Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (588)

Search Parameters:
Keywords = ontology-based system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2689 KiB  
Article
A Multi-Temporal Knowledge Graph Framework for Landslide Monitoring and Hazard Assessment
by Runze Wu, Min Huang, Haishan Ma, Jican Huang, Zhenhua Li, Hongbo Mei and Chengbin Wang
GeoHazards 2025, 6(3), 39; https://doi.org/10.3390/geohazards6030039 - 23 Jul 2025
Abstract
In the landslide chain from pre-disaster conditions to landslide mitigation and recovery, time is an important factor in understanding the geological hazards process and managing landsides. Static knowledge graphs are unable to capture the temporal dynamics of landslide events. To address this limitation, [...] Read more.
In the landslide chain from pre-disaster conditions to landslide mitigation and recovery, time is an important factor in understanding the geological hazards process and managing landsides. Static knowledge graphs are unable to capture the temporal dynamics of landslide events. To address this limitation, we propose a systematic framework for constructing a multi-temporal knowledge graph of landslides that integrates multi-source temporal data, enabling the dynamic tracking of landslide processes. Our approach comprises three key steps. First, we summarize domain knowledge and develop a temporal ontology model based on the disaster chain management system. Second, we map heterogeneous datasets (both tabular and textual data) into triples/quadruples and represent them based on the RDF (Resource Description Framework) and quadruple approaches. Finally, we validate the utility of multi-temporal knowledge graphs through multidimensional queries and develop a web interface that allows users to input landslide names to retrieve location and time-axis information. A case study of the Zhangjiawan landslide in the Three Gorges Reservoir Area demonstrates the multi-temporal knowledge graph’s capability to track temporal updates effectively. The query results show that multi-temporal knowledge graphs effectively support multi-temporal queries. This study advances landslide research by combining static knowledge representation with the dynamic evolution of landslides, laying the foundation for hazard forecasting and intelligent early-warning systems. Full article
(This article belongs to the Special Issue Landslide Research: State of the Art and Innovations)
Show Figures

Figure 1

28 pages, 5540 KiB  
Article
An Ontology Proposal for Implementing Digital Twins in Hospitality: The Case of Front-End Services
by Moises Segura-Cedres, Desiree Manzano-Farray, Carmen Lidia Aguiar-Castillo, Rafael Perez-Jimenez and Victor Guerra-Yanez
Sensors 2025, 25(14), 4504; https://doi.org/10.3390/s25144504 - 20 Jul 2025
Viewed by 220
Abstract
The implementation of Digital Twins (DTs) in hospitality facilities represents a significant opportunity to optimize front-end services, enhancing guest experience and operational efficiency. This paper proposes an ontology-driven approach for DTs in hotel reception areas, focusing on integrating IoT devices, real-time data processing, [...] Read more.
The implementation of Digital Twins (DTs) in hospitality facilities represents a significant opportunity to optimize front-end services, enhancing guest experience and operational efficiency. This paper proposes an ontology-driven approach for DTs in hotel reception areas, focusing on integrating IoT devices, real-time data processing, and service optimization. By modeling interactions between guests, receptionists, and hotel management systems, DTs enhance resource allocation, predictive maintenance, and customer satisfaction. Simulations and historical data analysis enable forecasting demand fluctuations and optimizing check-in/check-out processes. This research provides a structured framework for DT applications in hospitality, validated through scenario-based simulations, showing significant improvements in check-in time and guest satisfaction. Validation was conducted through scenario-based simulations reflecting real-world operational challenges, such as guest surges, room assignment, and staff workload balancing. Metrics including check-in time, guest satisfaction index, task completion rates, and prediction accuracy were used to evaluate performance. Simulations were grounded in historical hotel data and modeled typical peak-period dynamics to ensure realism. Results demonstrated a 25–35% reduction in check-in time, a 20% improvement in staff efficiency, and significant enhancements in guest satisfaction, underscoring the practical value of the proposed framework in real hospitality settings. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Graphical abstract

