Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = one-dimensional cylindrical model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3988 KiB  
Article
Research on Equivalent One-Dimensional Cylindrical Modeling Method for Lead–Bismuth Fast Reactor Fuel Assemblies
by Jinjie Xiao, Yongfa Zhang, Song Li, Ling Chen, Jiannan Li and Cong Zhang
Energies 2025, 18(13), 3564; https://doi.org/10.3390/en18133564 - 6 Jul 2025
Viewed by 390
Abstract
The lead-cooled fast reactor (LFR), a Generation IV nuclear system candidate, presents unique neutronic characteristics distinct from pressurized water reactors. Its neutron spectrum spans wider energy ranges with fast neutron dominance, exhibiting resonance phenomena across energy regions. These features require a fine energy [...] Read more.
The lead-cooled fast reactor (LFR), a Generation IV nuclear system candidate, presents unique neutronic characteristics distinct from pressurized water reactors. Its neutron spectrum spans wider energy ranges with fast neutron dominance, exhibiting resonance phenomena across energy regions. These features require a fine energy group structure for fuel lattice calculations, significantly increasing computational demands. To balance local heterogeneity modeling with computational efficiency, researchers across the world adopt fuel assembly equivalence methods using 1D cylindrical models through volume equivalence principles. This approach enables detailed energy group calculations in simplified geometries, followed by lattice homogenization for few-group parameter generation, effectively reducing whole-core computational loads. However, limitations emerge when handling strongly heterogeneous components like structural/control rods. This study investigates the 1D equivalence method’s accuracy in lead–bismuth fast reactors under various fuel assembly configurations. Through comprehensive analysis of material distributions and their equivalence impacts, the applicability of the one-dimensional equivalence approach to fuel assemblies of different geometries and material types is analyzed in this paper. The research further proposes corrective solutions for low-accuracy scenarios, enhancing computational method reliability. This paper is significant in its optimization of the physical calculation and analysis process of a new type of fast reactor component and has important engineering application value. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

