Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = oil based drilling mud

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5960 KiB  
Article
Research and Application of Drilling Fluid Cooling System for Dry Hot Rock
by Kuan Li, Bing Li, Shanshan Shi, Zhenyu Wu and Hengchun Zhang
Energies 2025, 18(7), 1736; https://doi.org/10.3390/en18071736 - 31 Mar 2025
Cited by 1 | Viewed by 398
Abstract
The drilling fluid cooling system is a key technology for reducing wellbore temperatures, improving the working environment of downhole equipment, and ensuring safe and efficient drilling in high-temperature wells. Based on the existing drilling fluid cooling system, this article designs and develops a [...] Read more.
The drilling fluid cooling system is a key technology for reducing wellbore temperatures, improving the working environment of downhole equipment, and ensuring safe and efficient drilling in high-temperature wells. Based on the existing drilling fluid cooling system, this article designs and develops a closed drilling fluid cooling system according to the working environment and cooling requirements of the GH-02 dry hot rock trial production well in the Gonghe Basin, Qinghai Province. The system mainly includes a cascade cooling module, a convective heat exchange module, and a monitoring and control module. Based on the formation conditions and drilling design of the GH-02 well, a transient temperature prediction model for wellbore circulation is established to provide a basis for the design of the cooling system. Under the conditions of a drilling fluid displacement of 30 L/s and a bottomhole circulation temperature not exceeding 105 °C, the maximum allowable inlet temperature of the drilling fluid is 55.6 °C, and the outlet temperature of the drilling fluid is 69.2 °C. The heat exchange of the drilling fluid circulation is not less than 1785 kW. Considering the heat transfer efficiency and reserve coefficient, the heat transfer area of the spiral plate heat exchanger calculated using the average temperature difference method is not less than 75 m2. By applying this drilling fluid cooling system in the 3055 m~4013 m section of well GH-02, the inlet temperature is controlled at 45 °C~55 °C, and the measured bottomhole circulation temperature remains below 105 °C. After adopting the drilling fluid cooling system, the performance of the drilling fluid is stable during the drilling process, downhole tools such as the drill bits, screws, and MWD work normally, and the failure rate of the mud pump and logging instruments is significantly reduced. The drilling fluid cooling system effectively maintains the safe and efficient operation of the drilling system, which has been promoted and applied in shale oil wells in Dagang Oilfield. Full article
Show Figures

Figure 1

28 pages, 8440 KiB  
Article
Feasibility Study of Biodegradable Vegetable Peels as Sustainable Fluid Loss Additives in Water-Based Drilling Fluids
by Olajide Ibrahim Oladipo, Foad Faraji, Hossein Habibi, Mardin Abdalqadir, Jagar A. Ali and Perk Lin Chong
J 2025, 8(1), 10; https://doi.org/10.3390/j8010010 - 1 Mar 2025
Cited by 1 | Viewed by 2288
Abstract
Drilling fluids are vital in oil and gas well operations, ensuring borehole stability, cutting removal, and pressure control. However, fluid loss into formations during drilling can compromise formation integrity, alter permeability, and risk groundwater contamination. Water-based drilling fluids (WBDFs) are favored for their [...] Read more.
Drilling fluids are vital in oil and gas well operations, ensuring borehole stability, cutting removal, and pressure control. However, fluid loss into formations during drilling can compromise formation integrity, alter permeability, and risk groundwater contamination. Water-based drilling fluids (WBDFs) are favored for their environmental and cost-effective benefits but often require additives to address filtration and rheological limitations. This study explored the feasibility of using vegetable waste, including pumpkin peel (PP), courgette peel (CP), and butternut squash peel (BSP) in fine (75 μm) and very fine (10 μm) particle sizes as biodegradable WBDF additives. Waste vegetable peels were processed using ball milling and characterized via FTIR, TGA, and EDX. WBDFs, prepared per API SPEC 13A with 3 wt% of added additives, were tested for rheological and filtration properties. Results highlighted that very fine pumpkin peel powder (PP_10) was the most effective additive, reducing fluid loss and filter cake thickness by 43.5% and 50%, respectively. PP_10 WBDF maintained mud density, achieved a pH of 10.52 (preventing corrosion), and enhanced rheological properties, including a 50% rise in plastic viscosity and a 44.2% increase in gel strength. These findings demonstrate the remarkable potential of biodegradable vegetable peels as sustainable WBDF additives. Full article
Show Figures

