Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = open pollinated varieties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3668 KiB  
Article
Infrasound-Altered Pollination in a Common Western North American Plant: Evidence from Wind Turbines and Railways
by Lusha M. Tronstad, Madison Mazur, Lauren Thelen-Wade, Delina Dority, Alexis Lester, Michelle Weschler and Michael E. Dillon
Environments 2025, 12(8), 266; https://doi.org/10.3390/environments12080266 - 31 Jul 2025
Viewed by 236
Abstract
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and [...] Read more.
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and we studied infrasound (<20 Hz) produced by wind turbines and trains. We estimated the number, mass and viability of seeds produced by flowers of Plains pricklypear (Opuntia polyacantha Haw.) that were left open to pollinators, hand-pollinated or bagged to exclude pollinators. Each pollination treatment was applied to plants at varying distances from wind turbines and railways (≤25 km). Self-pollinated Opuntia polyacantha and plants within the wind facility produced ≥1.6 times more seeds in the bagged treatments compared to more distant sites. Seed mass and the percent of viable seeds decreased with distance from infrasound. Viability of seeds was >70% for most treatments and sites. If wind facilities, railways and other man-made structures produce infrasound that increases self-pollination, crops and native plants near sources may produce heavier seeds with higher viability in the absence of pollinators, but genetic diversity of plants may decline due to decreased cross-pollination. Full article
Show Figures

Figure 1

24 pages, 4685 KiB  
Article
Flowering Synchronization Using Artificial Light Control for Crossbreeding Hemp (Cannabis sativa L.) with Varied Flowering Times
by Gergő Somody and Zoltán Molnár
Plants 2025, 14(4), 594; https://doi.org/10.3390/plants14040594 - 15 Feb 2025
Viewed by 795
Abstract
Hemp (Cannabis sativa L.), one of the earliest domesticated crops, has diverse applications in textiles, construction, nutrition, and medicine. Breeding advancements, including speed breeding, accelerate genetic improvements in crops by optimizing environmental conditions for reduced generation times. This study employed greenhouse and [...] Read more.
Hemp (Cannabis sativa L.), one of the earliest domesticated crops, has diverse applications in textiles, construction, nutrition, and medicine. Breeding advancements, including speed breeding, accelerate genetic improvements in crops by optimizing environmental conditions for reduced generation times. This study employed greenhouse and field experiments to develop a proprietary yellow-stemmed hemp germplasm with a unique stem trait. Initial crossbreeding between the late Eletta Campana (medium green stems) and the early Chamaeleon (yellow stems) demonstrated the recessive monogenic inheritance of the yellow-stem trait and fast and safe stabilization even in the case of parent varieties with different flowering times. Controlled flowering in the case of photoperiod-sensitive genotypes, manual pollination, and successive backcrossing stabilized the yellow-stem trait over six cycles, with 100% trait consistency achieved by the fifth cycle within just 12 months in total. Open-field trials validated greenhouse results, showing strong correlations between visual stem color assessments and visible atmospherically resistant index (VARI) obtained through remote sensing imagery. Cannabinoid analyses indicated significant reductions in tetrahydrocannabinol (THC) content while maintaining optimal cannabidiol (CBD) levels. Accumulated growing degree days (GDDs) optimized flowering and maturity, ensuring consistency in phenological traits. This research highlights the utility of speed breeding and chemical analysis to accelerate trait stabilization and improve industrial hemp’s agronomic potential for fiber and CBD production while adhering to regulatory THC limits. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation—2nd Edition)
Show Figures