24 pages, 5570 KiB  
Article
Study on Propellant Management Device for Small-Scale Supersonic Flight Experiment Vehicle
by Ryoji Imai and Takuya Wada
Aerospace 2025, 12(6), 561; https://doi.org/10.3390/aerospace12060561 - 19 Jun 2025
Viewed by 296
Abstract
To commercialize supersonic and hypersonic passenger aircraft and reusable spaceplanes, we are developing a small-scale supersonic flight experiment vehicle as a flying testbed for technical demonstrations in high-speed flight environments. This experiment vehicle is equipped with a fuel tank and an oxidizer tank, [...] Read more.
To commercialize supersonic and hypersonic passenger aircraft and reusable spaceplanes, we are developing a small-scale supersonic flight experiment vehicle as a flying testbed for technical demonstrations in high-speed flight environments. This experiment vehicle is equipped with a fuel tank and an oxidizer tank, and the propellants inside the tanks slosh due to changes in acceleration during flight. In this situation, there is a risk of gas entrainment during liquid discharge, which could potentially cause an engine malfunction. To avoid such a situation, we considered installing a propellant management device (PMD) inside the tank to suppress the gas entrainment. In this study, a capillary type PMD with a screen channel structure, commonly used in satellites featuring no moving parts, was adopted due to its applicability to a wide acceleration range. The PMD was designed with a structure featuring cylindrical mesh screen nozzles installed at the top and bottom of a cylindrical tank. A one-dimensional flow analysis model was developed taking into account factors such as the pressure loss across the mesh screens and the flow loss within the mesh screen nozzles, which enabled the identification of conditions under which gas entrainment occurred. In this analytical model, separate formulations were developed using Hartwig’s and Ingmanson’s formulas for evaluating the flow losses through the mesh screens. Furthermore, by applying the flow analysis model, the specifications of the mesh screens as key parameters of the PMD, together with the nozzle diameter and nozzle length, were selected. Moreover, we fabricated prototype PMDs with each nozzle and conducted visualization tests using a transparent tank. The tests were conducted under static conditions, where a gravitational acceleration acted downward, and the effects of the cylindrical mesh screen length and discharge flow rate on the free surface height at which gas entrainment occurred were investigated. This experiment demonstrated the effectiveness of the propellant acquisition mechanism of the present PMD. The height of the free surface was also compared with the experimental and analytical results, and it was shown that the results obtained by using Ingmanson’s formula for pressure loss through the screen mesh were closer to the experimental results. These findings demonstrated the validity of the one-dimensional flow analysis model. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 8833 KiB  
Article
Effects of Connecting Structures in Double-Hulled Water-Filled Cylindrical Shells on Shock Wave Propagation and the Structural Response to Underwater Explosion
by Caiyu Yin, Zhiyang Lei, Zeyu Jin and Zifeng Shi
J. Mar. Sci. Eng. 2024, 12(11), 1949; https://doi.org/10.3390/jmse12111949 - 31 Oct 2024
Cited by 2 | Viewed by 997
Abstract
In conventional double-hulled submarines, the connecting structures that facilitate the linkage between the two hulls are crucial for load transmission. This paper aims to elucidate the effect of these connecting structures on resistance to shock waves generated by underwater explosions. Firstly, a self-developed [...] Read more.
In conventional double-hulled submarines, the connecting structures that facilitate the linkage between the two hulls are crucial for load transmission. This paper aims to elucidate the effect of these connecting structures on resistance to shock waves generated by underwater explosions. Firstly, a self-developed numerical solver is built for the one-dimensional water-filled elastically connected double-layer plate model. The shock wave propagation characteristics, shock response of structure, water cavitation, and impact loads transmitted through the gap water and the connecting structures are analyzed quantitatively. The results reveal that the majority of the shock impulse is transmitted by the gap water if the equivalent stiffness of the connecting structures is much less than that of the gap water. Then, a three-dimensional model of the double-hulled, water-filled cylindrical shell is constructed in Abaqus/Explicit, utilizing the acoustic-structural coupling methodology. The analysis focuses on the influence of the thickness and density distribution of the connecting structures on the system’s shock response. The results indicate that a densely arranged connecting structure results in a wavy deformation of the outer hull and a notable reduction in both the impact response and strain energy of the inner hull. When the stiffness of the densely arranged connecting structure is comparatively low, the internal energy and plastic energy of the inner hull are decreased by 16.5% and 24.1%, respectively. The findings of this research are useful for assessing shock resistance and for the design of connecting structures within conventional double-hulled submarines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 1283 KiB  
Article
Analysis of Water Volume Required to Reach Steady Flow in the Constant Head Well Permeameter Method
by Aziz Amoozegar and Joshua L. Heitman
Hydrology 2023, 10(11), 214; https://doi.org/10.3390/hydrology10110214 - 18 Nov 2023
Viewed by 2524
Abstract
The most common method for in situ measurement of saturated hydraulic conductivity (Ksat) of the vadose zone is the constant head well permeameter method. Our general objective is to provide an empirical method for determining volume of water required for [...] Read more.
The most common method for in situ measurement of saturated hydraulic conductivity (Ksat) of the vadose zone is the constant head well permeameter method. Our general objective is to provide an empirical method for determining volume of water required for measuring Ksat using this procedure. For one-dimensional infiltration, steady state reaches as time (t) → ∞. For three-dimensional water flow from a cylindrical hole under a constant depth of water, however, steady state reaches rather quickly when a saturated bulb forms around the hole. To reach a quasi-steady state for measuring Ksat, we assume an adequate volume of water is needed to form the saturated bulb around the hole and increase the water content outside of the saturated bulb within a bulb-shaped volume of soil, hereafter, referred to as wetted soil volume. We determined the dimensions of the saturated bulb using the Glover model that is used for calculating Ksat. We then used the values to determine the volume of the saturated and wetted bulbs around the hole. The volume of water needed to reach a quasi-steady state depends on the difference between the soil saturated and antecedent water content (Δθ). Based on our analysis, between 2 and 5 L of water is needed to measure Ksat when Δθ varies between 0.1 and 0.4 m3 m−3, respectively. Full article
(This article belongs to the Section Soil and Hydrology)
Show Figures