Figure 1

18 pages, 9717 KiB  
Article
Lithofacies Characteristics of the Lower Cretaceous Qing 1 Member in the Heiyupao Depression, Northern Binbei Area of the Songliao Basin
by Yali Liu, Wangpeng Li, Jiapeng Yuan, Pei Li, Xun Ge, Xiaotong Ge, Pengfei Liu, Haiguang Wu, Xuntao Yu and Botao Huang
Minerals 2025, 15(2), 125; https://doi.org/10.3390/min15020125 - 27 Jan 2025
Viewed by 813
Abstract
Strategic breakthroughs have been made in the exploration and evaluation of Gulong shale oil in the Songliao Basin. However, the Heiyupao Depression, located near the Gulong Depression, hosts a thick section of the Qingshankou Formation shale that has not been extensively studied. This [...] Read more.
Strategic breakthroughs have been made in the exploration and evaluation of Gulong shale oil in the Songliao Basin. However, the Heiyupao Depression, located near the Gulong Depression, hosts a thick section of the Qingshankou Formation shale that has not been extensively studied. This paper presents novel insights into the lithofacies characteristics, depositional environment, and reservoir features of the Qingshankou Formation shale in the Heiyupao Depression, with a specific focus on the origin and maturation of organic-rich shale. Four core wells were drilled, and 152 core samples were analyzed through a variety of techniques, including rock type classification, mineral composition, TOC content, rare earth elements, rock pyrolysis, organic matter type determination, and CT scanning. Results indicate that the Qingshankou shale is dominated by felsic compositions and Type I kerogen, with organic maturity varying across the section. Based on lithology, sedimentary structures, mineralogy, and organic matter abundance, five distinct lithofacies are identified: high-organic mud-rich felsic shale, high-organic sand-rich felsic shale, medium-organic sand-rich felsic shale, medium-organic massive shale, and low-organic sand-rich felsic shale. Notably, the Type A lithofacies (high-organic mud-rich felsic shale) is identified as a primary source rock due to its intergranular and organic matter pores, albeit with low porosity and poor connectivity. In contrast, the Type E lithofacies (low-organic sand-rich felsic shale) have high porosity, well-developed micro- and nano-scale pores, and strong connectivity, marking them as the primary reservoirs. The characteristics of this region differ significantly from those of Gulong shale oil, requiring different extraction strategies. The mineral composition of such shale is predominantly felsic rather than mixed. The findings not only provide theoretical support for the exploration of complex lacustrine shale in the Songliao Basin but also offer valuable insights for the resource development of similar non-marine shale systems worldwide. Full article
Show Figures

