Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = oil–gas mixed transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2197 KiB  
Article
A Self-Powered Density-Based Device for Automatic Mixed-Oil Cutting in Field Pipelines
by Zhen Zhang, Yonggang Zuo, Huishu Liu and Biao He
Sensors 2025, 25(10), 3030; https://doi.org/10.3390/s25103030 - 11 May 2025
Viewed by 405
Abstract
Efficient oil transportation in field-deployed mobile pipelines is critical, but mixed-oil zones at interfaces reduce quality and increase waste, necessitating effective interface detection and cutting. Existing online densitometers, such as vibrating tube or high-accuracy magnetic suspension types, typically require external power, limiting their [...] Read more.
Efficient oil transportation in field-deployed mobile pipelines is critical, but mixed-oil zones at interfaces reduce quality and increase waste, necessitating effective interface detection and cutting. Existing online densitometers, such as vibrating tube or high-accuracy magnetic suspension types, typically require external power, limiting their use in remote or emergency/temporary field operations. A self-powered device is presented that leverages gravitational force variations acting on a float to detect density changes and trigger automatic cutting. Validated with gasoline, diesel, kerosene, and water, it achieves a 10 kg/m3 resolution, deemed sufficient for functional batch separation in its target application, with switching times of 61–395 s for density differences (760–835 kg/m3). It supports 20–90% blending ratios, with a vent mitigating gas effects. The modular, robust, self-powered design suits emergency operations, offering a practical alternative to powered systems. Future work targets improved resolution and environmental testing. Full article
Show Figures

Figure 1

20 pages, 7057 KiB  
Article
Research on Particle Motion Characteristics in a Spiral-Vane-Type Multiphase Pump Based on CFD-DEM
by Guangtai Shi, Xi Yang, Binyan Li, Hongqiang Chai and Hao Qin
J. Mar. Sci. Eng. 2025, 13(5), 845; https://doi.org/10.3390/jmse13050845 - 24 Apr 2025
Viewed by 488
Abstract
In oil–gas mixed transportation using spiral-vane-type multiphase pumps, high sand content often causes wear on flow-passing components. To reveal the motion patterns of particles, a three-stage spiral-vane-type multiphase pump was selected as the research subject. A visualization test bench was constructed, and the [...] Read more.
In oil–gas mixed transportation using spiral-vane-type multiphase pumps, high sand content often causes wear on flow-passing components. To reveal the motion patterns of particles, a three-stage spiral-vane-type multiphase pump was selected as the research subject. A visualization test bench was constructed, and the pump’s performance curve was obtained by experimental measurements. High-speed photography was used to capture the flow process of a single particle within the pump, and CFD-DEM was used to study the motion characteristics of four particle sizes (0.5 mm, 1 mm, 1.5 mm, and 2 mm). The results showed that 0.5 mm and 1 mm particles had smaller trajectory angles in the guide vanes, while 1.5 mm and 2 mm particles had larger angles, with wall collisions observed. Velocity changes were similar: When they just enter the impeller, the circumferential velocity increases sharply and then stabilizes around 15 m/s. After entering the guide vane passage, the circumferential velocity exhibits an initial abrupt decrease followed by a gradual reduction. The axial velocity increases gradually along the impeller passage, reaches the highest value at the impeller outlet, and begins to decrease gradually after entering the guide vane. The particles had higher volume fractions in the guide vane and collided more with impeller walls. Collisions with guide vane walls increased with particle size. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 7857 KiB  
Article
Geochemical Characteristics and Hydrocarbon Accumulation Model of Natural Gas in the Third Member of the Oligocene Lingshui Formation in the Baodao Sag, Qiongdongnan Basin, South China Sea
by Xue Yan, Nan Wu, Jun Gan, Yang Tian, Xiaofeng Xiong, Yong Feng and Gaokun Zuo
J. Mar. Sci. Eng. 2025, 13(4), 774; https://doi.org/10.3390/jmse13040774 - 14 Apr 2025
Viewed by 451
Abstract
The deep-water area of the Qiongdongnan basin is currently a hot topic for exploration. The discovery of gas fields in the Baodao sag confirms its abundant oil and gas resources and potential, making it of significant economic and strategic importance. The complexity of [...] Read more.
The deep-water area of the Qiongdongnan basin is currently a hot topic for exploration. The discovery of gas fields in the Baodao sag confirms its abundant oil and gas resources and potential, making it of significant economic and strategic importance. The complexity of sedimentary structural evolution within the Baodao sag makes the process of oil and gas accumulation in the area extremely complex, and the law of natural gas enrichment is difficult to grasp, resulting in unclear exploration directions. Therefore, this study focuses on the third member of the Lingshui Formation in the Paleogene of the Baodao sag. Based on the abundant thin section, scanning electron microscopy, 3D seismic and geochemical analysis data in the area, through analyzing the density of natural gas, the proportion of hydrocarbon and non-hydrocarbon components, the dryness coefficient carbon, and the isotopic characteristics, combined with the deep natural gas genesis discrimination chart, the types and genesis types of natural gas and organic matter in the sag are clarified. In addition, combined with the package and BasinMod 2009 software, the filling period and reservoir-filling process were clarified and restored. At the same time, the reservoir formation characteristics of the different fault-step zones inside the sag were dissected and the primary and secondary migration of natural gas were analyzed in order to clarify the types and characteristics of different fault-step zone transport systems. Finally, the research findings indicate that there are two reservoir formation modes developed within the depression, as follows: “multiple hydrocarbon generation and control sources—continuous vertical control of large faults—lateral sand body convergence (T + Z-type transport)—multiple cap layer closure” and “mixed-source hydrocarbon supply—continuous vertical control of large faults—short lateral sand body convergence (Z-type transport)—multiple cap layer closure”, providing an important basis for the next exploration of the basin. Full article
Show Figures

