Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = oligomeric cartilage matrix protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2629 KiB  
Article
Full-Length Transcriptome of Testis and Ovary Provides Insights into Alternative Splicing During Gonadal Development in Litopenaeus vannamei
by Youyan Wang, Yang Yu, Yue Wang and Fuhua Li
Int. J. Mol. Sci. 2025, 26(12), 5863; https://doi.org/10.3390/ijms26125863 - 19 Jun 2025
Viewed by 494
Abstract
The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is an important aquaculture species, yet the molecular mechanisms underlying its sex differentiation and gonadal development remain poorly understood. A deeper understanding of these processes is critical for advancing broodstock quality and enabling [...] Read more.
The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is an important aquaculture species, yet the molecular mechanisms underlying its sex differentiation and gonadal development remain poorly understood. A deeper understanding of these processes is critical for advancing broodstock quality and enabling unisex breeding strategies. While previous studies have focused on gene expression differences between females and males, structural differences in transcriptomic regulation between sexes have been largely overlooked. Here, we present a comprehensive full-length transcriptome analysis of L. vannamei testis and ovary, identifying 830 and 690 novel genes, respectively, and over 6000 new isoforms. Notably, we discovered extensive alternative splicing (AS) events, with the cartilage oligomeric matrix protein-like gene exhibiting over 300 AS isoforms in the ovary compared to only 2 in the testis, suggesting a potential role in ovarian development. Furthermore, sex-determining genes such as Fem-1a, Fem-1c, and Sxl were found to produce AS isoforms exclusively in ovarian tissue. We also identified three germ cell development-associated genes—MAD2-like, RAD51-like, and Su(dx)-like—that undergo distinct AS events in gonadal tissues, leading to sex-specific structural domain alterations. These findings highlight the complexity of AS-mediated post-transcriptional regulation in L. vannamei and provide novel insights into the molecular mechanisms governing sex differentiation and gonadal development. Full article
Show Figures

Figure 1

21 pages, 6568 KiB  
Article
Effects of Oligomeric Proanthocyanidins on Cadmium-Induced Extracellular Matrix Damage via Inhibiting the ERK1/2 Signaling Pathway in Chicken Chondrocytes
by Jianhong Gu, Dan Liu, Anqing Gong, Xinrui Zhao, Jiatao Zhou, Panting Wang, Han Xia, Ruilong Song, Yonggang Ma, Hui Zou, Muhammad Azhar Memon, Yan Yuan, Xuezhong Liu, Jianchun Bian, Zongping Liu and Xishuai Tong
Vet. Sci. 2025, 12(4), 317; https://doi.org/10.3390/vetsci12040317 - 31 Mar 2025
Viewed by 671
Abstract
Cadmium (Cd) is a toxic, non-essential metal that primarily enters animal bodies through the digestive and respiratory systems, leading to damage to multiple organs and tissues. Cd can accumulate in cartilage and induce damage to chondrocytes. Procyanidins (PAs), also known as concentrated tannic [...] Read more.
Cadmium (Cd) is a toxic, non-essential metal that primarily enters animal bodies through the digestive and respiratory systems, leading to damage to multiple organs and tissues. Cd can accumulate in cartilage and induce damage to chondrocytes. Procyanidins (PAs), also known as concentrated tannic acid or oligomeric proanthocyanidins (OPCs), exhibit diverse biological and pharmacological activities. However, the mechanism of OPCs alleviates Cd-induced damage to chondrocytes in chickens remains to be further explored in vitro. Chondrocytes were isolated from both ends of the tibia of 17-day-old SPF chicken embryos, and then subsequently treated with various concentrations of Cd (0, 1, 2.5, 5, and 10 μmol/L) or OPCs (0, 5, 10, 20, and 40 μmol/L) to investigate the mechanism underlying extracellular matrix (ECM) degradation and damage. Cd reduced cell viability, glycosaminoglycan (GAG) secretion, and ECM degradation in chondrocytes by decreasing the expression of type II collagen alpha 1 (COL2A1) and aggrecan (ACAN) while increasing the release of cartilage oligomeric matrix protein (COMP), along with elevated levels of matrix-degrading enzymes, such as matrix metalloproteinases 1 (MMP1), MMP10, and MMP13, and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5. Cd induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and the expression of matrix-degrading enzymes, impairing ECM synthesis, an effect that could be alleviated by ERK1/2 inhibitor U0126. Chondrocytes were treated with 5 μmol/L Cd and 10 μmol/L OPCs, and it was found that OPCs inhibited the activation of the ERK1/2 signaling pathway and the expression of matrix-degrading enzymes, while promoting ECM synthesis and alleviating Cd-induced ECM damage in chickens. This study provides a theoretical basis for clinical research on OPCs with respect to the prevention and treatment of Cd-induced chondrogenic diseases in poultry. Full article
Show Figures