Figure 1

19 pages, 7494 KiB  
Article
Formation and Evolution of Multi-Genetic Overpressure and Its Effect on Hydrocarbon Accumulation in the Dabei Area, Kuqa Depression, Tarim Basin, China
by Chenxi Wen and Zhenliang Wang
Energies 2024, 17(24), 6263; https://doi.org/10.3390/en17246263 - 12 Dec 2024
Cited by 1 | Viewed by 945
Abstract
The Kuqa Foreland Basin is an important hydrocarbon-producing basin in western China. The Dabei area is an important zone for hydrocarbon accumulation. High fluid overpressures in the Lower Cretaceous Bashijiqike Formation are related to multi-genetic processes. However, the formation and evolution of pressure [...] Read more.
The Kuqa Foreland Basin is an important hydrocarbon-producing basin in western China. The Dabei area is an important zone for hydrocarbon accumulation. High fluid overpressures in the Lower Cretaceous Bashijiqike Formation are related to multi-genetic processes. However, the formation and evolution of pressure remain unclear, hindering the further development of oil and gas migration and accumulation. In this study, the overpressure distribution is described based on a drill stem test and mud density data. The formation and quantification of multi-genetic overpressure were evaluated based on well-logging data and basin simulation technology (Ansys Workbench). The coupling evolution of multi-genetic overpressure was examined based on the basin simulation technique. Finally, the influence of overpressure on hydrocarbon accumulation was explored. The results showed that the residual pressure of the Bashijiqike Formation in the Dabei area ranged from 40 to 60 MPa. The main causes of pressure in the Bashijiqike Formation in the Dabei area were disequilibrium compaction overpressure (2–6 MPa, contribution of 8–15%), tectonic compression overpressure (10 MPa, contribution of 30%), and fracture transfer overpressure (15–20 MPa, contribution of 8–15%). With respect to the evolution process of multiple pressures in the Bashijiqike Formation in the Dabei region, at 0–23.3 Ma, the overpressure due to disequilibrium compaction was <10 MPa and increased slowly to 18 MPa at 2.48–23.3 Ma. At 2.48 Ma, the tectonic compression was enhanced, and the residual pressure reached ~50 MPa. At 1.75–2.48 Ma, fracture activity was enhanced, leading to the generation of fracture transfer overpressure. Under these conditions, the residual pressure exceeded 60 MPa. Finally, the Bashijiqike Formation in the Dabei area is a favorable area for vertical and lateral migration of oil and gas. This study is of great significance to the formation and evolution of multi-origin overpressure in the same basin type and its influence on oil and gas accumulation. Full article
(This article belongs to the Special Issue Failure and Multiphysical Fields in Geo-Energy)
Show Figures

Figure 1

19 pages, 7073 KiB  
Article
Simulation and Modeling of Data Transmission Process in Boreholes Using Intelligent Drill Pipe for a Laboratory Experiment
by Mohammed A. Namuq, Ezideen A. Hasso, Mohammed A. Jamal, Koran A. Namuq and Yibing Yu
Modelling 2024, 5(4), 1961-1979; https://doi.org/10.3390/modelling5040102 - 6 Dec 2024
Cited by 2 | Viewed by 1470
Abstract
Currently, most oil and gas wells are drilled by continuously transmitting downhole measured information (directional and geological information) in real-time to the surface to monitor and steer the well along a pre-defined path. The intelligent drill pipe method can transmit data over longer [...] Read more.
Currently, most oil and gas wells are drilled by continuously transmitting downhole measured information (directional and geological information) in real-time to the surface to monitor and steer the well along a pre-defined path. The intelligent drill pipe method can transmit data over longer distances and at a higher rate than other methods, such as mud pulse telemetry, acoustic telemetry, and electromagnetic telemetry. Nevertheless, it is expensive and requires boosters along the drill string. In the available literature, academic research rarely addresses the data transmission process in boreholes using intelligent drill pipes. Furthermore, there is a need for an effective and validated model to study various controllable parameters to enhance the efficiency of the intelligent drill pipe telemetry without the need to develop several physical lab or field prototypes. This paper presents the development of a model based on MATLAB Simulink to simulate the process of data transmission in boreholes utilizing intelligent drill pipes. Laboratory experimental prototype measurements have been used to test the model’s effectiveness. A good correlation is found between the measured lab data and the model’s predictions for the signals transmitted contactless through intelligent drill pipes with a correlation coefficient (R2) above 0.9. This model can enhance data transmission efficiency via intelligent drill pipes, study different concepts, and eliminate the need to develop several unnecessarily expensive and time-consuming physical lab prototypes. Full article
Show Figures