Figure 1

16 pages, 4156 KiB  
Article
Flow Management in High-Viscosity Oil–Gas Mixing Systems: A Study of Flow Regimes
by Jiaming Tian, Mao Li and Yueshe Wang
Energies 2025, 18(6), 1550; https://doi.org/10.3390/en18061550 - 20 Mar 2025
Viewed by 475
Abstract
The flow management of the gas–liquid mixture module is crucial for the transmission efficiency of crude oil-and-natural gas-gathering and transportation systems. The concurrent flow of high-viscosity crude oil and natural gas in gas–liquid mixing is investigated numerically by adopting an improved volume of [...] Read more.
The flow management of the gas–liquid mixture module is crucial for the transmission efficiency of crude oil-and-natural gas-gathering and transportation systems. The concurrent flow of high-viscosity crude oil and natural gas in gas–liquid mixing is investigated numerically by adopting an improved volume of fluid (VOF) model programmed with the OpenFOAM v2012 software package. Over a wide range of superficial velocities for the oil, from 0.166 to 5.529 m/s, and natural gas, from 0.138 to 27.645 m/s, a variety of flow regimes of bubble flow, plug flow, slug flow, and annular flow are encountered successively, which are essentially consistent with the Brill and Mandhane flow regime identification criteria. The results show that the oil volume fraction, fluid velocity, and bubble slip velocity together affect the growth of bubbles in the pipeline at a low gas velocity. In the case of slug flow, the phenomenon of liquid film plugging is noticeable, and the flow is very unstable, which should be avoided as much as possible. Nonetheless, it is commended that stable plug flow and annular flow with a high oil transportation efficiency and minimal power consumption are friendly working conditions. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

