
Foods 2023, 12(6), 1127; https://doi.org/10.3390/foods12061127 - 7 Mar 2023
Cited by 8 | Viewed by 3171
Abstract
The reuse of food by-products is crucial for the well-being of the planet. Considering the high content of nutrients and other bioactive compounds in many of them, investigating their suitability for use as human food ingredients is an interesting challenge. In this study, [...] Read more.
The reuse of food by-products is crucial for the well-being of the planet. Considering the high content of nutrients and other bioactive compounds in many of them, investigating their suitability for use as human food ingredients is an interesting challenge. In this study, in addition to the proximate composition, phenol content and antioxidant activity (AOA = 3.2 mmol Trolox equivalent (TE)/100 g, db) of orange juice powder by-product (CoP), different in vitro properties related to carbohydrate metabolism have been characterised. Specifically, the glycaemic index (GI), the glycaemic load (GL), the glucose dialysis retardation index (GDRI = 13.6%), the glucose adsorption capacity (GAC = 22.5 mM) and the inhibition capacity of α-amylase (α-A = 46.9%) and α-glucosidase (α-G = 93.3%) of powdered orange juice waste have been determined and related to fibre and phenolics composition. Taking advantage of the high fibre content of the by-product (36.67%), its GL was calculated for a CoP dose that allows labelling the food to which it is added as a source of fibre. The low GI value (24.4%) and the low GL (0.918 g available carbohydrates per serving) allowed us to conclude that the product studied could be an interesting opportunity for the food industry to offer it as a healthy food ingredient to be included in the diet, especially for those suffering from type 2 diabetes mellitus. Of the total phenolic compounds (TP = 509 mg equivalent of gallic acid (GAE)/100 g, db), 68% were found in free fraction (FP), and their contribution to the total AOA was 40.6%, while this was 54.9% for the 32% of phenols bound to plant tissues (BP). Full article
(This article belongs to the Special Issue Food Powders: Applications and Reconstitution-Properties)
Show Figures

Figure 1

Back to TopTop