23 pages, 1842 KiB  
Article
From Dots and Lines to Connections: Re-Evaluation of Relational Thinking in Architecture
by Ömür Kararmaz and Çiğdem Polatoğlu Serter
Buildings 2025, 15(14), 2548; https://doi.org/10.3390/buildings15142548 - 19 Jul 2025
Viewed by 253
Abstract
Relational thinking, as both an ontological and epistemological approach, is inherently intertwined with the discipline of architecture. Yet, despite its growing visibility in the information age, its conceptual depth and theoretical implications remain systematically underexplored within architectural discourse. This study investigates how relational [...] Read more.
Relational thinking, as both an ontological and epistemological approach, is inherently intertwined with the discipline of architecture. Yet, despite its growing visibility in the information age, its conceptual depth and theoretical implications remain systematically underexplored within architectural discourse. This study investigates how relational thinking is reflected in 21st-century architecture by analyzing the relevant literature and identifying both commonalities and divergences. Methodologically, the research follows a qualitative framework structured in three phases. First, 40 texts engaging with relationality in architecture were systematically selected via JSTOR and SCOPUS using the PRISMA protocol. Second, a descriptive content analysis was conducted, resulting in five thematic clusters: theoretical, methodological, technological, ecological, and social. Finally, an interpretive synthesis was developed by analyzing the convergence and divergence across these clusters. The findings demonstrate that relational thinking in architecture manifests through complex, multi-scalar integrations of knowledge, practice, and context. Each cluster foregrounds specific aspects of relationality, yet their overlaps reveal underlying patterns of cross-disciplinary resonance. This study suggests that relational thinking is reshaping architectural epistemology—moving it beyond static, form-based paradigms toward dynamic, interconnected systems thinking. These insights underline the necessity of further theoretical engagement with relationality as a core principle of contemporary architectural knowledge. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 591 KiB  
Article
Active Learning for Medical Article Classification with Bag of Words and Bag of Concepts Embeddings
by Radosław Pytlak, Paweł Cichosz, Bartłomiej Fajdek and Bogdan Jastrzębski
Appl. Sci. 2025, 15(14), 7955; https://doi.org/10.3390/app15147955 - 17 Jul 2025
Viewed by 140
Abstract
Systems supporting systematic literature reviews often use machine learning algorithms to create classification models to assess the relevance of articles to study topics. The proper choice of text representation for such algorithms may have a significant impact on their predictive performance. This article [...] Read more.
Systems supporting systematic literature reviews often use machine learning algorithms to create classification models to assess the relevance of articles to study topics. The proper choice of text representation for such algorithms may have a significant impact on their predictive performance. This article presents an in-depth investigation of the utility of the bag of concepts representation for this purpose, which can be considered an enhanced form of the ubiquitous bag of words representation, with features corresponding to ontology concepts rather than words. Its utility is evaluated in the active learning setting, in which a sequence of classification models is created, with training data iteratively expanded by adding articles selected for human screening. Different versions of the bag of concepts are compared with bag of words, as well as with combined representations, including both word-based and concept-based features. The evaluation uses the support vector machine, naive Bayes, and random forest algorithms and is performed on datasets from 15 systematic medical literature review studies. The results show that concept-based features may have additional predictive value in comparison to standard word-based features and that the combined bag of concepts and bag of words representation is the most useful overall. Full article
Show Figures