Figure 1

21 pages, 2319 KiB  
Article
Drought and High Temperatures Impact the Plant–Pollinator Interactions in Fagopyrum esculentum
by Corentin Defalque, Joy Laeremans, Jonathan Drugmand, Chanceline Fopessi Tcheutchoua, Yu Meng, Meiliang Zhou, Kaixuan Zhang and Muriel Quinet
Plants 2025, 14(1), 131; https://doi.org/10.3390/plants14010131 - 4 Jan 2025
Cited by 1 | Viewed by 1419
Abstract
As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of [...] Read more.
As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (Fagopyrum esculentum), an entomophilous crop of growing interest for sustainable agriculture. The plants were grown under two temperature regimes (21 °C/19 °C and 28 °C/26 °C, day/night) and two watering regimes (well-watered and water-stressed). Our results showed that the reproductive growth was more affected by drought and high temperatures than was the vegetative growth, and that combined stress had more detrimental effects. However, the impact of drought and high temperatures was variety-dependent. Drought and/or high temperatures reduced the number of open flowers per plant, as well as the floral resources (nectar and pollen), resulting in a decrease in pollinator visits, mainly under combined stress. Although the proportion of Hymenoptera visiting the flowers decreased with high temperatures, the proportion of Diptera remained stable. The insect visiting behavior was not strongly affected by drought and high temperatures. In conclusion, the modification of floral display and floral resources induced by abiotic stresses related to climate change alters plant–pollinator interactions in common buckwheat. Full article
(This article belongs to the Special Issue Interaction Between Flowers and Pollinators)
Show Figures

Figure 1

16 pages, 5143 KiB  
Article
Designing the First Rosarium in Serbia to Fulfill Environmental, Societal, and Economical Purposes
by Milana Čurčić, Tijana Narandžić, Biljana Božanić Tanjga, Milica Grubač, Magdalena Pušić Devai, Veljko Šarac and Mirjana Ljubojević
J. Zool. Bot. Gard. 2024, 5(4), 590-605; https://doi.org/10.3390/jzbg5040040 - 8 Oct 2024
Cited by 2 | Viewed by 1924
Abstract
Specialized botanical gardens such as a rose garden, or rosarium, play a significant role due to their multifunctional nature surpassing simple gene bank assembly. Thus, this study conducted a detailed analysis of a rose garden through field and desk research, SWOT analysis, and [...] Read more.
Specialized botanical gardens such as a rose garden, or rosarium, play a significant role due to their multifunctional nature surpassing simple gene bank assembly. Thus, this study conducted a detailed analysis of a rose garden through field and desk research, SWOT analysis, and ecosystem services assessment, aiming to determine the major strengths and opportunities, as well as weaknesses and threats that can promote or constrain the establishment of the first national rosarium in Serbia. After the analysis, the need for complete green area reconstruction arose to achieve both attractiveness and usefulness. Featuring old varieties, wild species, and companies’ own specific rose collections, the proposed garden has the potential to contribute major ecosystem services reflected in environmental, societal, and economic purposes. Owing to the uniqueness of the breeding program and collections created in the past decade, specific thematic parts—open field or greenhouse classroom, ‘roses under the glass bell’, abundant river flow, pollinators’ shelter, taste garden, and scent garden—are envisaged in the future exemplary rosarium that would not be only a classroom but a showroom for interested nurseries, small-scale functional food producers, flower shops, or amateur gardeners that would become aware of new cultivars and expand their marketing and utilization. Full article
Show Figures

