Analysis of Water Volume Required to Reach Steady Flow in the Constant Head Well Permeameter Method
Abstract
:1. Introduction
2. Objectives
3. Methods
3.1. One-Dimensional Infiltration under Constant Depth of Ponding
3.2. Three-Dimensional Infiltration from a Cylindrical Hole under a Constant Depth of Water
4. Water Requirements to Reach Steady State for Measuring Ksat
4.1. Surface Area and Volume of the Saturated Bulb
4.2. Volume of the Wetted Bulb
4.3. Example Calculation
- Volume of water to fill the hole to 15 cm depth, π × 9 × 15 cm3;
- Volume of water to increase the water content within the saturated bulb from θi to θs, 2256 × (θs − θi) cm3;
- Volume of water to increase the water content of the wetted volume outside of the saturated bulb, (19,386 – 2256) × (θs − θi)/2 cm3;
- Volume of water to reach the quasi-steady state is the sum of the three values determined above, and volume of water to be applied to soil to measure the quasi-steady state rate, Q, is 100–400 cm3.
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jury, W.A.; Horton, T. Soil Physics, 6th ed.; John Wiley and Son: Hoboken, NJ, USA, 2004; p. 384. [Google Scholar]
- Amoozegar, A.; Warrick, A.W. Hydraulic conductivity of saturated soils: Field methods. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd ed.; Agron. Monograph No. 9; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 735–770. [Google Scholar]
- SSSA. Glossary of Soil Science Terms; Soil Science Society of America: Madison, WI, USA, 2023; Available online: https://www.soils.org/publications/soils-glossary/ (accessed on 10 May 2023).
- Hillel, D. Introduction to Environmental Soil Physics; Elsevier Academic Press: San Diego, CA, USA, 2004; p. 494. [Google Scholar]
- Amoozegar, A.; Wilson, G.V. Methods for measuring hydraulic conductivity and drainable porosity. In Agricultural Drainage; Monograph No. 38; Skaggs, R.W., van Schilfgaarde, J., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1999; pp. 1149–1205. [Google Scholar]
- ASTM. Standard method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter, D5084-16a. In Annual Book of ASTM Standards; Section 4 Construction; ASTM International: West Conshohocken, PA, USA, 2020; Volume 04.08, pp. 1089–1112. [Google Scholar]
- ASTM. Standard guide for comparison of field methods for determining hydraulic conductivity in vadose zone. D5126-16. In Annual Book of ASTM Standards, Section 4 Construction; ASTM International: West Conshohocken, PA, USA, 2020; Volume 04.08, pp. 1156–1167. [Google Scholar]
- Booltink, H.W.G.; Bouma, J. Suction crust infiltrometer. In Methods of Soil Analysis, Part 4. Physical Methods; SSSA Book Series No. 5; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 926–930. [Google Scholar]
- Clothier, B.; Scotter, D. Unsaturated water transmission parameters obtained from infiltration. In Methods of Soil Analysis, Part 4. Physical Methods; SSSA Book Series No. 5; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 879–898. [Google Scholar]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Cifrodelli, M.; Picciafuoco, T.; Corradini, C.; Govindaraju, R.S. In situ measurements of soil saturated hydraulic conductivity: Assessment of reliability through rainfall–runoff experiments. Hydrol. Process. 2017, 31, 3084–3094. [Google Scholar] [CrossRef]
- Sakellariou-Makrantonaki, M.; Angelaki, A.; Evangelides, C.; Bota, V.; Tsianou, E.; Floros, N. Experimental determination of hydraulic conductivity at unsaturated soil column. Procedia Eng. 2016, 162, 83–90. [Google Scholar] [CrossRef]
- Vachaud, G.; Dane, J.H. Instantaneous profile. In Methods of Soil Analysis, Part 4. Physical Methods; SSSA Book Series No. 5; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 937–962. [Google Scholar]
- Ahuja, L.R.; Rawls, W.J.; Nielsen, D.R.; Williams, R.D. Determining soil hydraulic properties and their field variability from simpler measurements. In Agricultural Drainage; Monograph No. 38; Skaggs, R.W., van Schilfgaarde, J., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1999; pp. 1207–1233. [Google Scholar]
- Granata, F.; Di Nunno, F.; Modoni, G. Hybrid machine learning models for soil saturated conductivity prediction. Water 2022, 14, 1729. [Google Scholar] [CrossRef]
