Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = optimal retransmission threshold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 904 KiB  
Article
Toward Enhanced Reliability: An Efficient Method for Link-Local Retransmission in a Programmable Data Plane
by Chenxiao Kong, Lei Song and Yifei Li
Electronics 2025, 14(1), 131; https://doi.org/10.3390/electronics14010131 - 31 Dec 2024
Viewed by 784
Abstract
In wide-area networks (WANs) with high-speed, lossless transmission requirements, avoiding packet loss is crucial for ensuring link reliability, and maintaining link utilization over long distances is equally important. In this paper, we explore strategies for leveraging malfunctioning network links through link-local retransmission, optimizing [...] Read more.
In wide-area networks (WANs) with high-speed, lossless transmission requirements, avoiding packet loss is crucial for ensuring link reliability, and maintaining link utilization over long distances is equally important. In this paper, we explore strategies for leveraging malfunctioning network links through link-local retransmission, optimizing our approach specifically for wide-area networks. To enhance performance, we select the duplicate threshold (dupthresh) based on the mean length deviation, which helps avoid triggering a certain portion of spurious fast retransmissions and reduces link bandwidth usage in an out-of-order environment. We evaluated our implementation on a programmable switch platform and found that this system maintained a low packet loss rate within a 10 Gbps line rate environment. It also reduces false retransmissions by 25% in the case of out-of-order links. Full article
Show Figures

Figure 1

19 pages, 555 KiB  
Article
Efficient Polar Coded Selective Decode-and-Forward with Cooperative Decision Threshold in Cooperative Multi-Relay Transmissions
by Bin Jiang, Yue Tang, Jianrong Bao, Chao Liu and Yanhai Shang
Sensors 2023, 23(1), 165; https://doi.org/10.3390/s23010165 - 24 Dec 2022
Viewed by 2045
Abstract
In some satellite Internet of Things (IoT) devices with terrain shielding, the qualities of the direct source-destination (S-D) channel are poor, requiring cooperative communications with multi-relays to be employed. In order to solve error propagation of current decode-and-forward (DF) on such occasions, an [...] Read more.
In some satellite Internet of Things (IoT) devices with terrain shielding, the qualities of the direct source-destination (S-D) channel are poor, requiring cooperative communications with multi-relays to be employed. In order to solve error propagation of current decode-and-forward (DF) on such occasions, an efficient polar coded selective decode-and-forward (SDF) cooperation method is proposed with a new decision threshold derived from channel state information (CSI). First, the proposed threshold is derived from the CSI by exploiting the channel gain ratio of optimal relay-destination link (R-D) with source-relay (S-R) link. The above R-D link possesses good channel quality among all links in the system. Second, when the channel gain ratio of certain relay links is larger than the aforementioned decision threshold, the source and all these relays cooperatively send messages together to the destination to accomplish perfect SDF transmission. Otherwise, all relays are frozen and the messages are directly transmitted through the S-D link. If it fails anyway, a retransmission is subsequently tried in the next transmission cycle. In addition, a polar code for fading channels is designed and adaptively adjusted to a proper code rate according to channel quality to attain good bit error rate (BER) performance. Simulation results show that the proposed scheme achieves about 0.9 and 0.5 dB gain at BER of 104, respectively, in multi-relay cooperative communications with multi-path fading channels compared with those of non-cooperation and existing polar coded cooperation channels. Therefore, the proposed polar coded SDF (PCSDF) scheme can improve both the BER and the outage probability (OP) performance in multi-relay cooperative systems, making it quite suitable for heterogeneous network applications in cooperative satellite IoT systems involving sixth-generation (6G) communications. Full article
(This article belongs to the Special Issue Satellite Based IoT Networks for Emerging Applications)
Show Figures