Figure 1

13 pages, 439 KiB  
Article
Semi-Arid Environmental Conditions and Agronomic Traits Impact on the Grain Quality of Diverse Maize Genotypes
by Nicolás Francisco Bongianino, María Eugenia Steffolani, Claudio David Morales, Carlos Alberto Biasutti and Alberto Edel León
Plants 2024, 13(17), 2482; https://doi.org/10.3390/plants13172482 - 5 Sep 2024
Viewed by 1115
Abstract
We assessed the impact of environmental conditions and agronomic traits on maize grain quality parameters. The study was conducted using genotypes with distinct genetic constitutions developed specifically for late sowing in semi-arid environments. We evaluated the agronomic, physical, and chemical characteristics of eight [...] Read more.
We assessed the impact of environmental conditions and agronomic traits on maize grain quality parameters. The study was conducted using genotypes with distinct genetic constitutions developed specifically for late sowing in semi-arid environments. We evaluated the agronomic, physical, and chemical characteristics of eight maize open-pollinated varieties, six inbred lines, and three commercial hybrids. The yield of the open-pollinated varieties showed a positive correlation with protein content (r = 0.33), while it exhibited a negative correlation with the carbohydrate percentage (r = −0.36 and −0.42) in conjunction with the inbred lines. The flotation index of the hybrids was influenced primarily by the environmental effect (50.15%), whereas in the inbred lines it was nearly evenly divided between the genotype effect (45.51%) and the environmental effect (43.15%). In the open-pollinated varieties, the genotype effect accounted for 35.09% and the environmental effect for 42.35%. The characteristics of plant structure were associated with grain quality attributes relevant for milling, including hardness and test weight. Inbred lines exhibited significant genotype contributions to grain hardness, protein, and carbohydrate content, distinguishing them from the other two germplasm types. These associations are crucial for specific genotypes and for advancing research and development of cultivars for the food industry. Full article
(This article belongs to the Special Issue Maize Cultivation and Improvement)
Show Figures

Graphical abstract

20 pages, 3524 KiB  
Article
Can Rice Growth Substrate Substitute Rapeseed Growth Substrate in Rapeseed Blanket Seedling Technology? Lesson from Reactive Oxygen Species Production and Scavenging Analysis
by Kaige Yi, Yun Ren, Hui Zhang, Baogang Lin, Pengfei Hao and Shuijin Hua
Antioxidants 2024, 13(8), 1022; https://doi.org/10.3390/antiox13081022 - 22 Aug 2024
Viewed by 1248
Abstract
Rapeseed (Brassica napus L.) seedlings suffering from inappropriate growth substrate stress will present poor seedling quality. However, the regulatory mechanism for the production and scavenging of reactive oxygen species (ROS) caused by this type of stress remains unclear. In the current study, [...] Read more.
Rapeseed (Brassica napus L.) seedlings suffering from inappropriate growth substrate stress will present poor seedling quality. However, the regulatory mechanism for the production and scavenging of reactive oxygen species (ROS) caused by this type of stress remains unclear. In the current study, a split plot experiment design was implemented with two crop growth substrates—a rice growth substrate (RIS) and rapeseed growth substrate (RAS)—as the main plot and two genotypes—a hybrid and an open-pollinated variety (Zheyouza 1510 and Zheyou 51, respectively)—as the sub-plot. The seedling quality was assessed, and the ROS production/scavenging capacity was evaluated. Enzymatic and non-enzymatic systems, including ascorbic acid and glutathione metabolism, and RNA-seq data were analyzed under the two growth substrate treatments. The results revealed that rapeseed seedling quality decreased under RIS, with the plant height, maximum leaf length and width, and aboveground dry matter being reduced by 187.7%, 64.6%, 73.2%, and 63.8% on average, respectively, as compared to RAS. The main type of ROS accumulated in rapeseed plants was hydrogen peroxide, which was 47.8% and 14.1% higher under RIS than under RAS in the two genotypes, respectively. The scavenging of hydrogen peroxide in Zheyouza 1510 was the result of a combination of enzymatic systems, with significantly higher peroxidase (POD) and catalase (CAT) activity as well as glutathione metabolism, with significantly higher reduced glutathione (GSH) content, under RAS, while higher oxidized glutathione (GSSH) was observed under RIS. However, the scavenging of hydrogen peroxide in Zheyou 51 was the result of a combination of elevated oxidized ascorbic acid (DHA) under RIS and higher GSH content under RAS. The identified gene expression levels were in accordance with the observed enzyme expression levels. The results suggest that the cost of substituting RAS with RIS is a reduction in rapeseed seedling quality contributing to excessive ROS production and a reduction in ROS scavenging capacity. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Plants)
Show Figures