Graphical abstract

21 pages, 29215 KiB  
Article
Cartilage Oligomeric Matrix Protein Promotes Radiation Resistance in Non-Small Cell Lung Cancer In Vitro
by Kaitlyn E. Reno, Alicia Costa-Terryll, Sun H. Park, Ryan T. Hughes, Michael K. Farris, Fei Xing and Jeffrey S. Willey
Int. J. Mol. Sci. 2025, 26(6), 2465; https://doi.org/10.3390/ijms26062465 - 10 Mar 2025
Viewed by 1087
Abstract
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix protein that has recently been associated with worse patient outcomes in breast, prostate, colorectal and hepatocellular cancers. This study aimed to determine whether COMP was also associated with increased progression and resistance to radiation [...] Read more.
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix protein that has recently been associated with worse patient outcomes in breast, prostate, colorectal and hepatocellular cancers. This study aimed to determine whether COMP was also associated with increased progression and resistance to radiation in non-small cell lung cancer (NSCLC). The proliferation, migration, invasion and cell viability of wild-type and COMP overexpressing NSCLC cell lines were assessed when treated with exogenous COMP, with or without radiation. In addition, these cells were treated with inhibitors of downstream signaling intermediates of COMP. Proteomics were performed on the A549 cell line treated with COMP, radiation and inhibitors. NSCLC cells treated with COMP or overexpressing COMP had greater proliferation, migration, invasion and viability when irradiated compared to non-overexpressed cells treated with radiation alone, but this effect was reversed when treated with Src or PI3k inhibitors. The NCI-H1437 cell line exhibited a decrease in proliferation when treated with exogenous COMP, however COMP overexpression mitigated the radiation-induced reduction. Proteomics analyses indicate that COMP promotes oxidative phosphorylation and drug resistance pathways. Therefore, COMP overexpression and treatment with exogenous COMP appears to protect NSCLC cells against radiation in vitro, however treatment with inhibitors reverses COMP-mediated protection and progression. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 5045 KiB  
Article
Curcumin and Vitamin D Supplement Attenuates Knee Osteoarthritis Progression in ACLT + MMx Rat Model: Effect on Cartilage Protection and Pain Reduction
by Lokesh Kumar Mende, Yaswanth Kuthati and Chih-Shung Wong
Nutrients 2025, 17(2), 349; https://doi.org/10.3390/nu17020349 - 19 Jan 2025
Cited by 2 | Viewed by 2497
Abstract
Background: Knee osteoarthritis (OA) is a common and debilitating disorder marked by joint degradation, inflammation, and persistent pain. This study examined the possible therapeutic effects of curcumin and vitamin D on OA progression and pain in a rat knee OA model by anterior [...] Read more.
Background: Knee osteoarthritis (OA) is a common and debilitating disorder marked by joint degradation, inflammation, and persistent pain. This study examined the possible therapeutic effects of curcumin and vitamin D on OA progression and pain in a rat knee OA model by anterior cruciate ligament transection and meniscectomy (ACLT + MMx). Methods: Male Wistar rats were categorized into five groups: control, curcumin-treated (100 mg/kg/day), vitamin D-treated (25 µg/kg/day), a combination of vitamin D and curcumin, and sham-operated. All supplements were administered orally on a daily basis for 12 weeks. Pain behaviors were assessed, serum biomarkers were measured, and knee histology was examined. Results: Both curcumin and vitamin D independently reduced pain, while the combined group exhibited better analgesic effects. Serum inflammatory cytokines demonstrated a decrease in pro-inflammatory cytokines and an elevation in anti-inflammatory cytokine interleukin-10 (IL-10) in the supplement groups. The antioxidative markers were partially recovered by curcumin and vitamin D supplement. However, the oxidative stress marker Cartilage Oligomeric Matrix Protein (COMP) was significantly reduced. Histology analysis revealed a preservation of joint architecture and cartilage integrity and decreased synovium inflammation in the groups treated with curcumin and vitamin D. Conclusions: Our findings indicate a dual mechanism that encompasses the role of anti-inflammation and antioxidation on knee OA progression and pain reduction, underscoring the potential of these natural chemicals as therapeutic agents for knee OA; curcumin and vitamin D supplement may be added in delaying knee OA progression and associated pain management in clinical patient care. Full article
Show Figures