Figure 1

13 pages, 1988 KiB  
Article
Power Allocation for Reliable and Energy-Efficient Optical LEO-to-Ground Downlinks with Hybrid ARQ Schemes
by Theodore T. Kapsis and Athanasios D. Panagopoulos
Photonics 2022, 9(2), 92; https://doi.org/10.3390/photonics9020092 - 4 Feb 2022
Cited by 6 | Viewed by 2419
Abstract
Satellites in low earth orbit (LEO) are currently being deployed for numerous communication, positioning, space and Earth-imaging missions. To provide higher data rates in direct-to-user links and earth observation downlinks, the free-space optics technology can be employed for LEO-to-ground downlinks. Moreover, the hybrid [...] Read more.
Satellites in low earth orbit (LEO) are currently being deployed for numerous communication, positioning, space and Earth-imaging missions. To provide higher data rates in direct-to-user links and earth observation downlinks, the free-space optics technology can be employed for LEO-to-ground downlinks. Moreover, the hybrid automatic repeat request (HARQ) can be adopted since the propagation latency is low for LEO satellites. In this work, a power allocation methodology is proposed for optical LEO-to-ground downlinks under weak turbulence employing HARQ retransmission schemes. Specifically, the average power consumption is minimized given a maximum transmitted power constraint and a target outage probability threshold to ensure energy efficiency and reliability, respectively. The optimization problem is formulated as a constrained nonlinear programming problem and solved for Type I HARQ, chase combining (CC) and incremental redundancy (IR) schemes. The solutions are derived numerically via iterative algorithms, namely interior-point (IP) and sequential quadratic programming (SQP), and validated through an exhaustive (brute-force) search. The numerical simulations provide insight into the performance of the retransmission schemes regarding average power. More specifically, Type I HARQ has the worst output, CC has a moderate one, and IR exhibits the best performance. Finally, the IP algorithm is a slower but more accurate solver, and SQP is faster but slightly less accurate. Full article
(This article belongs to the Special Issue Optical Wireless Communications Systems)
Show Figures

Figure 1

38 pages, 3389 KiB  
Article
Intelligent Transport System Using Time Delay-Based Multipath Routing Protocol for Vehicular Ad Hoc Networks
by Yashar Ghaemi, Hosam El-Ocla, Nitin Ramesh Yadav, Manisha Reddy Madana, Dheeraj Kurugod Raju, Vignesh Dhanabal and Vishal Sheshadri
Sensors 2021, 21(22), 7706; https://doi.org/10.3390/s21227706 - 19 Nov 2021
Cited by 16 | Viewed by 2924
Abstract
During the last decade, the research on Intelligent Transportation System (ITS) has improved exponentially in real-life scenarios to provide optimized transport network performance. It is a matter of importance that alert messages are delivered promptly to prevent vehicular traffic problems. The fact is [...] Read more.
During the last decade, the research on Intelligent Transportation System (ITS) has improved exponentially in real-life scenarios to provide optimized transport network performance. It is a matter of importance that alert messages are delivered promptly to prevent vehicular traffic problems. The fact is an ITS system per se could be a part of a vehicular ad hoc network (VANET) which is an extension of a wireless network. In all sorts of wireless ad hoc networks, the network topology is subjected to change due to the mobility of network nodes; therefore, an existing explored route between two nodes could be demolished in a minor fraction of time. When it comes to the VANETs, the topology likely changes due to the high velocity of nodes. On the other hand, time is a crucial factor playing an important role in message handling between the network’s nodes. In this paper, we propose Time delay-based Multipath Routing (TMR) protocol that effectively identifies an optimized path for packet delivery to the destination vehicle with a minimal time delay. Our algorithm gives a higher priority to alert messages compared to normal messages. It also selects the routes with the short round-trip time (RTT) within the RTT threshold. As a result, our algorithm would realize two goals. Firstly, it would speed up the data transmission rate and deliver data packets, particularly warning messages, to the destination vehicle promptly and therefore avoid vehicular problems such as car accidents. Secondly, the TMR algorithm reduces the data traffic load, particularly of the normal messages, to alleviate the pressure on the network and therefore avoids network congestion and data collisions. This, in turn, lessens the packets’ retransmissions. To demonstrate the effectiveness of the proposed protocol, the TMR has been compared with the other protocols such as AOMDV, FF-AOMDV, EGSR, QMR, and ISR. Simulation results demonstrate that our proposed protocol proves its excellent performance compared to other protocols. Full article
(This article belongs to the Special Issue Artificial Intelligence Based Autonomous Vehicles)
Show Figures