20 pages, 20133 KiB  
Article
Numerical Simulation of CO2 Immiscible Displacement Based on Three-Dimensional Pore Structure
by Feng Shi, Xiaoshan Li, Gen Kou, Huan Liu, Sai Liu, Zhen Liu, Ziheng Zhao and Xiaoyu Jiang
Energies 2025, 18(4), 1009; https://doi.org/10.3390/en18041009 - 19 Feb 2025
Cited by 1 | Viewed by 557
Abstract
CO2-enhanced tight oil production can increase crude oil recovery while part of the injected CO2 is geologically sequestered. This process is influenced by factors such as gas injection rate, oil/gas viscosity ratio, and contact angle. Understanding how these factors affect [...] Read more.
CO2-enhanced tight oil production can increase crude oil recovery while part of the injected CO2 is geologically sequestered. This process is influenced by factors such as gas injection rate, oil/gas viscosity ratio, and contact angle. Understanding how these factors affect recovery during CO2 non-mixed-phase substitution is essential for improving CO2-enhanced tight oil production technology. In this study, three-dimensional pore structure was numerically simulated using physical simulation software. The effects of three key parameters—the gas injection rate, contact angle and viscosity slope—on flow displacement during a CO2 non-mixed-phase drive were analyzed. In addition, the study compares the fluid transport behavior under mixed-phase and non-mixed-phase conditions at the pore scale. The simulation results show that increasing the replacement velocity significantly expands the diffusion range of CO2 and reduces the capillary fingering phenomenon. In addition, the saturation of CO2 increases with the increase in the viscosity ratio, which further improves the diffusion range of CO2. The wetting angle is not simply linearly related to the drive recovery, and the recovery is closely related to the interfacial tension and capillary force under the influence of wettability. The recoveries under mixed-phase conditions were slightly higher than those under unmixed-phase conditions. During the mixed-phase replacement process, CO2 is dissolved into the crude oil, resulting in oil volume expansion, which improves the distance and extent of CO2 permeation. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

18 pages, 3112 KiB  
Article
Microencapsulation of Deer Oil in Soy Protein Isolate–Chitosan Complex Coacervate—Preparation, Characterization, and Simulated Digestion
by Hongyan Li, Ying Zong, Weijia Chen, Yan Zhao, Jianan Geng, Zhongmei He and Rui Du
Foods 2025, 14(2), 181; https://doi.org/10.3390/foods14020181 - 9 Jan 2025
Cited by 1 | Viewed by 1603
Abstract
Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use. In this study, DO was encapsulated through the cohesive action of soy protein isolate (SPI) [...] Read more.
Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use. In this study, DO was encapsulated through the cohesive action of soy protein isolate (SPI) and chitosan (CS). The optimal preparation conditions yielded microcapsules with DO’s highest encapsulation efficiency (EE) (85.28 ± 1.308%) at an SPI/CS mixing ratio of 6:1 and a core-to-wall ratio of 1:2 at pH 6. Fluorescence and scanning electron microscopy were utilized to examine the microcapsules’ structure, showing intact surfaces and effective encapsulation of oil droplets through SPI/CS composite coalescence. Through Fourier transform infrared spectroscopy (FTIR), the electrostatic interplay between SPI and CS was verified during the merging process. At room temperature, the microcapsules resisted core oxidation by reducing gas permeation. In vitro simulated digestion results indicated the microcapsules achieved a slow and sustained release of DO in the intestinal tract. This study further expands the application scope of deer oil and promotes the development of deer oil preparations and functional foods. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