Figure 1

16 pages, 3930 KiB  
Article
An Axi-Symmetric Problem of Suspensions Filtering with the Formation of a Cake Layer
by Bakhtiyor Kh. Khuzhayorov, Gafurjan Ibragimov, Usmonali Saydullaev and Bruno Antonio Pansera
Symmetry 2023, 15(6), 1209; https://doi.org/10.3390/sym15061209 - 5 Jun 2023
Cited by 5 | Viewed by 1366
Abstract
In this paper, we consider a vertically positioned cylindrical filtering element. Filtering occurs in the radial direction, therefore, the direction of the velocities of the liquid and suspended particles coincide with this radial direction. The flow can be considered to be one-dimensional and [...] Read more.
In this paper, we consider a vertically positioned cylindrical filtering element. Filtering occurs in the radial direction, therefore, the direction of the velocities of the liquid and suspended particles coincide with this radial direction. The flow can be considered to be one-dimensional and radially axisymmetric. To describe such a filtering process, the axisymmetric Stefan problem will be formulated. The radial mass balance formalism and Darcy’s law are utilized to obtain a basic equation for cake filtration. The boundary condition at the moving surface is derived and the cake filtration is formulated in a Stefan problem. Equations are derived that describe the dynamics of cake growth in the cake filtration, and they are numerically solved. The influence of different model parameters on the compression and fluid pressure across the cake and the growth of its thickness are studied. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 8042 KiB  
Article
Thermal Analysis of a Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles
by Wenfei Yu, Zhongze Wu and Wei Hua
World Electr. Veh. J. 2023, 14(5), 130; https://doi.org/10.3390/wevj14050130 - 19 May 2023
Cited by 1 | Viewed by 2242
Abstract
This paper investigates the loss and thermal characteristics of a three-phase 10 kW flux-switching permanent magnet (FSPM) machine, which is used as an integrated starter generator (ISG) for hybrid electric vehicles (HEVs). In this paper, an improved method considering both DC-bias component and [...] Read more.
This paper investigates the loss and thermal characteristics of a three-phase 10 kW flux-switching permanent magnet (FSPM) machine, which is used as an integrated starter generator (ISG) for hybrid electric vehicles (HEVs). In this paper, an improved method considering both DC-bias component and minor hysteresis loops in iron flux-density distribution is proposed to calculate core loss more precisely. Then, a lumped parameter thermal network (LPTN) model is constructed to predict transient thermal behavior of the FSPM machine, which takes into consideration various losses as heat sources determined from predictions and experiments. Meanwhile, a simplified one-dimensional (1D) steady heat conduction (1D-SHC) model with two heat sources in cylindrical coordinates is also proposed to predict the thermal behavior. To verify the two methods above, transient and steady thermal analyses of the FSPM machine were performed by computational fluid dynamics (CFD) based on the losses mentioned above. Finally, the predicted results from both LPTN and 1D-SHC were verified by the experiments on a prototyped FSPM machine. Full article
Show Figures

Figure 1

18 pages, 2280 KiB  
Article
Poiseuille-Type Approximations for Axisymmetric Flow in a Thin Tube with Thin Stiff Elastic Wall
by Kristina Kaulakytė, Nikolajus Kozulinas, Grigory Panasenko, Konstantinas Pileckas and Vytenis Šumskas
Mathematics 2023, 11(9), 2106; https://doi.org/10.3390/math11092106 - 28 Apr 2023
Viewed by 1515
Abstract
An asymptotic ansatz for the solution of the axisymmetric problem of interaction between a thin cylindrical elastic tube and a viscous fluid filling the thin interior of the elastic tube was recently introduced and justified by G. Panasenko and R. Stavre. The thickness [...] Read more.
An asymptotic ansatz for the solution of the axisymmetric problem of interaction between a thin cylindrical elastic tube and a viscous fluid filling the thin interior of the elastic tube was recently introduced and justified by G. Panasenko and R. Stavre. The thickness of the elastic medium (ε) and that of the fluid domain (ε1) are small parameters with ε<<ε1<<1, while the scale of the longitudinal characteristic size is of order one. At the same time, the magnitude of the stiffness and density of the elastic tube may be large or finite parameters with respect to the viscosity and density of the fluid when the characteristic time is of order one. This ansatz can be considered as a Poiseuille-type solution for the fluid–structure interaction problem. Its substitution to the Stokes fluid–elastic wall coupled problem generates a one-dimensional model. We present a numerical experiment comparing this model with the solution of the full-dimensional fluid–structure interaction problem. Full article
(This article belongs to the Section C1: Difference and Differential Equations)
Show Figures