Figure 1

19 pages, 1499 KiB  
Article
Analytical Model and Feedback Predictor Optimization for Combined Early-HARQ and HARQ
by Tatiana Rykova, Barış Göktepe, Thomas Schierl, Konstantin Samouylov and Cornelius Hellge
Mathematics 2021, 9(17), 2104; https://doi.org/10.3390/math9172104 - 31 Aug 2021
Viewed by 1973
Abstract
In order to fulfill the stringent Ultra-Reliable Low Latency Communication (URLLC) requirements towards Fifth Generation (5G) mobile networks, early-Hybrid Automatic Repeat reQuest (e-HARQ) schemes have been introduced, aimed at providing faster feedback and thus earlier retransmission. The performance of e-HARQ prediction strongly depends [...] Read more.
In order to fulfill the stringent Ultra-Reliable Low Latency Communication (URLLC) requirements towards Fifth Generation (5G) mobile networks, early-Hybrid Automatic Repeat reQuest (e-HARQ) schemes have been introduced, aimed at providing faster feedback and thus earlier retransmission. The performance of e-HARQ prediction strongly depends on the classification mechanism, data length, threshold value. In this paper, we propose an analytical model that incorporates e-HARQ and Hybrid Automatic Repeat reQuest (HARQ) functionalities in terms of two phases in discrete time. The model implies a fast and accurate way to get the main performance measures, and apply optimization analysis to find the optimal values used in predictor’s classification. We employ realistic data for transition probabilities obtained by means of 5G link-level simulations and conduct extensive experimental analysis. The results show that at false positive probability of 101, the e-HARQ prediction with the found optimal parameters can achieve around 20% of gain over HARQ at False Negative (FN) of 101 and around 7.5% at FN of 103 in terms of a mean spending time before successful delivery. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

16 pages, 1215 KiB  
Article
A Space-Time Correlation Model for MRC Receivers in Rayleigh Fading Channels
by Ramiro Sámano-Robles
Technologies 2020, 8(3), 41; https://doi.org/10.3390/technologies8030041 - 22 Jul 2020
Cited by 1 | Viewed by 4354
Abstract
This paper presents a statistical model for maximum ratio combining (MRC) receivers in Rayleigh fading channels enabled with a temporal combining process. This means that the receiver effectively combines spatial and temporal branch components. Therefore, the signals that will be processed by the [...] Read more.
This paper presents a statistical model for maximum ratio combining (MRC) receivers in Rayleigh fading channels enabled with a temporal combining process. This means that the receiver effectively combines spatial and temporal branch components. Therefore, the signals that will be processed by the MRC receiver are collected not only across different antennas (space), but also at different instants of time. This suggests the use of a retransmission, repetition or space-time coding algorithm that forces the receiver to store signals in memory at different instants of time. Eventually, these stored signals are combined after a predefined or dynamically optimized number of time-slots or retransmissions. The model includes temporal correlation features in addition to the space correlation between the signals of the different components or branches of the MRC receiver. The derivation uses a frequency domain approach (using the characteristic function of the random variables) to obtain closed-form expressions of the statistics of the post-processing signal-to-noise ratio (SNR) under the assumption of equivalent correlation in time and equivalent correlation in space. The described methodology paves the way for the reformulation of other statistical functions as a frequency-domain polynomial root analysis problem. This is opposed to the infinite series approach that is used in the conventional methodology using directly the probability density function (PDF). The results suggest that temporal diversity is a good complement to receivers with limited spatial diversity capabilities. It is also shown that this additional operation could be maximized when the temporal diversity is adaptive (i.e., activated by thresholds of SNR), thus leading to a better resource utilization. Full article
(This article belongs to the Special Issue Reviews and Advances in Internet of Things Technologies)
Show Figures

Figure 1

21 pages, 905 KiB  
Article
DIEER: Delay-Intolerant Energy-Efficient Routing with Sink Mobility in Underwater Wireless Sensor Networks
by Kamran Latif, Nadeem Javaid, Imdad Ullah, Zeeshan Kaleem, Zafar Abbas Malik and Long D. Nguyen
Sensors 2020, 20(12), 3467; https://doi.org/10.3390/s20123467 - 19 Jun 2020
Cited by 38 | Viewed by 3853
Abstract
Underwater Wireless Sensor Networks (UWSNs) are an enabling technology for many applications in commercial, military, and scientific domains. In some emergency response applications of UWSN, data dissemination is more important, therefore these applications are handled differently as compared to energy-focused approaches, which is [...] Read more.
Underwater Wireless Sensor Networks (UWSNs) are an enabling technology for many applications in commercial, military, and scientific domains. In some emergency response applications of UWSN, data dissemination is more important, therefore these applications are handled differently as compared to energy-focused approaches, which is only possible when propagation delay is minimized and packet delivery at surface sinks is assured. Packet delivery underwater is a serious concern because of harsh underwater environments and the dense deployment of nodes, which causes collisions and packet loss. Resultantly, re-transmission causes energy loss and increases end-to-end delay ( D E 2 E ). In this work, we devise a framework for the joint optimization of sink mobility, hold and forward mechanisms, adoptive depth threshold ( d t h ) and data aggregation with pattern matching for reducing nodal propagation delay, maximizing throughput, improving network lifetime, and minimizing energy consumption. To evaluate our technique, we simulate the three-dimensional (3-D) underwater network environment with mobile sink and dense deployments of sensor nodes with varying communication radii. We carry out scalability analysis of the proposed framework in terms of network lifetime, throughput, and packet drop. We also compare our framework to existing techniques, i.e., Mobicast and iAMCTD protocols. We note that adapting varying d t h based on node density in a range of network deployment scenarios results in a reduced number of re-transmissions, good energy conservation, and enhanced throughput. Furthermore, results from extensive simulations show that our proposed framework achieves better performance over existing approaches for real-time delay-intolerant applications. Full article
Show Figures