13 pages, 2256 KiB  
Article
Risk and Pollutant Protective Concentration Levels of Drilling Waste Used to Pave Oil and Gas Field Well Sites
by Jinzhong Yang, Yufei Yang, Lu Tian, Jinliang Zhou and Yiou Wang
Water 2025, 17(1), 30; https://doi.org/10.3390/w17010030 - 26 Dec 2024
Cited by 1 | Viewed by 658
Abstract
Paving oil and gas field well sites of drilling waste allow us to reuse solid waste. However, to keep the risk within acceptable limits, some questions need to be answered: what is the dilution effect that soil and groundwater have on the transport [...] Read more.
Paving oil and gas field well sites of drilling waste allow us to reuse solid waste. However, to keep the risk within acceptable limits, some questions need to be answered: what is the dilution effect that soil and groundwater have on the transport of pollutants? What is the minimum concentration of pollutants leached from drill wastes? In this study, we focus on the paving of well sites using drilling wastes, and we analyze the pollutant migration pattern in the soil vadose zone and groundwater mixing zone after rainwater leaching. The drilling waste pollutant protective concentration level (PCL) and the corresponding dilution attenuation factor (DAF) were then proposed. In addition, the PCL’s accessibility, uncertainty, and environmental significance were further analyzed. It was found that the pollutant dilution factor (DF) of the groundwater mixed zone was strongly influenced by the thickness of the mixed zone, the groundwater Darcy rate, the length of the contaminant source, and the permeability, and each contributed approximately 25%. The soil vadose zone attenuation factor (AF) was primarily influenced by the soil vadose zone (i.e., groundwater depth) thickness that contributed approximately 53%. The contaminant DAF values of the well site drilling waste paving (e.g., the soil vadose zone thickness ranged from 5 to 30 m) ranged from 12 to 84. Additionally, the PCL values of the contaminants ranged from 12 to 84 times of the acceptable concentration (e.g., the Class III permissible limits of the Groundwater Quality Standards GB/T 14848-2017) at the groundwater compliance point. The expression for the exponential relationship between the DAF or PLC and the depth of the soil vadose zone was also provided in this study. The study results provide a reference for the actual process of the use of drilling wastes to pave well sites and for solid waste treatment or soil remediation decision-making and the associated risk assessment procedures. Full article
(This article belongs to the Special Issue Management of Solid Waste and Landfill Leachate)
Show Figures

Figure 1

10 pages, 1079 KiB  
Proceeding Paper
Pakistan’s Electric Vehicle Market: Challenges, Opportunities, and Future Pathways
by Muhammad Zulfiqar, Adal Farooq, Zona Usmani, Ubaid Ur Rehman Zia, Sibghat Ullah and Zaeem Bin Babar
Eng. Proc. 2024, 75(1), 15; https://doi.org/10.3390/engproc2024075015 - 24 Sep 2024
Cited by 1 | Viewed by 6839
Abstract
The electric vehicle (EV) market in Pakistan faces a blend of challenges and opportunities as it transitions towards a more sustainable future. The transport sector, a significant consumer of carbon-intensive fuels (gasoline, diesel, CNG), contributes substantially to global GHG (greenhouse gas) emissions. In [...] Read more.
The electric vehicle (EV) market in Pakistan faces a blend of challenges and opportunities as it transitions towards a more sustainable future. The transport sector, a significant consumer of carbon-intensive fuels (gasoline, diesel, CNG), contributes substantially to global GHG (greenhouse gas) emissions. In Pakistan, the shift to EVs is driven by the need to curtail the high cost of imported fossil fuels and the need to reduce carbon emissions. In this backdrop, this study conducts a market assessment of major challenges and opportunities that exist for EV uptake while also developing decarbonization pathways through scenario-based modeling using the Low Emission Analysis Platform (LEAP). Through a mixed-method approach, this study reveals that the key hurdles include the lack of charging infrastructure, the high costs of EVs, limited domestic production, and insufficient public awareness. Overcoming these challenges requires coordinated efforts in policymaking, infrastructure development, and public education. The successful adoption of EVs promises enhanced energy security, reduced environmental impacts, and economic benefits through decreased oil imports and lower operational costs. Full article
Show Figures

