Purification of Waste Water Containing Chlorhexidine Digluconate Using Nanoporous Carbons Obtained from Different Raw Materials
Abstract
1. Introduction
- -
- A comprehensive approach is shown for selecting a suitable raw material (waste from the processing industry) for obtaining a high-quality activated carbon;
- -
- Three raw materials were used for the production of activated carbon, which are released in large quantities from the processing industry. The goal is to find a suitable opportunity for their use;
- -
- The possibility of selecting a suitable raw material based on the analysis of the content of lignin, cellulose, hemicellulose, and lipids is shown. It has been established that a significant influence on the suitability of the raw material for obtaining an activated carbon is the ratio of the amounts of lignin and cellulose in the precursor. In the selection of raw materials, a suitable texture was taken into account, which allows them to be successfully processed by an energy-saving, one-stage method combining carbonization and activation of the raw material;
- -
- The optimal processing conditions (temperature, temperature rise rate, and amount of the activating reagent: water vapor) of the selected raw materials were determined and indicated in the article;
- -
- The obtained activated carbons were subjected to oxidative treatment with HNO3 in order to give an acidic character to their surface and increase the amount of oxygen-containing functional groups. This treatment was chosen as appropriate considering the chemical nature of the chlorhexidine gluconate molecule;
- -
- The treatments of spent activated carbon have been carried out with the aim of regenerating their adsorption capacity. The treatment with water vapor at a higher temperature (500 °C) gives a satisfactory result. Based on the results obtained, conclusions have been made about the nature of the adsorption (physical or chemical) of chlorhexidine gluconate on the surface of the adsorbents. The adsorption capacity of the activated carbons obtained on the basis of the three selected raw materials towards chlorhexidine gluconate has been determined, and their applicability for this purpose has been established.
2. Materials and Methods
2.1. Preparation of Precursors
2.2. Preparation of Activated Carbons from Peach Stones, Plum Stones, and Olive Stones
2.3. Methods of Carbon Characterization
2.4. Adsorption
3. Results and Discussion
3.1. Characterization of Nanoporous Activated Carbons
3.2. TG—DSC Analysis
3.3. Raman Structural Analysis of ACpeach, AColive, ACplum
3.4. Elemental Analysis of Carbons
3.5. Oxygen Functional Group Content
3.6. SEM Analysis
3.7. Adsorption Investigations
3.8. Effect of pH of the Solution
3.9. Desorption Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bansal, R.C.; Goyal, M. Activated Carbon Adsorption; Taylor & Francis: Routledge, UK; CRC Press: Hoboken, NJ, USA, 2005; ISBN 978-0-42-911418-2. [Google Scholar] [CrossRef]
- Bandosz, T.J.; Ania, C.O. Surface chemistry of activated carbons and its characterization. In Activated Carbon Surfaces in Environmental Remediation; Bandosz, T.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 159–230. ISBN 9780080455952. [Google Scholar]
- Banerjee, D.; Basu, S.; Sarkar, U. Removal of chlorhexidine gluconate in presence of a cationic surfactant using acid functionalized activated carbon: Validation of multicomponent models. J. Environ. Chem. Eng. 2020, 8, 104154. [Google Scholar] [CrossRef]
- Berenjian, A.; Chan, N.; Malmiri, H.J. Volatile organic compounds removal methods: A review. Am. J. Biochem. Biotechnol. 2012, 8, 220–229. [Google Scholar] [CrossRef]
- Kulshrestha, R.; Sisodiya, A.; Tiwari, S. Overview of Methods and Processes Used in Wastewater Treatment. In Current Status of Fresh Water Microbiology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 289–301. [Google Scholar]
- Aksu, Z.; Yener, A. Comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manag. 2001, 21, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Sandu, T.; Sarbu, A.; Caprarescu, S.; Stoica, E.B.; Iordache, T.-V.; Chiiac, A.-L. Polymer Membranes as Innovative Means of Quality Restoring for Wastewater Bearing Heavy Metals. Membranes 2022, 12, 1179. [Google Scholar] [CrossRef] [PubMed]
- Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Sarbu, A.; Sandu, T.; Ferhat Yardim, M.; Sirkecioglu, A. Removal of detergents by zeolites and membranes. Bulg. Chem. Commun. 2014, 46, 157–164. Available online: http://www.bcc.bas.bg/BCC_Volumes/Volume_46_Number_1_2014/22.pdf (accessed on 9 June 2024).