Figure 1

38 pages, 2791 KiB  
Review
Digital Platforms for the Built Environment: A Systematic Review Across Sectors and Scales
by Michele Berlato, Leonardo Binni, Dilan Durmus, Chiara Gatto, Letizia Giusti, Alessia Massari, Beatrice Maria Toldo, Stefano Cascone and Claudio Mirarchi
Buildings 2025, 15(14), 2432; https://doi.org/10.3390/buildings15142432 - 10 Jul 2025
Viewed by 565
Abstract
The digital transformation of the Architecture, Engineering and Construction sector is accelerating the adoption of digital platforms as critical enablers of data integration, stakeholder collaboration and process optimization. This paper presents a systematic review of 125 peer-reviewed journal articles (2015–2025), selected through a [...] Read more.
The digital transformation of the Architecture, Engineering and Construction sector is accelerating the adoption of digital platforms as critical enablers of data integration, stakeholder collaboration and process optimization. This paper presents a systematic review of 125 peer-reviewed journal articles (2015–2025), selected through a PRISMA-guided search using the Scopus database, with inclusion criteria focused on English-language academic literature on platform-enabled digitalization in the built environment. Studies were grouped into six thematic domains, i.e., artificial intelligence in construction, digital twin integration, lifecycle cost management, BIM-GIS for underground utilities, energy systems and public administration, based on a combination of literature precedent and domain relevance. Unlike existing reviews focused on single technologies or sectors, this work offers a cross-sectoral synthesis, highlighting shared challenges and opportunities across disciplines and lifecycle stages. It identifies the functional roles, enabling technologies and systemic barriers affecting digital platform adoption, such as fragmented data sources, limited interoperability between systems and siloed organizational processes. These barriers hinder the development of integrated and adaptive digital ecosystems capable of supporting real-time decision-making, participatory planning and sustainable infrastructure management. The study advocates for modular, human-centered platforms underpinned by standardized ontologies, explainable AI and participatory governance models. It also highlights the importance of emerging technologies, including large language models and federated learning, as well as context-specific platform strategies, especially for applications in the Global South. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

20 pages, 4177 KiB  
Article
Joint Entity–Relation Extraction for Knowledge Graph Construction in Marine Ranching Equipment
by Du Chen, Zhiwu Gao, Sirui Li, Xuruixue Guo, Yaqi Wu, Haiyu Zhang and Delin Zhang
Appl. Sci. 2025, 15(13), 7611; https://doi.org/10.3390/app15137611 - 7 Jul 2025
Viewed by 287
Abstract
The construction of marine ranching is a crucial component of China’s Blue Granary strategy, yet the fragmented knowledge system in marine ranching equipment impedes intelligent management and operational efficiency. This study proposes the first knowledge graph (KG) framework tailored for marine ranching equipment, [...] Read more.
The construction of marine ranching is a crucial component of China’s Blue Granary strategy, yet the fragmented knowledge system in marine ranching equipment impedes intelligent management and operational efficiency. This study proposes the first knowledge graph (KG) framework tailored for marine ranching equipment, integrating hybrid ontology design, joint entity–relation extraction, and graph-based knowledge storage: (1) The limitations in existing KG are obtained through targeted questionnaires for diverse users and employees; (2) A domain ontology was constructed through a combination of the top-down and the bottom-up approach, defining seven key concepts and eight semantic relationships; (3) Semi-structured data from enterprises and standards, combined with unstructured data from the literature were systematically collected, cleaned via Scrapy and regular expression, and standardized into JSON format, forming a domain-specific corpus of 1456 annotated sentences; (4) A novel BERT-BiGRU-CRF model was developed, leveraging contextual embeddings from BERT, parameter-efficient sequence modeling via BiGRU (Bidirectional Gated Recurrent Unit), and label dependency optimization using CRF (Conditional Random Field). The TE + SE + Ri + BMESO tagging strategy was introduced to address multi-relation extraction challenges by linking theme entities to secondary entities; (5) The Neo4j-based KG encapsulated 2153 nodes and 3872 edges, enabling scalable visualization and dynamic updates. Experimental results demonstrated superior performance over BiLSTM-CRF and BERT-BiLSTM-CRF, achieving 86.58% precision, 77.82% recall, and 81.97% F1 score. This study not only proposes the first structured KG framework for marine ranching equipment but also offers a transferable methodology for vertical domain knowledge extraction. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