Figure 1

18 pages, 3400 KiB  
Article
Seepage–Diffusion Mechanism of Gas Kick Considering the Filtration Loss of Oil-Based Muds During Deepwater Drilling
by Yanli Guo, Weiqi Liu, Chaojie Song, Qingtao Gong and Yao Teng
J. Mar. Sci. Eng. 2024, 12(11), 2035; https://doi.org/10.3390/jmse12112035 - 10 Nov 2024
Cited by 1 | Viewed by 1389
Abstract
As oil and gas exploration gradually advances into deep waters, the combined effects of various types of gas kick and the accurate calculation of the gas-kick volume have gained increasing attention. This study focused on gas kicks from permeable gas-bearing formations, considering the [...] Read more.
As oil and gas exploration gradually advances into deep waters, the combined effects of various types of gas kick and the accurate calculation of the gas-kick volume have gained increasing attention. This study focused on gas kicks from permeable gas-bearing formations, considering the mass transfer of gas in the filtration region of the drilling fluids and revealed the mechanisms of seepage-driven and diffusion-driven gas kicks. Based on seepage mechanics and diffusion theory, a comprehensive model for calculating gas-kick volume was established, considering the synergistic effect of gas-concentration-diffusion and negative-differential-pressure, as well as mass transfer in both the filtrate zone and the filter-cake zone. The new model showed high calculation accuracy. The sensitivity analysis showed that both the seepage-driven and diffusion-driven gas-kick volumes in the wellbore increased with increasing formation porosity and open-hole length, while the thickness of the filter cake had a strong inhibitory effect on both. Additionally, a “seepage–diffusion ratio” was introduced to reveal the gas-kick evolution pattern under a seepage–diffusion mechanism. Under specific case conditions, when the seepage–diffusion ratio was less than approximately 1%, diffusion-driven gas kick contributed more than seepage-driven gas kick; when the seepage–diffusion ratio exceeded 1%, seepage-driven gas kick contributed more than diffusion-driven gas kick. The research can provide crucial parameters for wellbore multiphase flow calculation and wellbore pressure prediction. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

18 pages, 5455 KiB  
Article
Research on Operation Optimization of Fluid Sampling in Wireline Formation Testing with Finite Volume Method
by Lejun Wu, Junhua Wang, Haibo Liu, Rui Huang, Huizhuo Xie, Xiaodong Li, Xuan Li, Jinhuan Liu and Changjie Zhao
Processes 2024, 12(7), 1515; https://doi.org/10.3390/pr12071515 - 19 Jul 2024
Viewed by 1081
Abstract
Wireline formation testing is an important technique in the exploration and development of oil fields. Not only can real fluid samples be prepared from the formation directly obtained to know exactly whether the oil existed in the formation or not, but it can [...] Read more.
Wireline formation testing is an important technique in the exploration and development of oil fields. Not only can real fluid samples be prepared from the formation directly obtained to know exactly whether the oil existed in the formation or not, but it can also show flowing pressure change to determine the production capacity of the formation. So, it is an important measurement method for formation evaluation during the drilling process and supports activities related to the exploration and development of oil fields. A numerical simulation model in this article is researched and established based on the finite volume method considering the influence of sensitive parameters such as reservoir heterogeneity, probe suction area, and mud-filtrate invasion depth during the drilling. The model is capable of designing and evaluating formation fluid sampling operations by calculating hydrocarbon content and flowing pressure. Furthermore, through case application, the performance and effect of the process of wireline formation testing were investigated. The results indicate that this technology can serve as an effective auxiliary tool for fluid sampling operations with the function of optimizing fluid sampling measures. It can improve the accuracy of predicting indicators such as hydrocarbon content and breakthrough time during the sampling process. This study provides important supporting evidence and technical guidance for professionals in geological exploration and oil field development. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization)
Show Figures