Figure 1

15 pages, 3867 KiB  
Article
Comparison of Concentration- and Homology-Dependent Effects of the Proinflammatory Cytokine Interleukin-1β (IL-1β) in a Bovine Chondrocyte Inflammation Model
by Robert Ossendorff, Sarah Kurth, Su Wang, Max Jaenisch, Elio Assaf, Sebastian Scheidt, Kristian Welle, Christof Burger, Dieter C. Wirtz, Andreas C. Strauss and Frank A. Schildberg
Cells 2025, 14(1), 30; https://doi.org/10.3390/cells14010030 - 31 Dec 2024
Cited by 1 | Viewed by 1259
Abstract
Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. [...] Read more.
Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture. Titration of IL-1β (100–0.1 ng/mL) was performed with both human and bovine recombinant protein in chondrocyte culture for 2 weeks. Gene expression of anabolic (collagen 2, aggrecan, cartilage oligomeric protein (COMP), proteoglycan-4 (PRG-4)), catabolic matrix metallo proteinases (MMP-3, MMP-13), dedifferentiation (collagen 1) markers and inflammatory cytokines IL-6 and IL-8 was determined. Analysis of the cell culture medium was performed for the inflammatory markers IL-6 and nitric oxide (NO). In general, the influence of IL-1β was shown by a decrease in the expression of anabolic markers (collagen 2, aggrecan, PRG-4), whereas the catabolic markers MMP-3 and MMP-13 as well as the inflammatory markers IL-6 and IL-8 were significantly increased. This was observed both at the early time point (day 4) and at the late time point (day 14). The described inflammatory effects were confirmed by increased concentration-dependent release of NO and IL-6. The threshold concentration for a detectable effect compared to control differed between groups, but was reached earlier by homologous application of IL-1β. This study provides a systematic evaluation of IL-1β-specific effects on chondrocytes in a 3D pellet culture model, which is highly relevant for comparisons of studies in OA-specific drug development. Full article
Show Figures

Figure 1

17 pages, 6152 KiB  
Article
Loss of CHOP Prevents Joint Degeneration and Pain in a Mouse Model of Pseudoachondroplasia
by Jacqueline T. Hecht, Alka C. Veerisetty, Mohammad G. Hossain, Debabrata Patra, Michele Carrer, Frankie Chiu, Dorde Relic, Paymaan Jafar-nejad and Karen L. Posey
Int. J. Mol. Sci. 2025, 26(1), 16; https://doi.org/10.3390/ijms26010016 - 24 Dec 2024
Viewed by 1048
Abstract
Pseudoachondroplasia (PSACH), a severe dwarfing condition characterized by impaired skeletal growth and early joint degeneration, results from mutations in cartilage oligomeric matrix protein (COMP). These mutations disrupt normal protein folding, leading to the accumulation of misfolded COMP in chondrocytes. The MT-COMP mouse is [...] Read more.
Pseudoachondroplasia (PSACH), a severe dwarfing condition characterized by impaired skeletal growth and early joint degeneration, results from mutations in cartilage oligomeric matrix protein (COMP). These mutations disrupt normal protein folding, leading to the accumulation of misfolded COMP in chondrocytes. The MT-COMP mouse is a murine model of PSACH that expresses D469del human COMP in response to doxycycline and replicates the PSACH chondrocyte and clinical pathology. The basis for the mutant-COMP pathology involves endoplasmic reticulum (ER) stress signaling through the PERK/eIF2α/CHOP pathway. C/EBP homologous protein (CHOP), in conjunction with a TNFα inflammatory process, upregulates mTORC1, hindering autophagy clearance of mutant COMP protein. Life-long joint pain/degeneration diminishes quality of life, and treatments other than joint replacements are urgently needed. To assess whether molecules that reduce CHOP activity should be considered as a potential treatment for PSACH, we evaluated MT-COMP mice with 50% CHOP (MT-COMP/CHOP+/−), antisense oligonucleotide (ASO)-mediated CHOP knockdown, and complete CHOP ablation (MT-COMP/CHOP−/−). While earlier studies demonstrated that loss of CHOP in MT-COMP mice reduced intracellular retention, inflammation, and growth plate chondrocyte death, we now show that it did not normalize limb growth. ASO treatment reduced CHOP mRNA by approximately 60%, as measured by RT-qPCR, but did not improve limb length similar to MT-COMP/CHOP+/−. Interestingly, both 50% genetic reduction and complete loss of CHOP alleviated pain, while total ablation of CHOP in MT-COMP mice was necessary to preserve joint health. These results indicate that (1) CHOP reduction therapy is not an effective strategy for improving limb length and (2) pain and chondrocyte pathology are more responsive to intervention than the prevention of joint damage. Full article
(This article belongs to the Special Issue Advances in Molecular Research of Cartilage: 2nd Edition)
Show Figures