Figure 1

14 pages, 282 KiB  
Article
Variation in Grain Yield Losses Due to Fall Armyworm Infestation among Elite Open-Pollinated Maize Varieties under Different Levels of Insecticide Application
by James J. Kenyi, Wende Mengesha, Ayodeji Abe, Abebe Menkir and Silvestro Meseka
Agriculture 2024, 14(7), 984; https://doi.org/10.3390/agriculture14070984 - 24 Jun 2024
Viewed by 2471
Abstract
Maize is an important food and industrial cereal crop that serves as the main source of energy for millions of low-income people in sub-Saharan Africa (SSA), but its production and productivity are constrained by many constraints, among which the fall armyworm (FAW) is [...] Read more.
Maize is an important food and industrial cereal crop that serves as the main source of energy for millions of low-income people in sub-Saharan Africa (SSA), but its production and productivity are constrained by many constraints, among which the fall armyworm (FAW) is the major one. The use of insecticides is the most effective control measure for the FAW. However, excessive use of chemical insecticides has environmental and health implications, and it can be expensive for resource-poor farmers. The objective of this study was to evaluate the extent of variation in yield losses due to the FAW among some elite maize open-pollinated varieties (OPVs) under two levels of insecticide application and control (0 application). In a two-year field study, 10 elite maize OPVs were evaluated under two levels of emamectin benzoate (5% WDG) applications and the control: 75 and 150 mL of spray solution per 20 L of water. The experimental design was a randomized complete block with three replications. The data were collected on grain yield (GY) and FAW leaf damage rating (LDR). The LDR was conducted on a 1–9 scale and used to categorize the maize varieties as resistant (1–4), moderately resistant (4–6), and susceptible (6–9). Significant varietal differences were obtained for GY and LDRs. The GY of the varieties under control (0 mL), 75 and 150 mL insecticide applications ranged from 3.3 t ha−1 (DTSTR-Y SYN-13) to 4.6 t ha−1 (PVA SYN-3), from 4.5 t ha−1 (DTSTR-Y SYN-13) to 6.4 t ha−1 (PVA SYN-13), and from 4.2 t ha−1 (DTSTR-Y SYN-13) to 6 t ha−1 (DTSTR-Y SYN-14), respectively. No significant differences in GY were found between the application of 75 and 150 mL of insecticide application. The relative loss in GY among the varieties under control (0 mL) differed with an increase in the level of insecticide application. The relative GY loss at the 75 mL insecticide application ranged from 18% (PVA SYN-3) to 38% (DTSTR-Y SYN-15) with a mean of 27%, whereas at the 150 mL insecticide application, it varied from 13% (PVA SYN-3) to 42% (DTSTR-Y SYN-15), with a mean of 26%. All the varieties exhibited moderate resistance to FAW, except DTSTR-Y SYN-14, which was susceptible. The varieties PVA SYN-3 and PVA SYN-13 were the most consistent in GY across the three insecticide treatment levels. The mean performance of the varieties for FAW leaf damage ranged from 4.0 (SAMMAZ-15) to 6.2 (DTSTR-Y SYN-14), from 4.5 (SAMMAZ-15) to 6.3 (PVA SYN-6), from 4.5 (SAMMAZ-15) to 6.3 (DTSTR-Y SYN-14), and from 3.5 (SAMMAZ-15) to 5 (DTSTR-Y SYN-14) for LDR 1, LDR 2, LDR 3, and LDR 4, respectively. The use of moderately resistant varieties, combined with timely spraying of emamectin benzoate at 75 mL provided adequate management for the FAW infestation and sustained high maize grain yield. Full article
17 pages, 2375 KiB  
Review
PGRFA Management of Outcrossing Plants Propagated by Seed: From On-Farm to Ex Situ Conservation and Some Italian Maize Case Studies
by Michela Landoni, Anna Bertoncini, Martina Ghidoli, Graziano Rossi, Elena Cassani, Sabrina Locatelli, Carlotta Balconi and Roberto Pilu
Agronomy 2024, 14(5), 1030; https://doi.org/10.3390/agronomy14051030 - 12 May 2024
Cited by 2 | Viewed by 1969
Abstract
In this review, the main issues related to the conservation and valorization of Plant Genetic Resources for Food and Agriculture (PGRFA) will be primarily addressed. The conservation of PGRFA concerning outcrossing plants poses a significant challenge. For this reason, this review will cover [...] Read more.
In this review, the main issues related to the conservation and valorization of Plant Genetic Resources for Food and Agriculture (PGRFA) will be primarily addressed. The conservation of PGRFA concerning outcrossing plants poses a significant challenge. For this reason, this review will cover the key challenges related to all stages, starting from in situ sampling, collection in the germplasm bank, and conservative reproductive methods. Integrated approaches involving the combined use of classical and molecular techniques will be described for the characterization of accessions. Within this framework, some successful Italian case studies focused on maize will be reported as well. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