Figure 1

15 pages, 2068 KiB  
Article
Organosiloxane-Modified Auricularia Polysaccharide (Si-AP): Improved High-Temperature Resistance and Lubrication Performance in WBDFs
by Fan Zhang, Yu Wang, Bo Wang, Yuan Geng, Xiaofeng Chang, Wenzhe Zhang, Yutong Li and Wangyuan Zhang
Molecules 2024, 29(11), 2689; https://doi.org/10.3390/molecules29112689 - 6 Jun 2024
Cited by 1 | Viewed by 1295
Abstract
This study introduces a novel organosilicon-modified polysaccharide (Si-AP) synthesized via grafting and comprehensively evaluates its performance in water-based drilling fluids (WBDFs). The molecular structure of Si-AP was characterized using Fourier-transform infrared spectroscopy (FTIR) and 1H-NMR experiments. Thermalgravimetric analysis (TGA) confirmed the good [...] Read more.
This study introduces a novel organosilicon-modified polysaccharide (Si-AP) synthesized via grafting and comprehensively evaluates its performance in water-based drilling fluids (WBDFs). The molecular structure of Si-AP was characterized using Fourier-transform infrared spectroscopy (FTIR) and 1H-NMR experiments. Thermalgravimetric analysis (TGA) confirmed the good thermal stability of Si-AP up to 235 °C. Si-AP significantly improves the rheological properties and fluid loss performance of WBDFs. With increasing Si-AP concentration, system viscosity increases, API filtration rate decreases, clay expansion is inhibited, and drilling cuttings hydration dispersion is suppressed, especially under high-temperature conditions. Additionally, mechanistic analysis indicates that the introduction of siloxane groups can effectively inhibit the thermal degradation of AP chains and enhance their high-temperature resistance. Si-AP can form a lubricating film by adsorbing on the surface of clay particles, improving mud cake quality, reducing the friction coefficient, and significantly enhancing the lubricating performance of WBDFs. Overall, Si-AP exhibits a higher temperature-resistance limit compared to AP and more effectively optimizes the lubrication, inhibition, and control of the filtration rate of WBDFs under high-temperature conditions. While meeting the requirements of drilling fluid systems under high temperatures, Si-AP also addresses environmental concerns and holds promise as an efficient solution for the exploitation of deep-seated oil and gas resources. Full article
Show Figures

Figure 1

20 pages, 7834 KiB  
Article
A Comprehensive Investigation of the Relationship between Fractures and Oil Production in a Giant Fractured Carbonate Field
by Riyaz Kharrat, Ali Kadkhodaie, Siroos Azizmohammadi, David Misch, Jamshid Moghadasi, Hashem Fardin, Ghasem Saedi, Esmaeil Rokni and Holger Ott
Processes 2024, 12(4), 631; https://doi.org/10.3390/pr12040631 - 22 Mar 2024
Cited by 1 | Viewed by 1965
Abstract
This study examines the connections between various fracture indicators and production data with an example from one of the giant fields in the Middle East producing complex fractured carbonate lithologies. The field under study hosts two reservoirs with a long development and production [...] Read more.
This study examines the connections between various fracture indicators and production data with an example from one of the giant fields in the Middle East producing complex fractured carbonate lithologies. The field under study hosts two reservoirs with a long development and production history, including carbonates from the Asmari and Bangestan Formations. A fracture intensity map was generated based on the interpretation of image logs from 28 wells drilled within the field. Mud loss data were collected and mapped based on the geostatistical Gaussian Random Function Simulation (GRFS) algorithm. Maximum curvature maps were generated based on Asmari structural surface maps. Comparing the results shows a good agreement between the curvature map, fault distribution model, mud loss map, fracture intensity map, and productivity index. The results of image log interpretations led to the identification of four classes of open fractures, including major open fractures, medium open fractures, minor open fractures, and hairline fractures. Using the azimuth and dip data of the four fracture sets mentioned above, the fracture intensity log was generated as a continuous log for each well with available image log data. For this purpose, the fracture intensity log and a continuous fracture network (CFN) model were generated. The continuous fracture network model was used to generate a 3D discrete fracture network (DFN) for the Asmari Formation. Finally, a 3D upscaled model of fracture dip and azimuth, fracture porosity, fracture permeability, fracture length, fracture aperture, and the sigma parameter (the connectivity index between matrix and fracture) were obtained. The results of this study can illuminate the modeling of intricate reservoirs and the associated production challenges, providing insights not only during the initial production phase but also in the application of advanced oil recovery methods, such as thermal recovery. Full article
Show Figures