- Boustila, H.; Boutillara, Y.; Velasco, L.-F.; Djellali, A.; Tazibet, S. Tailoring Activated Carbon Properties for Pb(II) and Cr(VI) Removal from Water in Continuous Mode. Chem. Eng. Technol. 2022, 45, 258–265. [Google Scholar] [CrossRef]
- Tzvetkov, G.; Mihaylova, S.; Stoitchkova, K.; Tzvetkov, P.; Spassov, T. Mechanochemical and chemical activation of lignocellulosic material to prepare powdered activated carbons for adsorption applications. Powder Technol. 2016, 299, 41–50. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmet, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouqueol, J.; Sing, K. Adsorption by Powders and Porous Solids—Principles, Methodology and Applications; Elsevier: Amsterdam, The Netherlands, 1999; ISBN 978-0-12-598920-6. [Google Scholar] [CrossRef]
- Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 978-0-08-044463-5. [Google Scholar] [CrossRef]
- Chen, S.G.; Yang, R.T. Theoretical basis for the potential theory adsorption isotherms: The Dubinin-Radushkevich and Dubinin-Astakhov equation. Langmuir 1994, 10, 4244–4249. [Google Scholar] [CrossRef]
- Boehm, H.P. Chemical Identification of Surface Groups. In Advances in Catalysis and Related Subjects; Eley, D.D., Pines, H., Weisz, P.B., Eds.; Academic Press: New York, NY, USA, 1966; Volume 16, pp. 179–188. [Google Scholar] [CrossRef]
- Papirer, E.; Sheng, L.; Donnet, J.B. Contribution to the study of basic surface groups on carbons. Carbon 1987, 25, 243–247. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Pérez-Ramirez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–3. [Google Scholar] [CrossRef]
- Núñez-Decap, M.; Wechsler-Pizarro, A.; Vidal-Vega, M. Mechanical, physical, thermal and morphological properties of polypropylene composite materials developed with particles of peach and cherry stones. Sustain. Mater. Technol. 2021, 29, e00300. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Giles, C.H.; D’Silva, A.P.; Easton, I.A. A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J. Colloid Interface Sci. 1974, 47, 766–778. [Google Scholar] [CrossRef]
- Gimenez-Martın, E.; Lopez-Andrade, M.; Ontiveros-Ortega, A.; Espinosa-Jimenez, M. Adsorption of chlorhexidine onto cellulosic fibers. Cellulose 2009, 16, 467–479. [Google Scholar] [CrossRef]
- Nakamura, T.; Tanada, S.; Kawasaki, N.; Hara, T.; Imaki, M.; Miyoshi, T. Adsorption Characteristics of Chiorhexidine onto Activated Carbon for Medical Waste Water Treatment. Seikatsu Eisei 1993, 37, 249–255. Available online: https://www.jstage.jst.go.jp/article/seikatsueisei1957/37/6/37_6_249/_pdf (accessed on 18 December 2024).
- Ishigami, S.; Hase, S.; Nakashima, H.; Yamada, H.; Dohgomori, H.; Natsugoe, S.; Aikou, T. Intravenous chlorhexidine gluconate causing acute respiratory distress syndrome. Clin. Toxicol. 2001, 39, 77–80. [Google Scholar] [CrossRef]
- Mucklow, E.S. Accidental feeding of a dilute antiseptic solution (chlorhexidine 0.05% with cetrimide 1%) to five babies. Hum. Toxicol. 1988, 7, 567–569. [Google Scholar] [CrossRef]
- Leyla-Ramos, R.; Bernal-Jacome, L.; Mendoza-Barron, J.; Herna24ndez-Orta, M. Kinetic modeling of pentachlorophenol adsorption onto granular activated carbon. J. Taiwan Inst. Chem. Eng. 2009, 40, 622–629. [Google Scholar] [CrossRef]
- Liu, Q.-S.; Zheng, T.; Wang, P.; Jiang, J.-P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
Sample | Raw Material | Activation Temperature (°C) | Iodine Number (mg/g) | Carbon Yield (wt. %) |
---|---|---|---|---|
750 | 689 | 24 | ||
ACpeach | peach stones | 800 | 700 | 21 |
850 | 756 | 16 | ||
750 | 500 | 23 | ||
ACplum | plum stones | 800 | 556 | 17 |
850 | 610 | 12 | ||
750 | 430 | 19 | ||