17 pages, 1955 KiB  
Article
Development of Safety Domain Ontology Knowledge Base for Fall Accidents
by Hyunsoung Park and Sangyun Shin
Buildings 2025, 15(13), 2299; https://doi.org/10.3390/buildings15132299 - 30 Jun 2025
Viewed by 326
Abstract
Extensive research in the field of construction safety has predominantly focused on identifying the causes and impacts of construction accidents, evaluating safety plans, assessing the effectiveness of safety education materials, and analyzing relevant policies. However, comparatively limited attention has been given to the [...] Read more.
Extensive research in the field of construction safety has predominantly focused on identifying the causes and impacts of construction accidents, evaluating safety plans, assessing the effectiveness of safety education materials, and analyzing relevant policies. However, comparatively limited attention has been given to the systematic formation, management, and utilization of safety-related information and knowledge. Despite significant advancements in information and knowledge management technologies across the architecture, engineering, and construction (AEC) industries, their application in construction safety remains underdeveloped. This study addresses this gap by proposing a novel ontology-based framework specifically designed for construction safety management. Unlike previous models, the proposed ontology integrates diverse safety regulations and terminologies into a unified and semantically structured knowledge model. It comprises three primary superclasses covering key areas of construction safety, with an initial focus on fall hazards—one of the most frequent and severe risks, particularly in roofing activities. This domain-specific approach not only improves semantic clarity and standardization but also enhances reusability and extensibility for other risk domains. The ontology was developed using established methodologies and validated through reasoning tools and competency questions. By providing a formally structured, logic-driven knowledge base, the model supports automated safety reasoning, facilitates communication among stakeholders, and lays the foundation for future intelligent safety management systems in construction. This research contributes a validated, extensible, and regulation-aligned ontology model that addresses critical challenges in safety information integration, sharing, and application. Full article
Show Figures

Figure 1

24 pages, 7080 KiB  
Review
Responsible Resilience in Cyber–Physical–Social Systems: A New Paradigm for Emergent Cyber Risk Modeling
by Theresa Sobb, Nour Moustafa and Benjamin Turnbull
Future Internet 2025, 17(7), 282; https://doi.org/10.3390/fi17070282 - 25 Jun 2025
Cited by 1 | Viewed by 296
Abstract
As cyber systems increasingly converge with physical infrastructure and social processes, they give rise to Complex Cyber–Physical–Social Systems (C-CPSS), whose emergent behaviors pose unique risks to security and mission assurance. Traditional cyber–physical system models often fail to address the unpredictability arising from human [...] Read more.
As cyber systems increasingly converge with physical infrastructure and social processes, they give rise to Complex Cyber–Physical–Social Systems (C-CPSS), whose emergent behaviors pose unique risks to security and mission assurance. Traditional cyber–physical system models often fail to address the unpredictability arising from human and organizational dynamics, leaving critical gaps in how cyber risks are assessed and managed across interconnected domains. The challenge lies in building resilient systems that not only resist disruption, but also absorb, recover, and adapt—especially in the face of complex, nonlinear, and often unintentionally emergent threats. This paper introduces the concept of ‘responsible resilience’, defined as the capacity of systems to adapt to cyber risks using trustworthy, transparent agent-based models that operate within socio-technical contexts. We identify a fundamental research gap in the treatment of social complexity and emergence in existing the cyber–physical system literature. To address this, we propose the E3R modeling paradigm—a novel framework for conceptualizing Emergent, Risk-Relevant Resilience in C-CPSS. This paradigm synthesizes human-in-the-loop diagrams, agent-based Artificial Intelligence simulations, and ontology-driven representations to model the interdependencies and feedback loops driving unpredictable cyber risk propagation more effectively. Compared to conventional cyber–physical system models, E3R accounts for adaptive risks across social, cyber, and physical layers, enabling a more accurate and ethically grounded foundation for cyber defence and mission assurance. Our analysis of the literature review reveals the underrepresentation of socio-emergent risk modeling in the literature, and our results indicate that existing models—especially those in industrial and healthcare applications of cyber–physical systems—lack the generalizability and robustness necessary for complex, cross-domain environments. The E3R framework thus marks a significant step forward in understanding and mitigating emergent threats in future digital ecosystems. Full article
(This article belongs to the Special Issue Internet of Things and Cyber-Physical Systems, 3rd Edition)
Show Figures