15 pages, 1094 KiB  
Review
Advances in Genetic Enhancement of Nutritional Quality of Tropical Maize in West and Central Africa
by Melaku Gedil, Wende Mengesha, Oluyinka Ilesanmi and Abebe Menkir
Agriculture 2024, 14(4), 577; https://doi.org/10.3390/agriculture14040577 - 5 Apr 2024
Cited by 3 | Viewed by 3115
Abstract
Micronutrient deficiencies are pervasive in the diets of millions of people in developing countries, calling for effective mitigation measures. The development of biofortified cultivars through breeding holds promise for sustainable and affordable solutions to combat micronutrient deficiencies. Breeding efforts in the past decade [...] Read more.
Micronutrient deficiencies are pervasive in the diets of millions of people in developing countries, calling for effective mitigation measures. The development of biofortified cultivars through breeding holds promise for sustainable and affordable solutions to combat micronutrient deficiencies. Breeding efforts in the past decade have resulted in dozens of biofortified open-pollinated varieties and hybrids adapted to diverse agroecological zones. Advances in genomics and molecular tools enabled rapid identification of maize cultivars enriched with essential micronutrients such as pro vitamin A (PVA), iron (Fe), and zinc (Zn). Leveraging Multi-omics-driven discovery of the genetic factors underlying the vast array of nutritional traits is paramount to mainstreaming breeding for quality traits in the product profile. Molecular breeding schemes, and integrating emerging Omics tools at every stage of the breeding pipeline, are vital to enhancing genetic gain. The recent momentum in elucidating the metabolism of micronutrients should be expanded to novel breeding targets as well as to the simultaneous enhancement of nutritional qualities while curtailing anti-nutritional factors in staple food crops. Harnessing new technologies to establish comprehensive and integrated breeding approaches involving nutrigenomics, genome editing, and agronomic biofortification is crucial in tackling nutritional insecurity. This review highlights the prospect of integrating modern tools in hastening the genetic improvement of nutritionally enriched maize. Full article
Show Figures

Figure 1

13 pages, 1524 KiB  
Article
Assessment of Technological and Sensory Properties, Digestibility, and Bioactive Compounds in Polentas from Different Maize Genotypes
by Nicolás Francisco Bongianino, María Eugenia Steffolani, Marianela Desiree Rodríguez, Mariela Cecilia Bustos, Carlos Alberto Biasutti and Alberto Edel León
Foods 2024, 13(4), 590; https://doi.org/10.3390/foods13040590 - 15 Feb 2024
Viewed by 1362
Abstract
The sensory profile of polenta and the connections between technological attributes and varieties of maize have not been extensively studied. Thus, it is necessary to understand the possible effect of its consumption on consumers’ health in terms of postprandial glucose levels and molecules [...] Read more.
The sensory profile of polenta and the connections between technological attributes and varieties of maize have not been extensively studied. Thus, it is necessary to understand the possible effect of its consumption on consumers’ health in terms of postprandial glucose levels and molecules associated with healthy activities. This work aims to study polenta’s technological and sensory properties from different maize genotypes and evaluate their digestibility and the potential contribution of bioactive compounds on health. A commercial hybrid, two open-pollinated varieties, and three inbred lines were used. Grain physical determinations and physical-chemical semolina traits were determined. Polenta’s technological quality was evaluated after simulated cooking. In vitro digestion was performed for polentas, and a sensory evaluation test was conducted. A significant correlation was found between semolina polyphenols and rapidly digestible starch (r = −0.6). Panellists characterised the genotype C6006 as having a good flavour, sandier mouthfeel, and low consistency. Also, the polenta from the hybrid exhibited sensory attributes more closely resembling commercial polenta in terms of maize odour, flavour, and consistency. The higher content of polyphenols presents in semolina affected the digestion of polenta, showing a lower proportion of rapidly digestible starch and a lower amount of bioaccessible protein fraction. Full article
(This article belongs to the Special Issue Grain Products: Traditional and Innovative Technologies)
Show Figures