Graphical abstract

10 pages, 3169 KiB  
Case Report
Multiple Osteochondritis Dissecans as Main Manifestation of Multiple Epiphyseal Dysplasia Caused by a Novel Cartilage Oligomeric Matrix Protein Pathogenic Variant: A Clinical Report
by Antonio Mazzotti, Elena Artioli, Evelise Brizola, Alice Moroni, Morena Tremosini, Alessia Di Cecco, Salvatore Gallone, Cesare Faldini, Luca Sangiorgi and Maria Gnoli
Genes 2024, 15(11), 1490; https://doi.org/10.3390/genes15111490 - 20 Nov 2024
Cited by 1 | Viewed by 1180
Abstract
Background: Multiple epiphyseal dysplasia (MED) is a clinically and genetically heterogeneous group of skeletal diseases characterized by epiphyseal abnormalities associated with mild short stature. The clinical variability is wide, and the first clinical manifestations still occur in childhood with joint pain and stiffness [...] Read more.
Background: Multiple epiphyseal dysplasia (MED) is a clinically and genetically heterogeneous group of skeletal diseases characterized by epiphyseal abnormalities associated with mild short stature. The clinical variability is wide, and the first clinical manifestations still occur in childhood with joint pain and stiffness that evolve into degenerative joint disease. MED, caused by mutations in the Cartilage Oligomeric Matrix Protein (COMP) gene, is the most common form of the disease. COMP-MED usually shows significant involvement of the capital femoral epiphyses and irregular acetabulum; instead, COL9A1-, COL9A2-, and COL9A3-MED appear to have more severe knee involvement than hips, resulting in a milder presentation than COMP-MED cases. Other complications have been reported, in particular osteochondritis dissecans (OCD), which has been described in two large COL9A2-related MED families associated with myopathy. Methods: Here, we report the case of a 24-year-old man affected by COMP-MED with a positive family history for the disease and a clinical presentation that interestingly is characterized by the presence of multiple OCD. Results: To our knowledge, this is the first case of COMP mutations related to multiple OCD as the main clinical feature. Conclusions: This report can expand the clinical phenotype related to the pathogenic variants of the COMP gene, as it shows that multiple OCD can also be present in COMP-related MED as well as in COL9A2-related MED. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

15 pages, 1433 KiB  
Article
Advances in the Regulation of Periostin for Osteoarthritic Cartilage Repair Applications
by Sunny Y. Shih, Michael P. Grant, Laura M. Epure, Muskan Alad, Sophie Lerouge, Olga L. Huk, Stephane G. Bergeron, David J. Zukor, Géraldine Merle, Hee-Jeong Im, John Antoniou and Fackson Mwale
Biomolecules 2024, 14(11), 1469; https://doi.org/10.3390/biom14111469 - 18 Nov 2024
Viewed by 1449
Abstract
Emerging evidence indicates periostin (POSTN) is upregulated in patients with OA, and studies have shown that it can induce the activation of inflammatory cytokines and catabolic enzymes, making it a potential therapeutic target. Link N (LN) is a peptide fragment derived from the [...] Read more.
Emerging evidence indicates periostin (POSTN) is upregulated in patients with OA, and studies have shown that it can induce the activation of inflammatory cytokines and catabolic enzymes, making it a potential therapeutic target. Link N (LN) is a peptide fragment derived from the link protein and has been demonstrated as an anabolic-like factor and anti-catabolic and anti-inflammatory factors both in vitro and in vivo. This study aims to determine if LN can regulate POSTN expression and function in OA cartilage. Articular cartilage was recovered from donors undergoing total knee replacements to isolate chondrocytes and prepare osteochondral explants. Cells and explants were treated with POSTN and LN (1 and 100 μg) and measured for changes in POSTN expression and various matrix proteins, catabolic and proinflammatory factors, and signaling. To determine the effects of POSTN expression in vivo, a rabbit OA model was used. Immunoprecipitation and in silico modeling were used to determine peptide/POSTN interactions. Western blotting, PCR, and immunohistochemistry demonstrated that LN decreased POSTN expression both in vitro and in vivo. LN was also able to directly inhibit POSTN signaling in OA chondrocytes. In silico docking suggested the direct interaction of LN with POSTN at residues responsible for its oligomerization. Immunoprecipitation experiments confirmed the direct interaction of LN with POSTN and the destabilization of its oligomerization. This study demonstrates the ability of a peptide, LN, to suppress the overexpression and function of POSTN in OA cartilage. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