Figure 1

31 pages, 2406 KiB  
Article
Enhancing Mathematical Knowledge Graphs with Large Language Models
by Antonio Lobo-Santos and Joaquín Borrego-Díaz
Modelling 2025, 6(3), 53; https://doi.org/10.3390/modelling6030053 - 24 Jun 2025
Viewed by 461
Abstract
The rapid growth in scientific knowledge has created a critical need for advanced systems capable of managing mathematical knowledge at scale. This study presents a novel approach that integrates ontology-based knowledge representation with large language models (LLMs) to automate the extraction, organization, and [...] Read more.
The rapid growth in scientific knowledge has created a critical need for advanced systems capable of managing mathematical knowledge at scale. This study presents a novel approach that integrates ontology-based knowledge representation with large language models (LLMs) to automate the extraction, organization, and reasoning of mathematical knowledge from LaTeX documents. The proposed system enhances Mathematical Knowledge Management (MKM) by enabling structured storage, semantic querying, and logical validation of mathematical statements. The key innovations include a lightweight ontology for modeling hypotheses, conclusions, and proofs, and algorithms for optimizing assumptions and generating pseudo-demonstrations. A user-friendly web interface supports visualization and interaction with the knowledge graph, facilitating tasks such as curriculum validation and intelligent tutoring. The results demonstrate high accuracy in mathematical statement extraction and ontology population, with potential scalability for handling large datasets. This work bridges the gap between symbolic knowledge and data-driven reasoning, offering a robust solution for scalable, interpretable, and precise MKM. Full article
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Stitching History into Semantics: LLM-Supported Knowledge Graph Engineering for 19th-Century Greek Bookbinding
by Dimitrios Doumanas, Efthalia Ntalouka, Costas Vassilakis, Manolis Wallace and Konstantinos Kotis
Mach. Learn. Knowl. Extr. 2025, 7(3), 59; https://doi.org/10.3390/make7030059 - 24 Jun 2025
Viewed by 648
Abstract
Preserving cultural heritage can be efficiently supported by structured and semantic representation of historical artifacts. Bookbinding, a critical aspect of book history, provides valuable insights into past craftsmanship, material use, and conservation practices. However, existing bibliographic records often lack the depth needed to [...] Read more.
Preserving cultural heritage can be efficiently supported by structured and semantic representation of historical artifacts. Bookbinding, a critical aspect of book history, provides valuable insights into past craftsmanship, material use, and conservation practices. However, existing bibliographic records often lack the depth needed to analyze bookbinding techniques, provenance, and preservation status. This paper presents a proof-of-concept system that explores how Large Language Models (LLMs) can support knowledge graph engineering within the context of 19th-century Greek bookbinding (1830–1900), and as a result, generate a domain-specific ontology and a knowledge graph. Our ontology encapsulates materials, binding techniques, artistic styles, and conservation history, integrating metadata standards like MARC and Dublin Core to ensure interoperability with existing library and archival systems. To validate its effectiveness, we construct a Neo4j knowledge graph, based on the generated ontology and utilize Cypher Queries—including LLM-generated queries—to extract insights about bookbinding practices and trends. This study also explores how semantic reasoning over the knowledge graph can identify historical binding patterns, assess book conservation needs, and infer relationships between bookbinding workshops. Unlike previous bibliographic ontologies, our approach provides a comprehensive, semantically rich representation of bookbinding history, methods and techniques, supporting scholars, conservators, and cultural heritage institutions. By demonstrating how LLMs can assist in ontology/KG creation and query generation, we introduce and evaluate a semi-automated pipeline as a methodological demonstration for studying historical bookbinding, contributing to digital humanities, book conservation, and cultural informatics. Finally, the proposed approach can be used in other domains, thus, being generally applicable in knowledge engineering. Full article
(This article belongs to the Special Issue Knowledge Graphs and Large Language Models)
Show Figures