Figure 1

33 pages, 6114 KiB  
Article
Roles of Catalysts and Feedstock in Optimizing the Performance of Heavy Fraction Conversion Processes: Fluid Catalytic Cracking and Ebullated Bed Vacuum Residue Hydrocracking
by Dicho Stratiev, Ivelina Shishkova, Georgi Argirov, Rosen Dinkov, Mihail Ivanov, Sotir Sotirov, Evdokia Sotirova, Veselina Bureva, Svetoslav Nenov, Krassimir Atanassov, Denis Stratiev and Svetlin Vasilev
Catalysts 2024, 14(9), 616; https://doi.org/10.3390/catal14090616 - 12 Sep 2024
Cited by 3 | Viewed by 1813
Abstract
Petroleum refining has been, is still, and is expected to remain in the next decades the main source of energy required to drive transport for mankind. The demand for automotive and aviation fuels has urged refiners to search for ways to extract more [...] Read more.
Petroleum refining has been, is still, and is expected to remain in the next decades the main source of energy required to drive transport for mankind. The demand for automotive and aviation fuels has urged refiners to search for ways to extract more light oil products per barrel of crude oil. The heavy oil conversion processes of ebullated bed vacuum residue hydrocracking (EBVRHC) and fluid catalytic cracking (FCC) can assist refiners in their aim to produce more transportation fuels and feeds for petrochemistry from a ton of petroleum. However, a good understanding of the roles of feed quality and catalyst characteristics is needed to optimize the performance of both heavy oil conversion processes. Three knowledge discovery database techniques—intercriteria and regression analyses, and artificial neural networks—were used to evaluate the performance of commercial FCC and EBVRHC in processing 19 different heavy oils. Seven diverse FCC catalysts were assessed using a cascade and parallel fresh catalyst addition system in an EBVRHC unit. It was found that the vacuum residue conversion in the EBVRHC depended on feed reactivity, which, calculated on the basis of pilot plant tests, varied by 16.4%; the content of vacuum residue (VR) in the mixed EBVRHC unit feed (each 10% fluctuation in VR content leads to an alteration in VR conversion of 1.6%); the reaction temperature (a 1 °C deviation in reaction temperature is associated with a 0.8% shift in VR conversion); and the liquid hourly space velocity (0.01 h-1 change of LHSV leads to 0.85% conversion alteration). The vacuum gas oil conversion in the FCC unit was determined to correlate with feed crackability, which, calculated on the basis of pilot plant tests, varied by 8.2%, and the catalyst ΔCoke (each 0.03% ΔCoke increase reduces FCC conversion by 1%), which was unveiled to depend on FCC feed density and equilibrium FCC micro-activity. The developed correlations can be used to optimize the performance of FCC and EBVRHC units by selecting the appropriate feed slate and catalyst. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

20 pages, 15277 KiB  
Article
Unveiling Turbulent Flow Dynamics in Blind-Tee Pipelines: Enhancing Fluid Mixing in Subsea Pipeline Systems
by Fenghui Han, Qingyuan Lan, Yuxiang Liu, Guang Yin, Muk Chen Ong, Wenhua Li and Zhe Wang
J. Mar. Sci. Eng. 2024, 12(7), 1199; https://doi.org/10.3390/jmse12071199 - 17 Jul 2024
Cited by 3 | Viewed by 1567
Abstract
Blind tees, as important junctions, are widely used in offshore oil and gas transportation systems to improve mixing flow conditions and measurement accuracies in curved pipes. Despite the significance of blind tees, their unsteady flow characteristics and mixing mechanisms in turbulent flow regimes [...] Read more.
Blind tees, as important junctions, are widely used in offshore oil and gas transportation systems to improve mixing flow conditions and measurement accuracies in curved pipes. Despite the significance of blind tees, their unsteady flow characteristics and mixing mechanisms in turbulent flow regimes are not clearly established. Therefore, in this study, Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations, coupled with Explicit Algebraic Reynolds Stress Model (EARSM), are employed to explore the complex turbulent flow characteristics within blind-tee pipes. Firstly, the statistical flow features are investigated based on the time-averaged results, and the swirl dissipation analysis reveals an intense dissipative process occurring within blind tees, surpassing conventional elbows in swirling intensity. Then, the instantaneous flow characteristics are investigated through time and frequency domain analysis, uncovering the oscillatory patterns and elucidating the mechanisms behind unsteady secondary flow motions. In a 2D-length blind tee, a nondimensional dominant frequency of oscillation (Stbt = 0.0361) is identified, highlighting the significant correlation between dominant frequencies inside and downstream of the plugged section, which emphasizes the critical role of the plugged structure in these unsteady motions. Finally, a power spectra analysis is conducted to explore the influence of blind-tee structures, indicating that the blind-tee length of lbt = 2D enhances the flow-mixing conditions by amplifying the oscillation intensities of secondary flow motions. Full article
(This article belongs to the Special Issue The State of the Art of Marine Risers and Pipelines)
Show Figures