- Kosugi, K.; Hopman, J.W.; Dane, J.H. Parametric models. In Methods of Soil Analysis, Part 4. Physical Methods; SSSA Book Series No. 5; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 739–757. [Google Scholar]
- Ottoni, M.V.; Filho, T.B.O.; Lopes-Assad, M.R.C.; Filho, O.C.R. Pedotransfer functions for saturated hydraulic conductivity using a database with temperate and tropical climate soils. J. Hydrol. 2019, 575, 1345–1358. [Google Scholar] [CrossRef]
- Peters, A.; Hohenbrink, T.L.; Iden, S.C.; van Genuchten, M.T.; Durner, W. Prediction of the absolute hydraulic conductivity function from soil water retention data. Hydrol. Earth Syst. Sci. 2023, 27, 1565–1582. [Google Scholar] [CrossRef]
- Tian, Z.; Kool, D.; Ren, T.; Horton, R.; Heitman, J.L. Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model. J. Hydrol. 2019, 572, 719–731. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of the unsaturated soil. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Williams, W.G.; Ojuri, O.O. Predictive modelling of soils’ hydraulic conductivity using artificial neural network and multiple linear regression. SN Appl. Sci. 2021, 3, 152. [Google Scholar] [CrossRef]
- Zuo, Y.; He, K. Evaluation and development of pedo-transfer functions for predicting soil saturated hydraulic conductivity in the Alpine Frigid Hilly region of Qinghai Province. Agronomy 2021, 11, 1581. [Google Scholar] [CrossRef]
- Shuster, W.D.; Schifman, L.; Kelleher, C.; Golden, H.E.; Bhaskar, A.S.; Parolari, A.J.; Stewart, R.D.; Herrmann, D.L. K in an urban world: New contexts for hydraulic conductivity. J. Am. Water Resour. Assoc. 2021, 57, 493–504. [Google Scholar] [CrossRef]
- Zhang, Y.; Schaap, M.G. Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. J. Hydrol. 2019, 575, 1011–1030. [Google Scholar] [CrossRef]
- Bekele, E.; Toze, S.; Patterson, B.; Fegg, W.; Shackleton, M.; Higginson, S. Evaluating two infiltration gallery design for managed aquifer recharge using secondary treated wastewater. J. Environ. Manag. 2013, 117, 115–120. [Google Scholar] [CrossRef]
- Hawkins, G.; Brown, J.T.T.; Radcliffe, D.E.; Freshly, P. Measuring Soil Saturated Hydraulic Conductivity for On-Site Wastewater Treatment Systems. University of Georgia Cooperative Extension Bulletin 1535. 2022. Available online: https://secure.caes.uga.edu/extension/publications/files/pdf/B%201535_1.PDF (accessed on 10 May 2023).
- Sims, J.L.; Suflita, J.M.; Russell, H.H. In-situ bioremediation of contaminated ground water. In Ground Water Issue; EPA/540/S-92/003; US Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory: Ada, OK, USA, 1992. [Google Scholar]
- Braud, I.; Desprats, J.-F.; Ayral, P.-A.; Bouvier, C.; Vandervaere, J.-P. Mapping topsoil; field-saturated hydraulic conductivity from point measurements using different methods. J. Hydrol. Hydromech. 2017, 65, 264–275. [Google Scholar] [CrossRef]
- Hangen, E.; Vieten, F. A comparison of five different techniques to determine hydraulic conductivity of a riparian soil; in North Bavaria, Germany. Pedosphere 2018, 28, 443–450. [Google Scholar] [CrossRef]
- Libohova, Z.; Schoeneberger, P.; Bowling, L.C.; Owens, P.R.; Wysoki, D.; Wills, S.; Williams, C.O.; Seybold, C. Soil systems for upscaling saturated hydraulic conductivity of hydrological modeling in the critical zone. Vadose Zone J. 2018, 17, 170051. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E. Constant head well permeameter (vadose zone). In Methods of Soil Analysis, Part 4. Physical Methods; SSSA Book Series No. 5; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 844–858. [Google Scholar]
- Stephens, D.B.; Lambert, K.; Watson, D. Regression models for hydraulic conductivity and field test of the borehole permeameter. Water Resour. Res. 1987, 23, 2207–2214. [Google Scholar] [CrossRef]
- USBR. Procedure for performing field permeability testing by the well permeameter method. In Earth Manual, Part 2, Water Resources Technical Publication, 3rd ed.; USBR 7300-89; The Bureau of Reclamation, US Department of the Interior: Denver, CO, USA, 1990; pp. 1227–1236. Available online: https://www.usbr.gov/tsc/techreferences/mands/mands-pdfs/earth2.pdf (accessed on 10 May 2023).