Graphical abstract

18 pages, 3526 KiB  
Article
Smart Data-Enabled Conservation and Knowledge Generation for Architectural Heritage System
by Ziyuan Rao and Guoguang Wang
Buildings 2025, 15(12), 2122; https://doi.org/10.3390/buildings15122122 - 18 Jun 2025
Viewed by 282
Abstract
In architectural heritage conservation, fragmented data practices and heterogeneous formats hinder knowledge extraction, limiting the translation of raw data into actionable conservation insights. This study proposes a knowledge-centric framework integrating smart data methodologies to bridge this gap. The framework synergizes Heritage Building Information [...] Read more.
In architectural heritage conservation, fragmented data practices and heterogeneous formats hinder knowledge extraction, limiting the translation of raw data into actionable conservation insights. This study proposes a knowledge-centric framework integrating smart data methodologies to bridge this gap. The framework synergizes Heritage Building Information Modeling (HBIM), semantic knowledge graphs, and knowledge bases, prioritizing three interconnected dimensions: geometric digitization through 3D laser scanning and parametric HBIM reconstruction, semantic enrichment of historical texts via NLP and rule-based entity extraction, and knowledge graph-driven discovery of spatiotemporal patterns using Neo4j and ontology mapping. Validated through dual case studies—the Historical Educational Sites in South China (humanistic narratives) and the Dong ethnic drum towers (structural logic)—the framework demonstrates its capacity to automate knowledge generation, converting 20.5 GB of multi-source data into 2652 RDF triples that interconnect 1701 nodes across HBIM models and archival records. By enabling real-time visualization of semantic relationships (e.g., educator networks, mortise-and-tenon typologies) through graph queries, the system enhances interdisciplinary collaboration. Furthermore, the proposed smart data framework facilitated the generation of domain-specific knowledge through systematic data valorization, yielding actionable insights for architectural conservation practice. This research redefines conservation as a knowledge-to-action paradigm, where smart data methodologies unify tangible and intangible heritage values, fostering data-driven stewardship across cultural, historical, and technical domains. Full article
(This article belongs to the Special Issue Advanced Research on Cultural Heritage)
Show Figures

Figure 1

38 pages, 10425 KiB  
Article
Ontology-Based Integration of Enterprise Architecture and Project Management: A Systems Thinking Approach for Project-Based Organizations in the Architecture, Engineering, and Construction Sector
by Edison Atencio, Mauro Mancini and Guillermo Bustos
Systems 2025, 13(6), 477; https://doi.org/10.3390/systems13060477 - 16 Jun 2025
Viewed by 477
Abstract
Construction projects are becoming increasingly complex due to their dynamic nature, the integration of multiple disciplines, and the need for strategic alignment between organizational processes and project management. However, traditional project management approaches often fail to address this complexity effectively. This study presents [...] Read more.
Construction projects are becoming increasingly complex due to their dynamic nature, the integration of multiple disciplines, and the need for strategic alignment between organizational processes and project management. However, traditional project management approaches often fail to address this complexity effectively. This study presents the application of IModel, a web-based semantic model grounded in systems thinking, designed to integrate enterprise architecture and project management. Through a case study conducted in a multinational AEC company, IModel was evaluated for its ability to enhance system interoperability, optimize processes, and support strategic decision-making. The methodology combined web semantic modeling with expert interviews and organizational data analysis. Findings indicate that IModel provides a comprehensive framework for knowledge management, reduces uncertainty, and improves decision-making in dynamic project environments. However, challenges related to model adoption, including the need for training in systems thinking and ontological modeling, were identified. This study contributes to the literature on innovation in construction project management, highlighting the potential of systems thinking and semantic tools to address complex problems in dynamic and evolving environments. Full article
(This article belongs to the Special Issue Complex Construction Project Management with Systems Thinking)
Show Figures

Figure 1

22 pages, 884 KiB  
Article
Introduction to the E-Sense Artificial Intelligence System
by Kieran Greer
AI 2025, 6(6), 122; https://doi.org/10.3390/ai6060122 - 10 Jun 2025
Viewed by 523
Abstract
This paper describes the E-Sense Artificial Intelligence system. It comprises a memory model with two levels of information and then a more neural layer above that. The lower memory level stores source data in a Markov (n-gram) structure that is unweighted. Then, a [...] Read more.
This paper describes the E-Sense Artificial Intelligence system. It comprises a memory model with two levels of information and then a more neural layer above that. The lower memory level stores source data in a Markov (n-gram) structure that is unweighted. Then, a middle ontology level is created from a further three aggregating phases that may be deductive. Each phase re-structures from an ensemble to a tree, where the information transposition is from horizontal set-based sequences into more vertical, typed-based clusters. The base memory is essentially neutral, but bias can be added to any of the levels through associative networks. The success of the ontology typing is open to question, but the results suggested related associations more than direct ones. The third level is more functional, where each function can represent a subset of the base data and learn how to transpose across it. The functional structures are shown to be quite orthogonal, or separate, and are made from nodes with a progressive type of capability, including unordered to ordered. Comparisons with the columnar structure of the neural cortex can be made and the idea of ordinal learning, or just learning relative positions, is introduced. While this is still a work in progress, it offers a different architecture to the current frontier models and is probably one of the most biologically inspired designs. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