AColive | olives stones | 800 | 475 | 13 |
850 | 593 | 11 |
Sample | Specific Surface Area SBET, m2/g | Total Pore Volume Vtotal, cm3/g | Micropore Volume Vmicro, cm3/g | Mesopore Volume Vmeso, cm3/g |
---|---|---|---|---|
ACpeach | 729.7 | 0.406 | 0.230 | 0.175 |
ACplum | 590.0 | 0.320 | 0.189 | 0.130 |
AColive | 317.7 | 0.251 | 0.139 | 0.110 |
Raw Materials and Solid Products | Proximate Analysis (wt. %) | Elemental Analysis (wt. %) | ||||||
---|---|---|---|---|---|---|---|---|
W | Ash | Vol. | C (wt. %) | H (wt. %) | N (wt. %) | S (wt. %) | O (by diff.) | |
Olive stones | 7.45 | 0.61 | 80.66 | 51.58 | 6.34 | 0.22 | 0.10 | 41.76 |
AColive | 3.11 | 2.05 | 3.76 | 80.73 | 1.35 | 0.28 | 0.14 | 17.50 |
Peach stones | 6.41 | 0.22 | 80.61 | 51.52 | 6.32 | 0.21 | 0.11 | 41.84 |
ACpeach | 1.62 | 2.11 | 3.75 | 88.00 | 0.96 | 0.40 | 0.25 | 10.39 |
Plum stones | 8.72 | 2.36 | 79.78 | 54.72 | 7.52 | 0.33 | 0.39 | 37.04 |
ACplum | 1.85 | 2.84 | 5.33 | 84.51 | 1.26 | 1.01 | 0.29 | 12.93 |
Sample | NaHCO3 | Na2CO3 | NaOH | NaOEt | Basic Groups | pH |
---|---|---|---|---|---|---|
AColive | 0.60 | 2.10 | 1.50 | 3.55 | BDL | 5.22 |
ACpeach | 0.33 | 3.25 | 0.85 | 2.80 | 0.50 | 5.82 |
ACplum | 0.20 | 1.25 | 0.25 | 4.85 | 1.00 | 5.98 |
Pollutant | Qo (mg/g) | b (L/mg) | R2 | Kf (mg/g) | R2 | SD |
---|---|---|---|---|---|---|
AColive | 156.7 | 0.3194 | 0.97173 | 112.4 | 0.97552 | 0.0849 |
ACpeach | 189.1 | 0.3115 | 0.99229 | 139.7 | 0.98453 | 0.0738 |
ACplum | 180.5 | 0.1221 | 0.94837 | 130.0 | 0.97999 | 0.0885 |
Sample | Qm (mg/g) | References |
---|---|---|
Peach stones | 189.1 | This study |
Plume stones | 180.5 | This study |
Olive stones | 156.7 | This study |
Viscose fibers | 28.0 | [22] |
Cellulosic fibers | 13.0 | [22] |
Commercial activated carbon | 154.2 | [23] |
Sample | Specific Surface Area SBET, m2/g | Mass Loss after Water Vapor Activation, % |
---|---|---|
ACpeach | 729.7 | |
ACpeach (with chlorhexidine gluconate) | 532.5 | |
ACpeach (after desorption with boiling water) | 544.3 | |
ACpeach (after desorption with water vapor) | 690.3 | 8.9 |
ACplum | 590.0 | |
ACplum (with chlorhexidine gluconate) | 392.6 | |
ACplum (after desorption with boiling water) | 404.4 | |
ACplum (after desorption with water vapor) | 550.5 | 9.7 |
AColive | 317.7 | |
AColive (with chlorhexidine gluconate) | 141.2 | |
AColive (after desorption with boiling water) | 151.8 | |
AColive (after desorption with water vapor) | 282.4 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, B.; Stoycheva, I.; Tsyntsarski, B.; Kosateva, A.; Petrov, N.; Dolashka, P. Purification of Waste Water Containing Chlorhexidine Digluconate Using Nanoporous Carbons Obtained from Different Raw Materials. Chemistry 2025, 7, 91. https://doi.org/10.3390/chemistry7030091
Petrova B, Stoycheva I, Tsyntsarski B, Kosateva A, Petrov N, Dolashka P. Purification of Waste Water Containing Chlorhexidine Digluconate Using Nanoporous Carbons Obtained from Different Raw Materials. Chemistry. 2025; 7(3):91. https://doi.org/10.3390/chemistry7030091
Chicago/Turabian StylePetrova, Bilyana, Ivanka Stoycheva, Boyko Tsyntsarski, Angelina Kosateva, Nartzislav Petrov, and Pavlina Dolashka. 2025. "Purification of Waste Water Containing Chlorhexidine Digluconate Using Nanoporous Carbons Obtained from Different Raw Materials" Chemistry 7, no. 3: 91. https://doi.org/10.3390/chemistry7030091
APA StylePetrova, B., Stoycheva, I., Tsyntsarski, B., Kosateva, A., Petrov, N., & Dolashka, P. (2025). Purification of Waste Water Containing Chlorhexidine Digluconate Using Nanoporous Carbons Obtained from Different Raw Materials. Chemistry, 7(3), 91. https://doi.org/10.3390/chemistry7030091