Figure 1

9 pages, 1092 KiB  
Article
Simulation of Electromagnetic Implosion of Metal Shells to Obtain Supercritical Fluids
by Valery Antonov and Nicolay Kalinin
Energies 2022, 15(23), 8953; https://doi.org/10.3390/en15238953 - 26 Nov 2022
Viewed by 1348
Abstract
This study analyzes the conditions for creating the energy density necessary to obtain supercritical fluids of substances with parameters (temperature T > 1 eV, density N > 1022 cm−3, specific energy density ε > 100 kJ/g). The calculations are carried out [...] Read more.
This study analyzes the conditions for creating the energy density necessary to obtain supercritical fluids of substances with parameters (temperature T > 1 eV, density N > 1022 cm−3, specific energy density ε > 100 kJ/g). The calculations are carried out on the basis of the one-dimensional (1D) two-temperature (2T) magneto hydrodynamic radiation model, which takes into account the physical processes occurring in the energy storage, switching system and the pulsed plasma load-a cylindrical compressible conductive shell. Developing a mathematical model, we assumed that physical processes were self-consistent. The simulation results were presented as time dependences of the main process parameters. Calculations showed that it becomes possible to sharpen the radiation pulse and pressure in the shock wave. As a result, we formulated the requirements for a laboratory energy source to establish the characteristics of a current pulse flowing through a conductive cylindrical shell and its dimensions (radius and thickness) necessary to achieve the goal. Full article
(This article belongs to the Special Issue Nuclear and New Energy Technology)
Show Figures

Figure 1

25 pages, 8311 KiB  
Article
Theoretical and Simulation Analysis on Fabrication of Micro-Textured Surface under Intermittent Cutting Condition by One-Dimensional Ultrasonic Vibration-Assisted Turning
by Xianfu Liu, Jianhua Zhang, Li Li and Weimin Huang
Machines 2022, 10(3), 166; https://doi.org/10.3390/machines10030166 - 22 Feb 2022
Cited by 5 | Viewed by 2880
Abstract
Fabricating micro-textures with specific parameters (size, shape, and distribution) on the surface of mechanical components has the potential to improve the tribological performance. When the ultrasonic vibration is applied to depth direction of turning, the micro-textured surfaces with specific dimples can be generated [...] Read more.
Fabricating micro-textures with specific parameters (size, shape, and distribution) on the surface of mechanical components has the potential to improve the tribological performance. When the ultrasonic vibration is applied to depth direction of turning, the micro-textured surfaces with specific dimples can be generated in a simple and effective way. Under the intermittent cutting condition, the generation mechanism of the micro-textured surface, processed by this one-dimensional ultrasonic vibration-assisted turning (1D UVAT), was further carried out. A novel theoretical model was firstly proposed from the perspective of geometric kinematics, which can reveal the influence of three intersection states between the flank face and cutting trace (η1 < tan α, η1 > tan α > η2 and η2 > tan α) on the size, shape, and distribution of micro-dimples, generated under intermittent cutting conditions. Then, a simulation model was built to predict the surface topography and dimple profile under different processing parameters. The results show that the processing parameters, including clearance angle, spindle speed, and vibration amplitude, have an important influence on the intersection state. By choosing the proper clearance angle, spindle speed, or vibration amplitude, the different intersection states can be realized, and the corresponding size, shape, and distribution of micro-dimples will be changed accordingly. With the increase of the nose radius and feed rate, the dimple width and distance between adjacent dimples along feed direction can both increase accordingly. The simulation results not only confirm the feasibility of the proposed theoretical model, but also show that the discrete or continuous micro-dimples, with different sizes and specific shapes, can be controllably generated on cylindrical surface by 1D UVAT under intermittent cutting conditions. Full article
(This article belongs to the Section Friction and Tribology)
Show Figures

Figure 1

12 pages, 3781 KiB  
Article
Extended Application and Experimental Verification of a New Erosive Burning Model Coupled Heat Transfer between Gas and Grain Based on a Star-Grain Solid Rocket Motor
by Lin Sun, Yanjie Ma, Futing Bao, Yang Liu and Weihua Hui
Energies 2022, 15(4), 1564; https://doi.org/10.3390/en15041564 - 20 Feb 2022
Cited by 2 | Viewed by 2611
Abstract
The estimation of erosive burning is of great importance for the internal ballistics computation of a solid rocket motor (SRM) with a large aspect ratio. Because of the variety of parameters affecting erosive burning, most of the erosive burning models developed in earlier [...] Read more.
The estimation of erosive burning is of great importance for the internal ballistics computation of a solid rocket motor (SRM) with a large aspect ratio. Because of the variety of parameters affecting erosive burning, most of the erosive burning models developed in earlier years usually contain unknown constants that need to be identified by a trial-and-error procedure for each SRM. Based on an SRM with a cylindrical grain, a new erosive burning model, which coupled the heat transfer between the gas and grain, was proven to be effective previously. To expand the scope of application of this model, in this paper, earlier and new erosive burning models were used in the transient one-dimensional internal ballistics computation, to obtain the internal ballistics for a star-grain SRM. A comparison between the computational and experimental results indicated that both the earlier and new erosive burning models can obtain results with good accuracy for a star-grain SRM. The paper shows that with no constants to be identified, the Ma model is easy to use and has the potential to predict the erosive burning rate before a firing test. Full article
Show Figures