Figure 1

20 pages, 646 KiB  
Article
A Throughput and Energy Efficiency Scheme for Unlicensed Massive Machine Type Communications
by Iran Ramezanipour, Hirley Alves, Pedro H. J. Nardelli and Ari Pouttu
Sensors 2020, 20(8), 2357; https://doi.org/10.3390/s20082357 - 21 Apr 2020
Cited by 2 | Viewed by 2664
Abstract
In this paper, the throughput and energy efficiency of an unlicensed machine type communications network is studied. If an outage event happens in the network, there is a possibility for packet retransmission in order to obtain a lower error probability. The concept of [...] Read more.
In this paper, the throughput and energy efficiency of an unlicensed machine type communications network is studied. If an outage event happens in the network, there is a possibility for packet retransmission in order to obtain a lower error probability. The concept of spectrum sharing is used here for modeling the network, which allows the two types of licensed and unlicensed users to share the same uplink channel allocated to the licensed users. However, it is done in a way that no harm is done to the licensed nodes’ transmission for sharing the same channel with the unlicensed users, while licensed nodes’ transmission causes interference on the unlicensed network. Poisson point process is used here to model the location of the nodes and the effect of interference on the network. We study how different factors such as the number of retransmissions, SIR threshold and outage can affect the throughput and energy efficiency of the network. Throughput and energy efficiency are also both studied in constrained optimization problems where the constraints are the SIR threshold and the number of retransmission attempts. We also show why it is important to use limited transmissions and what are the benefits. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

21 pages, 904 KiB  
Article
Optimizing Retransmission Threshold in Wireless Sensor Networks
by Ran Bi, Yingshu Li, Guozhen Tan and Liang Sun
Sensors 2016, 16(5), 665; https://doi.org/10.3390/s16050665 - 10 May 2016
Cited by 5 | Viewed by 4797
Abstract
The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission [...] Read more.
The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is O n Δ · max 1 i n { u i } , where u i is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based ( 1 + p m i n ) -approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O ( 1 ) -approximation algorithm with time complexity O ( 1 ) is proposed. Experimental results show that the proposed algorithms have better performance. Full article
(This article belongs to the Special Issue Identification, Information & Knowledge in the Internet of Things)
Show Figures

Figure 1

19 pages, 593 KiB  
Article
Performance Comparison of a Novel Adaptive Protocol with the Fixed Power Transmission in Wireless Sensor Networks
by Debraj Basu, Gourab Sen Gupta, Giovanni Moretti and Xiang Gui
J. Sens. Actuator Netw. 2015, 4(4), 274-292; https://doi.org/10.3390/jsan4040274 - 8 Oct 2015
Cited by 3 | Viewed by 7164
Abstract
In this paper, we compare the performance of a novel adaptive protocol with the fixed power transmission protocol using experimental data when the distance between the transmitter and the receiver is fixed. In fixed power transmission protocol, corresponding to the distance between the [...] Read more.
In this paper, we compare the performance of a novel adaptive protocol with the fixed power transmission protocol using experimental data when the distance between the transmitter and the receiver is fixed. In fixed power transmission protocol, corresponding to the distance between the sensor and the hub, there is a fixed power level that provides the optimal or minimum value in terms of energy consumption while maintaining a threshold Quality of Service (QoS) parameter. This value is bounded by the available output power levels of a given radio transceiver. The proposed novel adaptive power control protocol tracks and supersedes that energy expenditure by using an intelligent algorithm to ramp up or down the output power level as and when required. This protocol does not use channel side information in terms of received signal strength indication (RSSI) or link quality indication (LQI) for channel estimation to decide the transmission power. It also controls the number of allowed retransmissions for error correction. Experimental data have been collected at different distances between the transmitting sensor and the hub. It can be observed that the energy consumption of the fixed power level is at least 25% more than the proposed adaptive protocol for comparable packet success rate. Full article
Show Figures

Figure 1

Back to TopTop