Figure 1

15 pages, 3042 KiB  
Article
A New Bottom-Hole Assembly Design Method to Maintain Verticality and Reduce Lateral Vibration
by Zhong Cheng, Liang Zhang, Zhouzheng Hao, Xiangxiang Ding, Zhikun Liu and Tiantai Li
Processes 2024, 12(1), 95; https://doi.org/10.3390/pr12010095 - 31 Dec 2023
Cited by 2 | Viewed by 2560
Abstract
Well deviation is a prevalent problem in deep oil and gas exploration, leading to a significant increase in drilling costs. The conventional bottom-hole assembly (BHA) anti-deviation design method does not consider the impact of the BHA structure on lateral vibration. This paper proposes [...] Read more.
Well deviation is a prevalent problem in deep oil and gas exploration, leading to a significant increase in drilling costs. The conventional bottom-hole assembly (BHA) anti-deviation design method does not consider the impact of the BHA structure on lateral vibration. This paper proposes an integrated BHA design method that takes into account both anti-deviation and vibration reduction. This method evaluates the BHA’s anti-deviation ability using the drilling trend angle. A negative value of the drilling trend angle indicates that the BHA can correct well deviation. A finite element linearized dynamics method is used to evaluate the lateral vibration intensity of the BHA. This method involves calculating the bending displacement caused by mass imbalance and then determining the magnitude of the bending strain energy based on this displacement. The structural factors affecting the anti-deviation ability and potential lateral vibration intensity of pendulum BHAs and bent-housing mud motor (BHMM) BHAs were studied, and field tests were conducted for verification. The research shows that for pendulum BHAs, the factor that has the greatest impact on anti-deviation ability and vibration intensity is the distance from the stabilizer to the drill bit. For BHMM BHAs, the length of the short drill collar has a significant impact on the vibration intensity. Compared with current design methods, the mechanical specific energy (MSE) of the single stabilizer pendulum BHA decreased by 12%, while the MSE of the BHMM BHA decreased by 26.4%. Both decreases indicate a reduction in vibration intensity. This study will help to further increase drilling speed while preventing well deviation. Full article
(This article belongs to the Special Issue Study of Multiphase Flow and Its Application in Petroleum Engineering)
Show Figures

Figure 1

13 pages, 1936 KiB  
Article
Synthesis of an Eco-Friendly Xylooligosaccharides and Its Mechanistic Evaluation in Water-Based Drilling Fluids
by Fan Zhang, Yutong Li, Wangyuan Zhang, Yu Wang, Erxin Ai, Zhikun Liu, Lei Wei and Qi Li
Sustainability 2023, 15(22), 15993; https://doi.org/10.3390/su152215993 - 16 Nov 2023
Cited by 5 | Viewed by 1497
Abstract
This study investigates the preparation and application mechanism of Xylooligosaccharides (XOS), an environmentally friendly oligosaccharide additive derived from black fungus in water-based drilling fluids (WBFs). The distinctive molecular characteristics of XOS are revealed through Fourier-transform infrared spectroscopy. Thermogravimetric analysis confirms its stability at [...] Read more.
This study investigates the preparation and application mechanism of Xylooligosaccharides (XOS), an environmentally friendly oligosaccharide additive derived from black fungus in water-based drilling fluids (WBFs). The distinctive molecular characteristics of XOS are revealed through Fourier-transform infrared spectroscopy. Thermogravimetric analysis confirms its stability at temperatures below 150 °C. In terms of performance enhancement, incorporating XOS improves rheological properties and filtration efficiency. Elevated XOS concentrations increase viscosity, diminish fluid loss, suppress clay hydration, and enhance cohesive strength, especially at higher temperatures. Additionally, incorporating XOS prompts the formation of a lubricating layer on particle surfaces, facilitating improved interaction between particles and the surrounding fluid. This layer substantially reduces friction coefficients, thereby significantly boosting the lubrication efficiency of the drilling fluid. At the microstructural level, the incorporation of XOS leads to noticeable microstructural refinement in the matrix mud cake, resulting in a smoother particle distribution due to interactions between XOS and particles. Mechanistically, introducing XOS results in a significant shift in the distribution of clay particle sizes. This phenomenon can be attributed to XOS’s ability to create a stable hydration film within the WBFs. As a result, this film mitigates particle aggregation, leading to a reduction in particle size. XOS emerges as a versatile and sustainable oligosaccharide inhibitor, effectively optimizing the performance of WBFs. Its diverse contributions to lubrication, inhibition, and microstructure refinement position XOS as a promising solution for efficiently extracting oil and gas resource. Full article
Show Figures