22 pages, 77884 KiB  
Article
Interconnected Pathways: Exploring Inflammation, Pain, and Cognitive Decline in Osteoarthritis
by Mihails Tarasovs, Sandra Skuja, Simons Svirskis, Liba Sokolovska, Andris Vikmanis, Aivars Lejnieks, Yehuda Shoenfeld and Valerija Groma
Int. J. Mol. Sci. 2024, 25(22), 11918; https://doi.org/10.3390/ijms252211918 - 6 Nov 2024
Cited by 2 | Viewed by 1669
Abstract
The relationship among inflammation, pain, and cognitive decline in osteoarthritis (OA) patients is complex and has not been sufficiently explored; therefore, we undertook this research to evaluate how OA-related inflammation and pain affect cognitive functions, as well as to examine the potential of [...] Read more.
The relationship among inflammation, pain, and cognitive decline in osteoarthritis (OA) patients is complex and has not been sufficiently explored; therefore, we undertook this research to evaluate how OA-related inflammation and pain affect cognitive functions, as well as to examine the potential of urinary markers as indicators of these conditions. This study examined fifty OA patients through clinical and cognitive assessments, morphological analyses, urinary biomarkers, and bioinformatics. Morphologically, 24% of patients had moderate to high synovial inflammation, which was significantly correlated with depressive symptoms, pain intensity, and self-reported anxiety. The Montreal Cognitive Assessment indicated minimal decline in most patients but showed negative correlations with age and inflammation severity. Urinary TNF-α and TGF-β1 levels positively correlated with body mass index and pain and synovitis score and immune cell infiltration, respectively. In contrast, cartilage oligomeric matrix protein and C-telopeptides of type II collagen showed inverse correlations with pain duration and cognitive function, respectively. Distinct patient clusters with higher inflammation were identified and were associated with reported pain and depressive symptoms. Urinary TNF-α and TGF-β1 can serve as biomarkers reflecting inflammation and disease severity in OA. This study suggests that synovial inflammation may be linked to mental and cognitive health in some patient cohorts. Full article
Show Figures

Figure 1

14 pages, 2280 KiB  
Article
TNFα-Induced Inflammation Model—Evaluation of Concentration and Passage-Dependent Effects on Bovine Chondrocytes
by Robert Ossendorff, Su Wang, Sarah Kurth, Max Jaenisch, Elio Assaf, Andreas C. Strauss, Damien Bertheloot, Kristian Welle, Christof Burger, Dieter C. Wirtz and Frank A. Schildberg
Int. J. Mol. Sci. 2024, 25(17), 9136; https://doi.org/10.3390/ijms25179136 - 23 Aug 2024
Cited by 1 | Viewed by 1542
Abstract
Inflammation models are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis. TNFα (tumor necrosis factor alpha) plays an important role in the inflammatory process. Current inflammation models lack uniformity and make comparisons difficult. Therefore, this study aimed to [...] Read more.
Inflammation models are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis. TNFα (tumor necrosis factor alpha) plays an important role in the inflammatory process. Current inflammation models lack uniformity and make comparisons difficult. Therefore, this study aimed to systematically investigate whether the effects of TNFα are concentration-dependent and whether chondrocyte expansion has an effect on the inflammatory model. Bovine chondrocytes were enzymatically isolated, expanded to passages 1–3, and transferred into a 3D pellet culture. Chondrocyte pellets were stimulated with recombinant bovine TNFα at different concentrations for 48 h to induce inflammation. Gene expression of anabolic (collagen 2, aggrecan, cartilage oligomeric protein (COMP)), catabolic (matrix metalloproteinases (MMP3, MMP13)), dedifferentiation (collagen 1) markers, inflammation markers (interleukin-6 (IL-6), nuclear factor kappa B (NFkB), cyclooxygenase-2 (COX), prostaglandin-E-synthase-2 (PTGES2)), and the apoptosis marker caspase 3 was determined. At the protein level, concentrations of IL-6, nitric oxide (NO), and sulfated glycosaminoglycans (GAG) were evaluated. Statistical analysis was performed using the independent t-test, and significance was defined as p < 0.05. In general, TNFα caused a decrease in anabolic markers and an increase in the expression of catabolic and inflammatory markers. There was a concentration-dependent threshold of 10 ng/mL to induce significant inflammatory effects. Most of the markers analyzed showed TNFα concentration-dependent effects (COMP, PRG4, AGN, Col1, MMP3, and NFkB). There was a statistical influence of selected gene expression markers from different passages on the TNFα chondrocyte inflammation model, including Col2, MMP13, IL-6, NFkB, COX2, and PTGES2. Considering the expression of collagen 2 and MMP3, passage 3 chondrocytes showed a higher sensitivity to TNFα stimulation compared to passages 1 and 2. On the other hand, MMP13, IL-6, NFkB, and caspase 3 gene expression were lower in P3 chondrocytes compared to the other passages. On the protein level, inflammatory effects showed a similar pattern, with cytokine effects starting at 10 ng/mL and differences between the passages. TNFα had a detrimental effect on cartilage, with a clear threshold observed at 10 ng/mL. Although TNFα effects showed concentration-dependent patterns, this was not consistent for all markers. The selected passage showed a clear influence, especially on inflammation markers. Further experiments were warranted to explore the effects of TNFα concentration and passage in long-term stimulation. Full article
(This article belongs to the Special Issue Osteoarthritis Biomarkers, Diagnosis and Treatments)
Show Figures