- Amoozegar, A. Examination of models for determining saturated hydraulic conductivity by the constant head well permeameter method. Soil Tillage Res. 2020, 200, 104572. [Google Scholar] [CrossRef]
- Schoeneberger, P.J.; Amoozegar, A.; Buol, S.W. Variation of physical properties of a soil and saprolite continuum at three geomorphic positions. Soil Sci. Soc. Am. J. 1995, 59, 1389–1397. [Google Scholar] [CrossRef]
- Talsma, T. Some aspects of three-dimensional infiltration. Aust. J. Soil Res. 1970, 8, 179–184. [Google Scholar] [CrossRef]
- Talsma, T.; Hallam, P.M. Hydraulic conductivity measurement of forest catchments. Aust. J. Soil Res. 1980, 30, 139–148. [Google Scholar] [CrossRef]
- Zangar, C.N. Theory and Problems of Water Percolation; Engin. Monograph No. 8; The Bureau of Reclamation, US Department of the Interior: Denver, CO, USA, 1953; p. 78. [Google Scholar]
- Philip, J.R. Approximate analysis of the borehole permeameter in unsaturated soil. Water Resour. Res. 1985, 21, 1025–1033. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E.; Clotheir, B.E. The constant head well permeameter: Effect of unsaturated flow. Soil Sci. 1985, 139, 172–180. [Google Scholar] [CrossRef]
- Stephens, D.B.; Neuman, S.P. Vadose zone permeability tests: Steady state results. J. Hydraul. Div. ASCE 1982, 108, 640–659. [Google Scholar] [CrossRef]
- Gardner, W.R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 1958, 85, 228–232. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: 2. The profile of infinity. Soil Sci. 1957, 83, 435–448. [Google Scholar] [CrossRef]
- Stephens, D.B. Analysis of Constant Head Borehole Infiltration Tests in the Vadose Zone. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1979. [Google Scholar]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. Non-destructive measurement of chicken egg characteristics: Improved formulae for calculating egg volume and surface area. Biosys. Eng. 2021, 201, 42–49. [Google Scholar] [CrossRef]
- Amoozegar, A. A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone. Soil Sci. Soc. Am. J. 1989, 53, 1356–1361. [Google Scholar] [CrossRef]
- Tee, G.J. Surface Area of Ellipsoid Segment; Department of Mathematics, University of Auckland: Auckland, New Zealand, 2005; Available online: https://www.math.auckland.ac.nz/Research/Reports/Series/539.pdf (accessed on 10 May 2023).
- Wikipedia. Ellipsoid. 2023. Available online: https://en.wikipedia.org/wiki/Ellipsoid (accessed on 10 May 2023).
- Warrick, A.W.; Nielsen, D.R. Spatial variability of soil physical properties in the field. In Applications of Soil Physics; Hillel, D., Ed.; Academic Press: New York, NY, USA, 1980; pp. 319–344. [Google Scholar]
p | k | B1 | B2 | D | S | V | |
---|---|---|---|---|---|---|---|
-------------------------------cm-------------------------- | cm2 | cm3 | |||||
Saturated Bulb | 1.46 | 1 | 17.46 | 5.48 | 7.5 | 947 | 2256 |
Wetted Volume | 0.31 | 3 | 18.31 | 16.44 | 16.5 | 3515 | 19,386 |
Ksat, cm h−1 | 0.1 | 0.25 | 0.5 | ≥0.75 | |
Required Q, cm3 h−1 | 95 | 237 | 474 | ≥710 | |
Volume to Measure Q, cm3 | 100 | 200 | 300 | 400 | |
Reaching † | |||||
θs− θi | Quasi-Steady State | Making Measurement | |||
cm3 cm−3 | cm3 | ------------------------cm3------------------------ | |||
0.4 | 4750 | 4850 | 4950 | 5050 | 5150 |
0.3 | 3670 | 3770 | 3870 | 3970 | 4070 |
0.2 | 2590 | 2690 | 2790 | 2890 | 2990 |
0.1 | 1510 | 1610 | 1710 | 1810 | 1910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoozegar, A.; Heitman, J.L. Analysis of Water Volume Required to Reach Steady Flow in the Constant Head Well Permeameter Method. Hydrology 2023, 10, 214. https://doi.org/10.3390/hydrology10110214
Amoozegar A, Heitman JL. Analysis of Water Volume Required to Reach Steady Flow in the Constant Head Well Permeameter Method. Hydrology. 2023; 10(11):214. https://doi.org/10.3390/hydrology10110214
Chicago/Turabian StyleAmoozegar, Aziz, and Joshua L. Heitman. 2023. "Analysis of Water Volume Required to Reach Steady Flow in the Constant Head Well Permeameter Method" Hydrology 10, no. 11: 214. https://doi.org/10.3390/hydrology10110214
APA StyleAmoozegar, A., & Heitman, J. L. (2023). Analysis of Water Volume Required to Reach Steady Flow in the Constant Head Well Permeameter Method. Hydrology, 10(11), 214. https://doi.org/10.3390/hydrology10110214