Figure 1

13 pages, 2739 KiB  
Article
Thermochemical Treatment of Nigerian Raw Clays for Oil and Gas Drilling Operations
by Oghenerume Ogolo, Akeem O. Arinkoola, Peter Ngene, Chukwuma C. Ogbaga and Samuel Osisanya
ChemEngineering 2023, 7(6), 110; https://doi.org/10.3390/chemengineering7060110 - 12 Nov 2023
Viewed by 2726
Abstract
Sodium-based bentonite is used for drilling operations because of its high swelling capacity. This type of bentonite clay is not sourced locally in many oil- and gas-producing nations. However, low-swelling clays (calcium- and potassium-based) are in abundant quantities in most of these countries. [...] Read more.
Sodium-based bentonite is used for drilling operations because of its high swelling capacity. This type of bentonite clay is not sourced locally in many oil- and gas-producing nations. However, low-swelling clays (calcium- and potassium-based) are in abundant quantities in most of these countries. Hence, there is a need to convert low-swelling bentonite clays to sodium-based bentonite. The method used to convert low-swelling clays is more applicable to calcium-based bentonite. This research investigated a thermochemical treatment method that converted potassium-based bentonite to sodium-based bentonite. The raw clay materials were sourced from Pindinga (P) and Ubakala (U) clay deposits in Nigeria. An X-ray diffractometer (XRD), an energy dispersive X-ray (EDX), and a scanning electron microscope (SEM) were used to characterize the raw clay samples. Mud slurry was prepared by mixing 22 g of the local raw clays, 3 wt.% soda ash, and MgO at concentrations between 1 and 3 wt.% and heating at 90 °C. The result showed that the viscosities of samples P and U increased from 6 to 26 and 8 to 35.5 cP before and after thermochemical treatment, respectively. Also, due to the thermochemical treatment, the samples’ yield point, consistency factor, consistency index, and thixotropy behavior were all significantly improved. Full article
Show Figures

Figure 1

10 pages, 2569 KiB  
Article
The Development of Advanced Fluorescent Tracers Aimed at Drill Cuttings Labelling and Depth Correlation via Injection with Oil-Based Drilling Mud
by Vladimir Khmelnitskiy, Hassan S. Alqahtani, Hyung Kwak and Vera Solovyeva
Processes 2023, 11(11), 3197; https://doi.org/10.3390/pr11113197 - 9 Nov 2023
Cited by 3 | Viewed by 1417
Abstract
Fast and precise geo-steering and geo-navigation upon well drilling are the key parameters for improved well targeting, optimal well placement, and maximal hydrocarbon recovery. To advance geo-steering parameters, we propose a new approach to on-site formation evaluation through the use of fluorescent tracers [...] Read more.
Fast and precise geo-steering and geo-navigation upon well drilling are the key parameters for improved well targeting, optimal well placement, and maximal hydrocarbon recovery. To advance geo-steering parameters, we propose a new approach to on-site formation evaluation through the use of fluorescent tracers for drill cuttings tagging according to the depth of origin. Cuttings labelling at the drill bit site is followed by near-real-time drilling depth correlation at the well-head via a camera and AI image recognition systems. To suite the drilling process, the engineered tracers should match to the rheology of the utilized drilling mud. This study was performed to comprehensively investigate the effect of fluorescent tracers on the rheological properties of oil-based drilling mud (OBM) and to determine the optimal quantities of the tracers’ addition. We evaluated critical mud characteristics including electrical stability, thixotropic parameters, shear stress, gel strength, plastic viscosity, and yield point as prepared and in the presence of fluorescent tracers at the range of 1 to 20 wt.%. Additionally, the mud’s effects on the long-term stability of the fluorescent tracers were assessed via hot-rolling tests in conditions mimicking downhole conditions, with the aim of determining the tags’ feasibility for drill cuttings labelling applications. The study also examines the recovery potential of the tracers and their reusability in the drilling process. This investigation provides valuable insights into the potential application of fluorescent tracers for downhole drill cuttings depth correlation which will improve geo-steering works. Full article
Show Figures