Figure 1

17 pages, 8065 KiB  
Article
Time-Dependent Effect of Eggshell Membrane on Monosodium-Iodoacetate-Induced Osteoarthritis: Early-Stage Inflammation Control and Late-Stage Cartilage Protection
by Min Yu, Cheoljin Park, Young Bae Son, So Eun Jo, Seong Hee Jeon, Ye Jin Kim, Sang Bae Han, Jin Tae Hong and Dong Ju Son
Nutrients 2024, 16(12), 1885; https://doi.org/10.3390/nu16121885 - 14 Jun 2024
Cited by 4 | Viewed by 3416
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects [...] Read more.
Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects have prompted exploration into functional dietary supplements. Recently, eggshell membrane (ESM) has emerged as a potential functional ingredient for joint and connective tissue disorders due to its clinical efficacy in relieving joint pain and stiffness. Despite promising clinical evidence, the effects of ESM on OA progression and its mechanism of action remain poorly understood. This study evaluated the efficacy of Ovomet®, a powdered natural ESM, against joint pain and disease progression in a monosodium iodoacetate (MIA)-induced rodent model of OA in mice and rats. The results demonstrate that ESM significantly alleviates joint pain and attenuates articular cartilage destruction in both mice and rats that received oral supplementation for 5 days prior to OA induction and for 28 days thereafter. Interestingly, ESM significantly inhibited mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), as well as inflammatory mediators, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase in the knee joint cartilage at the early stage of OA, within 7 days after OA induction. However, this effect was not observed in the late stage at 28 days after OA induction. ESM further attenuates the induction of protein expression for cartilage-degrading enzymes like matrix metalloproteinase (MMPs) 3 and 13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), in the late-stage. In addition, MIA-induced reduction of the protein expression levels of cartilage components, cartilage oligomeric matrix protein (COMP), aggrecan (ACAN) and collagen type II α-1 chain (COL2α1), and cartilage extracellular matrix (ECM) synthesis promoting transcriptional factor SRY-Box 9 (SOX-9) were increased via ESM treatment in the cartilage tissue. Our findings suggest that Ovomet®, a natural ESM powder, is a promising dietary functional ingredient that can alleviate pain, inflammatory response, and cartilage degradation associated with the progression of OA. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