Figure 1

19 pages, 12938 KiB  
Article
The Mechanism of Air Blocking in the Impeller of Multiphase Pump
by Sicong Zhang, Wei Han, Tongqing Xue, Pan Qiang, Rennian Li and Jiandong Mi
Separations 2024, 11(7), 212; https://doi.org/10.3390/separations11070212 - 10 Jul 2024
Cited by 1 | Viewed by 1437
Abstract
The exploitation and transportation of deep-sea and remote oil and gas fields have risen to become important components of national energy strategies. The gas–liquid separation and gas blocking caused by the large density difference between the gas and liquid phases are the primary [...] Read more.
The exploitation and transportation of deep-sea and remote oil and gas fields have risen to become important components of national energy strategies. The gas–liquid separation and gas blocking caused by the large density difference between the gas and liquid phases are the primary influencing factors for the safe and reliable operation of gas–liquid mixed transportation pump systems. This paper takes the independently designed single-stage helical axial-flow mixed transportation pump compression unit as the research object. Through numerical simulation, the internal flow of the mixed transportation pump is numerically calculated to study the aggregation and conglomeration of small gas clusters in the flow passage hub caused by gas–liquid phase separation, influenced by the shear flow of phase separation, forming axial vortices at the outlet where gas clusters gather in the flow passage. The work performed by the impeller on the gas clusters is insufficient to overcome the adverse pressure gradient formed at the outlet of the flow passage due to the gathering of the liquid phase in adjacent flow passages, resulting in the phenomenon of gas blocking, with vortex gas clusters lingering near the hub wall of the flow passage. Full article
(This article belongs to the Topic Oil, Gas and Water Separation Research)
Show Figures

Figure 1

24 pages, 25176 KiB  
Article
Laminae Characteristics and Their Relationship with Mudstone Reservoir Quality in the Qingshankou Formation, Sanzhao Depression, Songliao Basin, Northeast China
by Heng Wu, Hao Xu, Haiyan Zhou, Fei Shang, Lan Wang, Pengfei Jiang, Xinyang Men and Ding Liu
Minerals 2024, 14(6), 600; https://doi.org/10.3390/min14060600 - 7 Jun 2024
Cited by 1 | Viewed by 1332
Abstract
Lamination is the predominant and widely developed sedimentary structure in mudstones. Similar to organic pores in shale gas reservoirs, the inorganic pores in the laminae of shale oil reservoirs are equivalently important high-quality reservoir spaces and flow channels. The laminae characteristics are strongly [...] Read more.
Lamination is the predominant and widely developed sedimentary structure in mudstones. Similar to organic pores in shale gas reservoirs, the inorganic pores in the laminae of shale oil reservoirs are equivalently important high-quality reservoir spaces and flow channels. The laminae characteristics are strongly heterogeneous, being controlled by both deposition and diagenesis. However, the origin of this diversity is poorly understood. A detailed examination of cores, thin sections, and scanning electron microscopy analyses were conducted on the lacustrine mudstone of the Qingshankou Formation in the Songliao Basin to study the influence of deposition and diagenesis on laminae characteristics and their relationship to reservoir quality. Three types of laminae are mainly developed, namely thick siliceous laminae, thin siliceous laminae, and thin siliceous and argillaceous mixed laminae. Deposition controls the type and distribution of laminae. The thin siliceous and argillaceous mixed laminae are controlled by climate-driven seasonal flux variations. The thick siliceous laminae and thin siliceous laminae are controlled by bottom current or gravity-driven transport processes due to increased terrestrial input. The thin siliceous laminae have the optimum reservoir properties, followed by the thin siliceous and argillaceous mixed laminae, while the thick siliceous laminae have the worst properties. Diagenesis controls the pore evolution of the laminae. Different laminae have different paths of diagenesis. The thin siliceous laminae are mainly cemented by chlorite, preserving some primary porosity. The clay mineral content of the thin siliceous and argillaceous mixed laminae is high, and the primary pores are mainly destroyed by the strong deformation of the clay minerals during compaction. The thick siliceous laminae are intensely cemented by calcite, losing most of the porosity. The present study enhances the understanding of reservoir characteristics in laminae and provides a reference for shale oil exploration. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Graphical abstract