Graphical abstract

16 pages, 2635 KiB  
Article
Genetic Diversity within a Collection of Italian Maize Inbred Lines: A Resource for Maize Genomics and Breeding
by Anna Maria Mastrangelo, Hans Hartings, Chiara Lanzanova, Carlotta Balconi, Sabrina Locatelli, Helga Cassol, Paolo Valoti, Giuseppe Petruzzino and Nicola Pecchioni
Plants 2024, 13(3), 336; https://doi.org/10.3390/plants13030336 - 23 Jan 2024
Cited by 3 | Viewed by 2098
Abstract
Genetic diversity is fundamental for studying the complex architecture of the traits of agronomic importance, controlled by major and minor loci. Moreover, well-characterized germplasm collections are essential tools for dissecting and analyzing genetic and phenotypic diversity in crops. A panel of 360 entries, [...] Read more.
Genetic diversity is fundamental for studying the complex architecture of the traits of agronomic importance, controlled by major and minor loci. Moreover, well-characterized germplasm collections are essential tools for dissecting and analyzing genetic and phenotypic diversity in crops. A panel of 360 entries, a subset of a larger collection maintained within the GenBank at CREA Bergamo, which includes the inbreds derived from traditional Italian maize open-pollinated (OP) varieties and advanced breeding ones (Elite Inbreds), was analyzed to identify SNP markers using the tGBS® genotyping-by-sequencing technology. A total of 797,368 SNPs were found during the initial analysis. Imputation and filtering processes were carried out based on the percentage of missing data, redundant markers, and rarest allele frequencies, resulting in a final dataset of 15,872 SNP markers for which a physical map position was identified. Using this dataset, the inbred panel was characterized for linkage disequilibrium (LD), genetic diversity, population structure, and genetic relationships. LD decay at a genome-wide level indicates that the collection is a suitable resource for association mapping. Population structure analyses, which were carried out with different clustering methods, showed stable grouping statistics for four groups, broadly corresponding to ‘Insubria’, ‘Microsperma’, and ‘Scagliolino’ genotypes, with a fourth group composed prevalently of elite accessions derived from Italian and US breeding programs. Based on these results, the CREA Italian maize collection, genetically characterized in this study, can be considered an important tool for the mapping and characterization of useful traits and associated loci/alleles, to be used in maize breeding programs. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