Figure 1

12 pages, 2087 KiB  
Article
Precise Tuning of Polymeric Fiber Dimensions to Enhance the Mechanical Properties of Alginate Hydrogel Matrices
by Zehua Li, Amanda K. Pearce, Andrew P. Dove and Rachel K. O’Reilly
Polymers 2021, 13(13), 2202; https://doi.org/10.3390/polym13132202 - 2 Jul 2021
Cited by 16 | Viewed by 3577
Abstract
Hydrogels based on biopolymers, such as alginate, are commonly used as scaffolds in tissue engineering applications as they mimic the features of the native extracellular matrix (ECM). However, in their native state, they suffer from drawbacks including poor mechanical performance and a lack [...] Read more.
Hydrogels based on biopolymers, such as alginate, are commonly used as scaffolds in tissue engineering applications as they mimic the features of the native extracellular matrix (ECM). However, in their native state, they suffer from drawbacks including poor mechanical performance and a lack of biological functionalities. Herein, we have exploited a crystallization-driven self-assembly (CDSA) methodology to prepare well-defined one-dimensional micellar structures with controlled lengths to act as a mimic of fibrillar collagen in native ECM and improve the mechanical strength of alginate-based hydrogels. Poly(ε-caprolactone)-b-poly(methyl methacrylate)-b-poly(N, N-dimethyl acrylamide) triblock copolymers were self-assembled into 1D cylindrical micelles with precise lengths using CDSA epitaxial growth and subsequently combined with calcium alginate hydrogel networks to obtain nanocomposites. Rheological characterization determined that the inclusion of the cylindrical structures within the hydrogel network increased the strength of the hydrogel under shear. Furthermore, the strain at flow point of the alginate-based hydrogel was found to increase with nanoparticle content, reaching an improvement of 37% when loaded with 500 nm cylindrical micelles. Overall, this study has demonstrated that one-dimensional cylindrical nanoparticles with controlled lengths formed through CDSA are promising fibrillar collagen mimics to build ECM scaffold models, allowing exploration of the relationship between collagen fiber size and matrix mechanical properties. Full article
Show Figures

Graphical abstract

12 pages, 610 KiB  
Article
Inverse Thermoelastic Analysis of a Cylindrical Tribo-Couple
by Roman Kushnir, Anatoliy Yasinskyy, Yuriy Tokovyy and Eteri Hart
Materials 2021, 14(10), 2657; https://doi.org/10.3390/ma14102657 - 19 May 2021
Cited by 7 | Viewed by 2022
Abstract
Within the framework of the one-dimensional model for a tribo-couple consisting of two elastic cylinders accounting for the frictional heat generation on the interface due to the roughness of the contacting dissimilar materials, a problem on the identification of the unknown temperature on [...] Read more.
Within the framework of the one-dimensional model for a tribo-couple consisting of two elastic cylinders accounting for the frictional heat generation on the interface due to the roughness of the contacting dissimilar materials, a problem on the identification of the unknown temperature on one of the limiting surfaces of either inner or outer cylindrical layers is formulated and reduced to an inverse thermoelasticity problem via the use of the circumferential strain given on the other surface. To solve the latter problem, a semi-analytical algorithm is suggested, and its stability with respect to the small errors in the input data is analyzed. The efficiency of the proposed solution algorithm is validated numerically by comparing its results with the solution of a corresponding direct problem. The temperature and thermal stresses in the tribo-couple are analyzed. Full article
Show Figures