16 pages, 6964 KiB  
Article
Study on the Hydrodynamic Evolution Mechanism and Drift Flow Patterns of Pipeline Gas–Liquid Flow
by Qing Yan, Donghui Li, Kefu Wang and Gaoan Zheng
Processes 2024, 12(4), 695; https://doi.org/10.3390/pr12040695 - 29 Mar 2024
Cited by 17 | Viewed by 1821
Abstract
The hydrodynamic characteristic of the multiphase mixed-transport pipeline is essential to guarantee safe and sustainable oil–gas transport when extracting offshore oil and gas resources. The gas–liquid two-phase transport phenomena lead to unstable flow, which significantly impacts pipeline deformation and can cause damage to [...] Read more.
The hydrodynamic characteristic of the multiphase mixed-transport pipeline is essential to guarantee safe and sustainable oil–gas transport when extracting offshore oil and gas resources. The gas–liquid two-phase transport phenomena lead to unstable flow, which significantly impacts pipeline deformation and can cause damage to the pipeline system. The formation mechanism of the mixed-transport pipeline slug flow faces significant challenges. This paper studies the formation mechanism of two-phase slug flows in mixed-transport pipelines with multiple inlet structures. A VOF-based gas–liquid slug flow mechanical model with multiple inlets is set up. With the volumetric force source term modifying strategy, the formation mechanism and flow patterns of slug flows are obtained. The research results show that the presented strategy and optimization design method can effectively simulate the formation and evolution trends of gas–liquid slug flows. Due to the convective shock process in the eight branch pipes, a bias flow phenomenon exists in the initial state and causes flow patterns to be unsteady. The gas–liquid mixture becomes relatively uniform after the flow field stabilizes. The design of the bent pipe structure results in an unbalanced flow velocity distribution and turbulence viscosity on both sides, presenting a banded distribution characteristic. The bend structure can reduce the bias phenomenon and improve sustainable transport stability. These findings provide theoretical guidance for fluid dynamics research in offshore oil and gas and chemical processes, and also offer technical support for mixed-transport pipeline sustainability transport and optimization design of channel structures. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