14 pages, 3821 KiB  
Article
Osteoarthritis as a Systemic Disease Promoted Prostate Cancer In Vivo and In Vitro
by Samuel Rosas, Andy Kwok, Joseph Moore, Lihong Shi, Thomas L. Smith, E. Ann Tallant, Bethany A. Kerr and Jeffrey S. Willey
Int. J. Mol. Sci. 2024, 25(11), 6014; https://doi.org/10.3390/ijms25116014 - 30 May 2024
Cited by 3 | Viewed by 1562
Abstract
Osteoarthritis (OA) is increasing worldwide, and previous work found that OA increases systemic cartilage oligomeric matrix protein (COMP), which has also been implicated in prostate cancer (PCa). As such, we sought to investigate whether OA augments PCa progression. Cellular proliferation and migration of [...] Read more.
Osteoarthritis (OA) is increasing worldwide, and previous work found that OA increases systemic cartilage oligomeric matrix protein (COMP), which has also been implicated in prostate cancer (PCa). As such, we sought to investigate whether OA augments PCa progression. Cellular proliferation and migration of RM1 murine PCa cells treated with interleukin (IL)-1α, COMP, IL-1α + COMP, or conditioned media from cartilage explants treated with IL-1α (representing OA media) and with inhibitors of COMP were assessed. A validated murine model was used for tumor growth and marker expression analysis. Both proliferation and migration were greater in PCa cells treated with OA media compared to controls (p < 0.001), which was not seen with direct application of the stimulants. Migration and proliferation were not negatively affected when OA media was mixed with downstream and COMP inhibitors compared to controls (p > 0.05 for all). Mice with OA developed tumors 100% of the time, whereas mice without OA only 83.4% (p = 0.478). Tumor weight correlated with OA severity (Pearson correlation = 0.813, p = 0.002). Moreover, tumors from mice with OA demonstrated increased Ki-67 expression compared to controls (mean 24.56% vs. 6.91%, p = 0.004) but no difference in CD31, PSMA, or COMP expression (p > 0.05). OA appears to promote prostate cancer in vitro and in vivo. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 2594 KiB  
Article
Alleviating Effect of a Flower Extract of Styphnolobium japonicum L. on Symptoms of Experimentally Induced Osteoarthritis in Rats
by Woo Jin Lee, Kyung-Mi Kim, Somin Lee, Seong Yeon Park, Ha-Jin Kim, Jee-Young Imm and Jae-Chul Jung
Appl. Sci. 2024, 14(10), 4301; https://doi.org/10.3390/app14104301 - 19 May 2024
Cited by 1 | Viewed by 1648
Abstract
In the present study, we prepared an ethanol extract from the flowers of Styphnolobium japonicum L. (SJFE) and found that it contains rutin as a major constituent as well as quercetin kaempferol and isorhamnetin as minor components. In lipopolysaccharide-stimulated RAW 264.7 macrophages, we [...] Read more.
In the present study, we prepared an ethanol extract from the flowers of Styphnolobium japonicum L. (SJFE) and found that it contains rutin as a major constituent as well as quercetin kaempferol and isorhamnetin as minor components. In lipopolysaccharide-stimulated RAW 264.7 macrophages, we observed that SJFE significantly inhibited the production of nitric oxide and the expression of major inflammatory biomarkers such as inducible NO synthase, cyclooxygenase-2, interleukin (IL)-6, and IL-1β significantly. Based on these in vitro results, we investigated the anti-inflammatory properties of SJFE on osteoarthritis (OA) of the left hind knee joints induced by monosodium iodoacetate in rats. SJFE was orally administered to the rats with arthritis for 4 weeks, and the following results were obtained. The rats treated with SJFE exhibited a 24% improvement in the weight-bearing index of their affected legs, as well as reductions of 31.5% and 23.2% in serum levels of cartilage oligomeric matrix protein and C-terminal telopeptide 2, respectively. Additionally, Mankin’s score, an indicator used to assess the severity of joint cartilage damage, decreased by 2.75 points compared to the control with no treatment. These findings suggest that SJFE possesses anti-inflammatory properties and can alleviate symptoms of OA, indicating its potential to offer relief to individuals suffering from arthritis. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

