Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = ocean buffer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9892 KB  
Article
Fluid–Structure Interaction Mechanisms of Layered Thickness Effects on Lubrication Performance and Energy Dissipation in Water-Lubricated Bearings
by Lun Wang, Xincong Zhou, Hanhua Zhu, Qipeng Huang, Zhenjiang Zhou, Shaopeng Xing and Xueshen Liu
Lubricants 2025, 13(10), 445; https://doi.org/10.3390/lubricants13100445 - 12 Oct 2025
Cited by 1 | Viewed by 820
Abstract
Traditional single-layer water-lubricated rubber or plastic bearings suffer from water film rupture, excessive frictional losses, and insufficient load-carrying capacity, which limit performance and service life in marine propulsion and ocean engineering. To address these issues, this study introduces an innovative laminated bearing consisting [...] Read more.
Traditional single-layer water-lubricated rubber or plastic bearings suffer from water film rupture, excessive frictional losses, and insufficient load-carrying capacity, which limit performance and service life in marine propulsion and ocean engineering. To address these issues, this study introduces an innovative laminated bearing consisting of a rubber composite layer and an ultra-high-molecular-weight polyethylene (UHMWPE) layer. A three-dimensional dynamic model based on fluid–structure interaction theory is developed to evaluate the effects of eccentricity, rotational speed, and liner thickness on lubrication pressure, load capacity, deformation, stress–strain behavior, and frictional power consumption. The model also reveals how thickness matching governs load transfer and energy dissipation. Results indicate that eccentricity, speed, and thickness are key determinants of lubrication and structural response. Hydrodynamic pressure and load capacity rise with eccentricity above 0.8 or higher speeds, but frictional losses also intensify. The rubber layer performs optimally at a thickness of 5 mm, while excessive or insufficient thickness leads to stress concentration or reduced buffering. The UHMWPE layer exhibits optimal performance at 5–7 mm, with greater deviations resulting in increased stress and deformation. Proper thickness matching improves pressure distribution, reduces local stresses, and enhances energy dissipation, thereby strengthening bearing stability and durability. Full article
Show Figures

Figure 1

17 pages, 994 KB  
Article
Effects of Prenatal Exposure to Ozone, Heatwave and Green Space on Neonatal Congenital Heart Disease: A Case-Control Study in Eastern China
by Weizhe Zhang, Tiezheng Li, Leiyu Shi, Die Li and Mary A. Fox
Toxics 2025, 13(9), 716; https://doi.org/10.3390/toxics13090716 - 26 Aug 2025
Viewed by 974
Abstract
Congenital heart disease (CHD) is the most prevalent birth defect. Ozone and heatwave exposure during pregnancy could increase the risk of adverse birth outcomes. Green space might be associated with beneficial birth outcomes. The research on the combined effects of those exposures on [...] Read more.
Congenital heart disease (CHD) is the most prevalent birth defect. Ozone and heatwave exposure during pregnancy could increase the risk of adverse birth outcomes. Green space might be associated with beneficial birth outcomes. The research on the combined effects of those exposures on CHD is limited. Therefore, we conducted a multicenter case–control study based on a surveillance system in Zhejiang Province, China, to explore the effect of ozone, heatwave, and green space exposure during early pregnancy on CHD and their interaction. The inverse distance weighting method and normalized difference vegetation index were applied to assess maternal ozone and green space exposure, respectively. The heatwave definition is from the National Oceanic and Atmospheric Administration. Our study reveals positive associations of heatwave and ozone exposure with CHD (ozone: OR = 1.07, 95% CI: 1.02, 1.13; heatwave: OR = 1.29, 95% CI: 1.18, 1.40), and green space in different buffers around residence exerted protective effects on CHD, with ORs ranging from 0.93 to 0.94. Associations between ozone and CHD were weakened among participants with higher NDVI. Ozone’s effects on CHD were stronger with the increased duration of heatwave exposure. Our study indicates that ozone and heatwave exposure could increase the risk of CHD, and high green space is a protective factor for CHD. Meanwhile, high green space exposure could attenuate the effect of ozone on CHD, but heatwave exposure strengthened it. Full article
(This article belongs to the Special Issue Health Effects of Air Pollution on Children and Adolescents)
Show Figures

Graphical abstract

19 pages, 945 KB  
Article
Clarifying Influences of Sampling Bias (Concentration) and Locational Errors (Uncertainties) on Precision or Generality of Species Distribution Models
by Brice B. Hanberry
Land 2025, 14(8), 1620; https://doi.org/10.3390/land14081620 - 9 Aug 2025
Viewed by 1272
Abstract
Locational errors and sampling bias may produce unrepresentative species distribution models. To decompose the influence of errors, I modeled species distributions of 31 mammal species from georeferenced records and random samples from range maps, with potential sources of errors added or removed, using [...] Read more.
Locational errors and sampling bias may produce unrepresentative species distribution models. To decompose the influence of errors, I modeled species distributions of 31 mammal species from georeferenced records and random samples from range maps, with potential sources of errors added or removed, using the random forests algorithm. Errors included the addition of (1) cities, (2) administrative centers, (3) records flagged as potential errors (e.g., outliers), and (4) urban records to range map samples; the removal of (5) flagged records and (6) urban records from georeferenced records; and the addition of (7) random points and (8) clustered points to georeferenced records. I also examined separation between thinned and unthinned (i.e., locally concentrated) records and ocean and land areas. Errors generally did not perturb species distributions, particularly if errors were located within species ranges. The greatest departure relative to unaltered models (mean niche overlap values of 0.96 out of 1) was due to the addition of administrative centers at a 13% error rate. Because locational errors overall do not occur in modern georeferenced records, outliers may provide important samples from undersampled areas. Delineating land from ocean coordinates may require a land layer at the highest available resolution and buffered to match the distance of locational uncertainty for georeferenced records. Predicted areas for species distributions increased along the spectrum of models from concentrated georeferenced records, thinned records, and random samples from range maps. Species distributions modeled with all georeferenced records will have the greatest sampling concentration (to differentiate from bias, because predictive modeling is not hypothesis testing), resulting in model locational precision, whereas species distribution models from random samples of range maps will have locational generality (rather than errors). The risk of removing samples of suitable conditions is the generation of unrepresentative models whereas the benefit of sample removal is slightly more generalized models, but which also may represent overpredictions. Full article
Show Figures