31 pages, 5344 KiB  
Article
Development and Evaluation of Adaptive Learning Support System Based on Ontology of Multiple Programming Languages
by Lalita Na Nongkhai, Jingyun Wang and Takahiko Mendori
Educ. Sci. 2025, 15(6), 724; https://doi.org/10.3390/educsci15060724 - 9 Jun 2025
Viewed by 446
Abstract
This paper introduces an ontology-based approach within an adaptive learning support system for computer programming. This system is designed to deliver personalized programming exercises that are tailored to individual learners’ skill levels. This proposed framework utilizes an ontology, named CONTINUOUS, which encompasses common [...] Read more.
This paper introduces an ontology-based approach within an adaptive learning support system for computer programming. This system is designed to deliver personalized programming exercises that are tailored to individual learners’ skill levels. This proposed framework utilizes an ontology, named CONTINUOUS, which encompasses common concepts across multiple programming languages. The system leverages this ontology not only to visualize programming concepts but also to provide hints during practice programming exercises and recommend subsequent programming concepts. The adaptive mechanism is driven by the Elo Rating System, applied in an educational context to dynamically estimate the most appropriate exercise difficulty for each learner. An experimental study compared two instructional modes, adaptive and random, based on six features derived from 1186 code submissions across all the experimental groups. The results indicate significant differences in four of six analyzed features between these two modes. Notably, the adaptive mode demonstrates a significant difference over the random mode in two features: the submission of correct answers and the number of pass concepts. Therefore, these results underscore that this adaptive learning support system may support learners in practicing programming exercises. Full article
(This article belongs to the Section Technology Enhanced Education)
Show Figures

Figure 1

27 pages, 5632 KiB  
Article
Semantic Fusion of Health Data: Implementing a Federated Virtualized Knowledge Graph Framework Leveraging Ontop System
by Abid Ali Fareedi, Stephane Gagnon, Ahmad Ghazawneh and Raul Valverde
Future Internet 2025, 17(6), 245; https://doi.org/10.3390/fi17060245 - 30 May 2025
Viewed by 452
Abstract
Data integration (DI) and semantic interoperability (SI) are critical in healthcare, enabling seamless, patient-centric data sharing across systems to meet the demand for instant, unambiguous access to health information. Federated information systems (FIS) highlight auspicious issues for seamless DI and SI stemming from [...] Read more.
Data integration (DI) and semantic interoperability (SI) are critical in healthcare, enabling seamless, patient-centric data sharing across systems to meet the demand for instant, unambiguous access to health information. Federated information systems (FIS) highlight auspicious issues for seamless DI and SI stemming from diverse data sources or models. We present a hybrid ontology-based design science research engineering (ODSRE) methodology that combines design science activities with ontology engineering principles to address the above-mentioned issues. The ODSRE constructs a systematic mechanism leveraging the Ontop virtual paradigm to establish a state-of-the-art federated virtual knowledge graph framework (FVKG) embedded virtualized knowledge graph approach to mitigate the aforementioned challenges effectively. The proposed FVKG helps construct a virtualized data federation leveraging the Ontop semantic query engine that effectively resolves data bottlenecks. Using a virtualized technique, the FVKG helps to reduce data migration, ensures low latency and dynamic freshness, and facilitates real-time access while upholding integrity and coherence throughout the federation system. As a result, we suggest a customized framework for constructing ontological monolithic semantic artifacts, especially in FIS. The proposed FVKG incorporates ontology-based data access (OBDA) to build a monolithic virtualized repository that integrates various ontological-driven artifacts and ensures semantic alignments using schema mapping techniques. Full article
Show Figures

Figure 1

Back to TopTop