21 pages, 3004 KiB  
Article
Identification of Promising Three-Way Hybrids of Pearl Millet for Drought-Prone Environments of North-Western India
by Kuldeep Kandarkar, Viswanathan Palaniappan, Phool Chand Gupta, Ravikesavan Rajasekaran, Jeyakumar Prabhakaran, Nakkeeran Sevugapperumal and Shashi Kumar Gupta
Agronomy 2023, 13(11), 2813; https://doi.org/10.3390/agronomy13112813 - 14 Nov 2023
Viewed by 2438
Abstract
Stable, drought-tolerant, and high-yielding dual-purpose hybrids are needed for cultivation in the drought-prone areas of India. Working towards this, this study was conducted to assess the associations between grain yield and its component traits and the relationships among genotypes to select the most [...] Read more.
Stable, drought-tolerant, and high-yielding dual-purpose hybrids are needed for cultivation in the drought-prone areas of India. Working towards this, this study was conducted to assess the associations between grain yield and its component traits and the relationships among genotypes to select the most promising hybrids based on multiple traits. In the present investigation, thirty newly developed three-way hybrids (TWHs), along with four popular commercial single-cross hybrids and two open pollinated varieties (OPVs) were evaluated at three sites in the drought-prone ecology of India during the rainy season of 2021–2022. A principal component analysis (PCA) revealed that the first three component axes (PC) were significant, with eigenvalues more than one, and together contributed to 74.10% of the total variance. A hierarchical cluster analysis based on the Euclidean distance between hybrids suggested the existence of three clusters. Cluster III (C-III) had hybrids with maximum grain yield, dry fodder yield, and important component traits such as panicle harvest index and grain harvest index that are required for adaptation to drought-prone environments. A genotype by yield × trait (GYT) biplot and a superiority index (SI) were generated to identify the best hybrids with high grain yield and other component traits. These results were used to identify TWHs, namely TH-114, TH-138, TH-49, TH-67, and TH-79, with more than 30% standard heterosis and stable performance coupled with better drought-adaptive traits. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

19 pages, 1913 KiB  
Article
The Relation between Flower Traits of Bitter Vetch Landraces and Potential Insect Pollinators’ Visitation
by Vikentia Fragkiadaki, Efstathia Lazaridi, María J. Suso, Antonios Tsagkarakis, F. Javier Ortiz-Sánchez and Penelope J. Bebeli
Ecologies 2023, 4(3), 595-613; https://doi.org/10.3390/ecologies4030039 - 4 Sep 2023
Cited by 1 | Viewed by 2584
Abstract
Plant–pollinator interactions research can assist in the development of more ecologically friendly crop breeding methods, leading to enhanced global food security. In the present study, we have aimed to assess fifteen floral traits as insect attractancies of six bitter vetch (Vicia ervilia [...] Read more.
Plant–pollinator interactions research can assist in the development of more ecologically friendly crop breeding methods, leading to enhanced global food security. In the present study, we have aimed to assess fifteen floral traits as insect attractancies of six bitter vetch (Vicia ervilia (L.) Willd.) landraces, a neglected crop. Four traits related to seed yield were also measured. Abundance and foraging behavior of potential insect pollinators on bitter vetch flowers were recorded, and their species were identified. Differences among landraces regarding floral and yield traits were statistically significant in most cases. A total number of four insect species were recorded as positively visiting flowers and constituting potential pollinators of bitter vetch. At a landrace level, there was a positive correlation between potential insect pollinators’ foraging activity and the number of open flowers, especially for the landrace ERV65-Kastania, Korinthia (p ≤ 0.01). Floral tube length, as well as standard petal length, was also positively correlated in some cases with potential insect pollinator species abundance and their visitation frequency. A positive correlation was also recorded between seed yield-related traits, which varied among landraces, and potential insect pollinators’ foraging activity. The results showed that bitter vetch flowers can attract and receive positive visits from insects, despite their mainly self-pollination reproductive system. Bitter vetch flower traits, such as the number of open flowers, floral tube length, and standard petal length, could, therefore, be useful as breeding tools, aiming to develop varieties with insect pollinator-friendly traits that could lead to enhanced seed yield production and help to conserve wild insect species biodiversity in the context of sustainable agriculture. Full article
(This article belongs to the Special Issue Feature Papers of Ecologies 2023)
Show Figures