13 pages, 2118 KiB  
Article
Cartilage Oligomeric Matrix Protein in Osteoarthritis and Obesity—Do New Considerations Emerge?
by Sevdalina Nikolova Lambova, Tsvetelina Batsalova, Dzhemal Moten and Balik Dzhambazov
Int. J. Mol. Sci. 2024, 25(10), 5263; https://doi.org/10.3390/ijms25105263 - 12 May 2024
Cited by 1 | Viewed by 2077
Abstract
The diagnosis of osteoarthritis (OA) is based on radiological changes that are delayed, along with clinical symptoms. Early and very early diagnosis at the stage of molecular pathology may eventually offer an opportunity for early therapeutic intervention that may retard and prevent future [...] Read more.
The diagnosis of osteoarthritis (OA) is based on radiological changes that are delayed, along with clinical symptoms. Early and very early diagnosis at the stage of molecular pathology may eventually offer an opportunity for early therapeutic intervention that may retard and prevent future damage. Cartilage oligomeric matrix protein (COMP) is a non-collagenous extracellular matrix protein that promotes the secretion and aggregation of collagen and contributes to the stability of the extracellular matrix. There are contradictory literature data and currently, the parameter is used only for scientific purposes and its significance is not well-determined. The serum level of COMP in patients with metabolic type OA of the knee has not been evaluated. The aim of the study was to analyze serum COMP levels in metabolic knee OA and controls with different BMI. Our results showed that the mean COMP values were significantly higher in the control group (1518.69 ± 232.76 ng/mL) compared to the knee OA patients (1294.58 ± 360.77 ng/mL) (p = 0.0012). This may be related to the smaller cartilage volume in OA patients. Additionally, COMP levels negatively correlated with disease duration (p = 0.04). The COMP level in knee OA with BMI below 30 kg/m2 (n = 61, 1304.50 ± 350.60 ng/mL) was higher compared to cases with BMI ≥ 30 kg/m2 (n = 76, 1286.63 ± 370.86 ng/mL), but the difference was not significant (p = 0.68). Whether this finding is related to specific features in the evolution of the metabolic type of knee OA remains to be determined. Interestingly, comparison of COMP levels in the controls with different BMI revealed significantly higher values in overweight and obese individuals (1618.36 ± 203.76 ng/mL in controls with BMI ≥ 25 kg/m2, n = 18, 1406.61 ± 216.41 ng/mL, n = 16; p = 0.0092). Whether this finding is associated with increased expression of COMP in the adipose tissue or with more intensive cartilage metabolism in relation to higher biomechanical overload in obese patients, considering the earlier development of metabolic type knee OA as an isolated finding, remains to be determined. Full article
(This article belongs to the Special Issue Molecular Advances in Bone Metabolism and Disorders)
Show Figures

Figure 1

17 pages, 1366 KiB  
Review
Autoimmunity and Autoinflammation: Relapsing Polychondritis and VEXAS Syndrome Challenge
by Anca Cardoneanu, Ioana Irina Rezus, Alexandra Maria Burlui, Patricia Richter, Ioana Bratoiu, Ioana Ruxandra Mihai, Luana Andreea Macovei and Elena Rezus
Int. J. Mol. Sci. 2024, 25(4), 2261; https://doi.org/10.3390/ijms25042261 - 13 Feb 2024
Cited by 7 | Viewed by 3749
Abstract
Relapsing polychondritis is a chronic autoimmune inflammatory condition characterized by recurrent episodes of inflammation at the level of cartilaginous structures and tissues rich in proteoglycans. The pathogenesis of the disease is complex and still incompletely elucidated. The data support the important role of [...] Read more.
Relapsing polychondritis is a chronic autoimmune inflammatory condition characterized by recurrent episodes of inflammation at the level of cartilaginous structures and tissues rich in proteoglycans. The pathogenesis of the disease is complex and still incompletely elucidated. The data support the important role of a particular genetic predisposition, with HLA-DR4 being considered an allele that confers a major risk of disease occurrence. Environmental factors, mechanical, chemical or infectious, act as triggers in the development of clinical manifestations, causing the degradation of proteins and the release of cryptic cartilage antigens. Both humoral and cellular immunity play essential roles in the occurrence and perpetuation of autoimmunity and inflammation. Autoantibodies anti-type II, IX and XI collagens, anti-matrilin-1 and anti-COMPs (cartilage oligomeric matrix proteins) have been highlighted in increased titers, being correlated with disease activity and considered prognostic factors. Innate immunity cells, neutrophils, monocytes, macrophages, natural killer lymphocytes and eosinophils have been found in the perichondrium and cartilage, together with activated antigen-presenting cells, C3 deposits and immunoglobulins. Also, T cells play a decisive role in the pathogenesis of the disease, with relapsing polychondritis being considered a TH1-mediated condition. Thus, increased secretions of interferon γ, interleukin (IL)-12 and IL-2 have been highlighted. The “inflammatory storm” formed by a complex network of pro-inflammatory cytokines and chemokines actively modulates the recruitment and infiltration of various cells, with cartilage being a source of antigens. Along with RP, VEXAS syndrome, another systemic autoimmune disease with genetic determinism, has an etiopathogenesis that is still incompletely known, and it involves the activation of the innate immune system through different pathways and the appearance of the cytokine storm. The clinical manifestations of VEXAS syndrome include an inflammatory phenotype often similar to that of RP, which raises diagnostic problems. The management of RP and VEXAS syndrome includes common immunosuppressive therapies whose main goal is to control systemic inflammatory manifestations. The objective of this paper is to detail the main etiopathogenetic mechanisms of a rare disease, summarizing the latest data and presenting the distinct features of these mechanisms. Full article
(This article belongs to the Special Issue From Pathogenesis to Treatment—New Perspectives in Rheumatology 2.0)
Show Figures

Figure 1

Back to TopTop