38 pages, 5404 KiB  
Review
Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society
by Adrian Neacsa, Cristian Nicolae Eparu, Cașen Panaitescu, Doru Bogdan Stoica, Bogdan Ionete, Alina Prundurel and Sorin Gal
Energies 2023, 16(15), 5751; https://doi.org/10.3390/en16155751 - 1 Aug 2023
Cited by 8 | Viewed by 3176
Abstract
The increase in demand, and thus the need to lower its price, has kept C-based fuels as the main source. In this context, the use of oil and gas has led to increased climate change, resulting in greenhouse gases. The high percentage of [...] Read more.
The increase in demand, and thus the need to lower its price, has kept C-based fuels as the main source. In this context, the use of oil and gas has led to increased climate change, resulting in greenhouse gases. The high percentage of eissions, over 40%, is due to the production of electricity, heat, or/and energy transport. This is the main reason for global warming and the extreme and increasingly common climate change occurrences, with all of nature being affected. Due to this reason, in more and more countries, there is an increased interest in renewable energies from sustainable sources, with a particular emphasis on decarbonisation. One of the energies analysed for decarbonisation that will play a role in future energy systems is hydrogen. The development of hydrogen–natural gas mixtures is a major challenge in the field of energy and fuel technology. This article aims to highlight the major challenges associated with researching hydrogen–natural gas blends. Meeting this challenge requires a comprehensive research and development effort, including exploring appropriate blending techniques, optimising performance, addressing infrastructure requirements, and considering regulatory considerations. Overcoming this challenge will enable the full potential of hydrogen–natural gas blends to be realised as a clean and sustainable energy source. This will contribute to the global transition to a greener and more sustainable future. Several international, European, and Romanian studies, projects, and legislative problems are being analysed. The mix between H2 and natural gas decreases fugitive emissions. In contrast, using hydrogen increases the risk of fire more than using natural gas because hydrogen is a light gas that easily escapes and ignites at almost any concentration in the air. Full article
Show Figures

Figure 1

18 pages, 8534 KiB  
Review
Current Knowledge on Friction, Lubrication, and Wear of Ethanol-Fuelled Engines—A Review
by Henara Lillian Costa, Tiago Cousseau and Roberto Martins Souza
Lubricants 2023, 11(7), 292; https://doi.org/10.3390/lubricants11070292 - 12 Jul 2023
Cited by 16 | Viewed by 4534
Abstract
The urgent need for drastic reduction in emissions due to global warming demands a radical energy transition in transportation. The role of biofuels is fundamental to bridging the current situation towards a clean and sustainable future. In passenger cars, the use of ethanol [...] Read more.
The urgent need for drastic reduction in emissions due to global warming demands a radical energy transition in transportation. The role of biofuels is fundamental to bridging the current situation towards a clean and sustainable future. In passenger cars, the use of ethanol fuel reduces gas emissions (CO2 and other harmful gases), but can bring tribological challenges to the engine. This review addresses the current state-of-the-art on the effects of ethanol fuel on friction, lubrication, and wear in car engines, and identifies knowledge gaps and trends in lubricants for ethanol-fuelled engines. This review shows that ethanol affects friction and wear in many ways, for example, by reducing lubricant viscosity, which on the one hand can reduce shear losses under full film lubrication, but on the other can increase asperity contact under mixed lubrication. Therefore, ethanol can either reduce or increase engine friction depending on the driving conditions, engine temperature, amount of diluted ethanol in the lubricant, lubricant type, etc. Ethanol increases corrosion and affects tribocorrosion, with significant effects on engine wear. Moreover, ethanol strongly interacts with the lubricant’s additives, affecting friction and wear under boundary lubrication conditions. Regarding the anti-wear additive ZDDP, ethanol leads to thinner tribofilms with modified chemical structure, in particular shorter phosphates and increased amount of iron sulphides and oxides, thereby reducing their anti-wear protection. Tribofilms formed from Mo-DTC friction modifier are affected as well, compromising the formation of low-friction MoS2 tribofilms; however, ethanol is beneficial for the tribological behaviour of organic friction modifiers. Although the oil industry has implemented small changes in oil formulation to ensure the proper operation of ethanol-fuelled engines, there is a lack of research aiming to optimize lubricant formulation to maximize ethanol-fuelled engine performance. The findings of this review should shed light towards improved oil formulation as well as on the selection of materials and surface engineering techniques to mitigate the most pressing problems. Full article
Show Figures

Figure 1

Back to TopTop