Figure 1

14 pages, 738 KiB  
Article
Size Does Matter: The Influence of Bulb Size on the Phytochemical and Nutritional Profile of the Sweet Onion Landrace “Premanturska Kapula” (Allium cepa L.)
by Nikola Major, Nina Išić, Tvrtko Karlo Kovačević, Magdalena Anđelini, Dean Ban, Melissa Prelac, Igor Palčić and Smiljana Goreta Ban
Antioxidants 2023, 12(8), 1596; https://doi.org/10.3390/antiox12081596 - 10 Aug 2023
Cited by 4 | Viewed by 2421
Abstract
The Mediterranean area is especially rich in old, both sweet and pungent, varieties of onion. The synthesis of phytochemicals takes place concurrently with the overall development and maturation of vegetables; however, it is unclear whether there is a correlation between onion bulb size [...] Read more.
The Mediterranean area is especially rich in old, both sweet and pungent, varieties of onion. The synthesis of phytochemicals takes place concurrently with the overall development and maturation of vegetables; however, it is unclear whether there is a correlation between onion bulb size and antioxidant compound content, antioxidant capacity, and nutritional parameters and what the origin of these variations is. The aim of this work was to investigate the biochemical and nutritional aspects of the sweet onion landrace “Premanturska kapula”, as well as to investigate the influence of onion bulb size on onion phytochemical and nutritional profile. The sweet onion landrace “Premanturska kapula” has a high soluble sugar content, a high antioxidant capacity, and a high phenolic compound content. Quercetin-3,4′-diglucoside and quercetin-4′-glucoside were the major flavonols, while protocatehuic acid was the major phenolic acid detected. The choice of onion bulb size can impact the profile of the sugars present, with large bulb sizes favoring higher sucrose and fructooligosaccharides content compared to small bulb sizes which were more abundant in glucose. The total sugars or bulb dry matter were not affected by bulb size. Phenolic compounds were more abundant in smaller bulb sizes, thus indicating a link between bulb development and phenolic compound allocation within the plant. This link possibly derived from agronomic practices such as bare-root transplants, or even open pollination which causes a broader genetic variability. From a consumer perspective, it can be a choice between the small and medium bulb sizes on one hand, which are more abundant in polyphenolics and simple sugars, or on the other hand, the larger bulbs which are more abundant in fructooligosaccharides known to carry excellent health benefits. Full article
Show Figures

Figure 1

10 pages, 1145 KiB  
Article
Technological and Sensory Quality of Gluten-Free Pasta Made from Flint Maize Cultivars
by Nicolás Francisco Bongianino, María Eugenia Steffolani, Claudio David Morales, Carlos Alberto Biasutti and Alberto Edel León
Foods 2023, 12(14), 2780; https://doi.org/10.3390/foods12142780 - 21 Jul 2023
Cited by 4 | Viewed by 4769
Abstract
The development of quality gluten-free products presents a major technological challenge in terms of structure, texture, and shelf life. However, there is insufficient information available to identify genotypes for obtaining gluten-free maize pasta of good acceptability and technological quality. The objective of this [...] Read more.
The development of quality gluten-free products presents a major technological challenge in terms of structure, texture, and shelf life. However, there is insufficient information available to identify genotypes for obtaining gluten-free maize pasta of good acceptability and technological quality. The objective of this work was to evaluate the technological and sensory quality of gluten-free pasta made from different maize cultivars. The flint open-pollinated variety, flint inbred line, and three dent commercial hybrids were used. Grain and flour’s physical characteristics and chemical composition were determined. Gluten-free pasta was made via extrusion, and its quality traits were studied. A sensory evaluation test was carried out. Flint cultivars showed the lowest values on swelling index (both 1.77) and water absorption (124.30 and 134.58%). Pasta swelling index showed a negative association r = −0.77 to sodium carbonate retention capacity (p = 8.5 × 10−5) and water retention capacity (p = 6.6 × 10−5). Evaluators’ preference results showed a higher frequency of choices at the top level of preference (4) for the flint open-pollinated variety C6006. Thus, evaluators’ choices showed a positive association between sample preference and firmness. Pasta preference and technological quality have a direct relationship with fast tests over grain, such as test weight and float index. Full article
(This article belongs to the Special Issue Grain Products: Traditional and Innovative Technologies)
Show Figures

Graphical abstract

Back to TopTop