Figure 1

12 pages, 2339 KiB  
Article
Microtubules as One-Dimensional Crystals: Is Crystal-Like Structure the Key to the Information Processing of Living Systems?
by Noemí Sanchez-Castro, Martha Alicia Palomino-Ovando, Pushpendra Singh, Satyajit Sahu, Miller Toledo-Solano, Jocelyn Faubert, J. Eduardo Lugo, Anirban Bandyopadhyay and Kanad Ray
Crystals 2021, 11(3), 318; https://doi.org/10.3390/cryst11030318 - 23 Mar 2021
Cited by 3 | Viewed by 4635
Abstract
Each tubulin protein molecule on the cylindrical surface of a microtubule, a fundamental element of the cytoskeleton, acts as a unit cell of a crystal sensor. Electromagnetic sensing enables the 2D surface of microtubule to act as a crystal or a collective electromagnetic [...] Read more.
Each tubulin protein molecule on the cylindrical surface of a microtubule, a fundamental element of the cytoskeleton, acts as a unit cell of a crystal sensor. Electromagnetic sensing enables the 2D surface of microtubule to act as a crystal or a collective electromagnetic signal processing system. We propose a model in which each tubulin dimer acts as the period of a one-dimensional crystal with effective electrical impedance related to its molecular structure. Based on the mathematical crystal theory with one-dimensional translational symmetry, we simulated the electrical transport properties of the signal across the microtubule length and compared it to our single microtubule experimental results. The agreement between theory and experiment suggests that one of the most essential components of any Eukaryotic cell acts as a one-dimensional crystal. Full article
Show Figures

Figure 1

29 pages, 11144 KiB  
Article
Feasibility Study for Sustainable Use of Lithium-Ion Batteries Considering Different Positive Electrode Active Materials under Various Driving Cycles by Using Cell to Electric Vehicle (EV) Simulation
by Heewon Choi, Nam-gyu Lim, Seong Jun Lee and Jungsoo Park
Sustainability 2020, 12(22), 9764; https://doi.org/10.3390/su12229764 - 23 Nov 2020
Cited by 11 | Viewed by 5245
Abstract
Electric vehicles have been issued to achieve sustainable mobility. Main factors to sustainable electric vehicle (EV) are that lithium-ion battery (LIB) has to maintain lower cost, lighter weight, SOC (state of charge), thermal stability, and driving ranges. In this study, nickel-cobalt-manganese (NCM), lithium [...] Read more.
Electric vehicles have been issued to achieve sustainable mobility. Main factors to sustainable electric vehicle (EV) are that lithium-ion battery (LIB) has to maintain lower cost, lighter weight, SOC (state of charge), thermal stability, and driving ranges. In this study, nickel-cobalt-manganese (NCM), lithium iron phosphate (LFP), and lithium manganese oxide (LMO), which are used as representative positive electrode materials, were applied to battery cells. Then, the battery characteristics at the system level, according to the application of different positive electrode materials, were compared and analyzed. To this end, each of the 18650 cylindrical battery cells was modeled by applying different positive electrode active materials. The battery modeling was based on a database provided by GT(Gamma Technologies)-AutoLion. To analyze the thermal stability and capacity loss according to the temperature of the battery cell by applying different C-rate discharge and temperature conditions for each positive electrode active material, an electrochemical-based zero-dimensional (0D) analysis was performed. A test was also performed to determine the model feasibility by using a MACCOR 4300 battery charger/discharger. Moreover, a lumped battery pack modeling was performed to extend the modeled battery cell to an EV battery pack. By combining the pack and one-dimensional (1D) EV models, various driving cycles were described to investigate the battery performance at the vehicle level. It was found that the 0D electrochemistry-coupled 1D vehicle model could well predict the feasible tendencies considering various positive electrode materials of the LIB battery cell. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

17 pages, 8378 KiB  
Article
Analytical Model to Compare and Select Creep Constitutive Equation for Stress Relief Investigation during Heat Treatment in Ferritic Welded Structure
by Mengjia Hu, Kejian Li, Shanlin Li, Zhipeng Cai and Jiluan Pan
Metals 2020, 10(5), 688; https://doi.org/10.3390/met10050688 - 23 May 2020
Cited by 7 | Viewed by 3775
Abstract
The one-dimensional analytical model was promoted to help select the creep constitutive equation and predict heat treatment temperature in a ferritic welded structure, along with neglecting the impact of structural constraint and deformation compatibility. The analytical solutions were compared with simulation results, which [...] Read more.
The one-dimensional analytical model was promoted to help select the creep constitutive equation and predict heat treatment temperature in a ferritic welded structure, along with neglecting the impact of structural constraint and deformation compatibility. The analytical solutions were compared with simulation results, which were validated with experimental measurements in a ferritic welded rotor. The as-welded and post weld heat treatment (PWHT) residual stresses on the inner and outer cylindrical surfaces were measured with the hole-drilling method (HDM) for validation. Based on the one-dimensional analytical model, different effects of Norton and Norton-Bailey creep constitutive equation on stress relief during heat treatment in a ferritic welded rotor were investigated. Full article
(This article belongs to the Special Issue Heat Treatment of Steels)
Show Figures

Figure 1

Back to TopTop