Figure 1

15 pages, 13297 KiB  
Article
Effects of Drilling Parameters and Mud Types on Wear Factors and Mechanisms of SM2535 Casings
by Omer Osman, Necar Merah, Mohammed Abdul Samad, Amjad Al-Shaarawi and Meshari Alshalan
Lubricants 2023, 11(10), 420; https://doi.org/10.3390/lubricants11100420 - 30 Sep 2023
Cited by 3 | Viewed by 1744
Abstract
This work aims to explore the impact of side loads, drill-pipe tool-joint (DP-TJ) speed (rpm), and mud type on the austenitic stainless steel SM2535-110 casing wear characteristics. Actual field drill pipe tool joints, casings, and drilling muds are used in this study. The [...] Read more.
This work aims to explore the impact of side loads, drill-pipe tool-joint (DP-TJ) speed (rpm), and mud type on the austenitic stainless steel SM2535-110 casing wear characteristics. Actual field drill pipe tool joints, casings, and drilling muds are used in this study. The results of the study show that under both types of lubrication, the wear volume increased with radial load and DP-TJ speed. SM2535-110 casing specimens tested under oil-based mud (OBM) lubrication had higher casing wear volumes than those obtained under water-based mud (WBM) lubrication. This unexpected behavior is mainly due to the increase in the surface hardness of the casing specimens tested under WBM. The results also show that the specific wear rate or wear factor (K) (which is defined as the volume loss per unit load per unit distance sliding) values of specimens tested under WBM are in general two to four times higher than those obtained under OBM. While K values under WBM increase with both the side load and rpm, those under OBM show a sharp decrease with rpm. This behavior under OBM is due to this lubricant’s higher viscosity and the change of lubrication regime from thin film to thick film lubrication at higher rpm. Scanning electron microscopy (SEM) and the digital microscopic imaging (DMI) of SM235-110 casing specimens show that an aggressive combination of adhesive, abrasive, and plastic deformation was observed under WBM, while the dominant wear mechanism under OBM is abrasive wear. Full article
(This article belongs to the Special Issue Wear and Corrosion Behaviour of Metals and Alloys)
Show Figures

Figure 1

17 pages, 3653 KiB  
Article
Prediction of Lost Circulation in Southwest Chinese Oil Fields Applying Improved WOA-BiLSTM
by Xianming Liu, Wen Jia, Zhilin Li, Chao Wang, Feng Guan, Kexu Chen and Lichun Jia
Processes 2023, 11(9), 2763; https://doi.org/10.3390/pr11092763 - 15 Sep 2023
Cited by 7 | Viewed by 1739
Abstract
Drilling hazards can be significantly decreased by anticipating potential mud loss and then putting the right well control measures in place. Therefore, it is critical to provide early estimates of mud loss. To solve this problem, an enhanced WOA (Whale Optimization Algorithm) and [...] Read more.
Drilling hazards can be significantly decreased by anticipating potential mud loss and then putting the right well control measures in place. Therefore, it is critical to provide early estimates of mud loss. To solve this problem, an enhanced WOA (Whale Optimization Algorithm) and a BiLSTM (Bidirectional Long Short Term Memory) optimization based prediction model of lost circulation prior to drilling has been created. In order to minimize the noise in the historical comprehensive logging data, a wavelet filtering technique was first used. Then, according to the nonlinear Spearman rank correlation coefficient between mud loss and logging parameter values from large to small, seven characteristic parameters were preferred, and the sliding window was used to extract the relevant data. Secondly, the number of neurons in the first and second hidden layers, the maximum training time, and the initial learning rate of the BiLSTM model were optimized using the enhanced WOA method. The BiLSTM network was given the acquired superparameters in order to improve the model’s ability to predict occurrences. Finally, the model was trained and tested using the processed data. In comparison to the LSTM model, BiLSTM model, and WOA-BiLSTM model, respectively, the improved WOA-BiLSTM early mud loss prediction in southwest Chinese oil fields suggested in this study beat the others, receiving 22.3%, 18.7%, and 4.9% higher prediction accuracy, respectively. Full article
(This article belongs to the Special Issue Oil and Gas Well Engineering Measurement and Control)
Show Figures

Figure 1

Back to TopTop