Figure 1

32 pages, 6657 KB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 - 31 Jul 2025
Viewed by 991
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

20 pages, 2705 KB  
Article
Temperature and Depth Sensor Based on Fiber Bragg Gratings with Temperature-Compensated Structure in Marine Environment
by Xinyu Zhao, Chenxi Wei, Lina Zeng, Lu Li, Shengjie Liu, Li Sun, Zaijin Li, Hao Chen, Guojun Liu, Yi Qu, Zichun Le, Yingchao Li, Lianhe Li and Lin Li
Coatings 2025, 15(7), 795; https://doi.org/10.3390/coatings15070795 - 6 Jul 2025
Viewed by 1461
Abstract
A fiber Bragg grating (FBG)-based ocean temperature and depth sensor structure is proposed. The pressure sensing section employs a secondary sensitization design comprising a piston and the polycarbonate buffer, while the temperature sensing section utilizes an FBG encapsulated within a metal silver tube, [...] Read more.
A fiber Bragg grating (FBG)-based ocean temperature and depth sensor structure is proposed. The pressure sensing section employs a secondary sensitization design comprising a piston and the polycarbonate buffer, while the temperature sensing section utilizes an FBG encapsulated within a metal silver tube, accompanied by a temperature compensation structure. Simulation analyses verify the enhanced sensitivity of the proposed configuration. By selecting suitable materials for the piston, metal tube, and polymer, and optimizing the dimensions of key components, the sensitivity of the bare FBG sensor is significantly improved through the combined effects of the piston, polymer, and metal tube. After optimization, the sensor exhibits a pressure sensitivity of 1.33 nm/MPa and a temperature sensitivity of 102.77 pm/°C, meeting the high-precision detection requirements for ocean temperature and depth sensing. The experimental results show that the temperature sensitivity is 109.9 pm/°C within the temperature range of −5~35 °C, and that the pressure sensitivity is 1.63 nm/MPa within the pressure range of 1~10 MPa. These results confirm that the sensor is well-suited for high-precision ocean temperature and depth measurements. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

31 pages, 1727 KB  
Review
A Novel Framework to Represent Hypoxia in Coastal Systems
by Aavudai Anandhi, Ruth Book and Gulnihal Ozbay
Land 2025, 14(6), 1169; https://doi.org/10.3390/land14061169 - 29 May 2025
Cited by 1 | Viewed by 1157
Abstract
Policymakers face the challenge of increasing food and energy production while reducing nutrient pollution. Coastal hypoxic zones, often caused by human activity, are a key indicator of sustainability. The purpose of this study is to develop a novel framework that can be used [...] Read more.
Policymakers face the challenge of increasing food and energy production while reducing nutrient pollution. Coastal hypoxic zones, often caused by human activity, are a key indicator of sustainability. The purpose of this study is to develop a novel framework that can be used by policymakers to assess strategies to reduce or eliminate hypoxic zones in coastal waters. The developed framework includes socioecological conditions by integrating the Driver–Pressure–State–Impact–Response (DPSIR) framework and multiple thinking approaches (nexus, systems, and goal-oriented) with sustainable development goals (SDGs) and their targets, the food–energy–water (FEW) nexus, agricultural conservation practices (ACPs), and the collective knowledge from the published literature and experts, all applied to hypoxia in oceans. Four categories of ACPs with potential positive effects on hypoxia were identified: conservation cropping systems, conservation drainage systems, riparian buffer systems, and wetland systems. The Gulf of Mexico, a large hypoxic zone, served as a case study. The methods from the development of this framework may be tailored to some 500 global coastal hypoxic zones, covering 245,000 km2 of oceans. Full article
(This article belongs to the Section Water, Energy, Land and Food (WELF) Nexus)
Show Figures

Figure 1

26 pages, 4819 KB  
Article
Thermodynamic and Kinetic Characterization of Colloidal Polymers of N-Isopropylacrylamide and Alkyl Acrylic Acids for Optical pH Sensing
by James T. Moulton, David Bruce, Richard A. Bunce, Mariya Kim, Leah Oxenford Snyder, W. Rudolf Seitz and Barry K. Lavine
Molecules 2025, 30(7), 1416; https://doi.org/10.3390/molecules30071416 - 22 Mar 2025
Cited by 1 | Viewed by 847
Abstract
Copolymers of N-isopropylacrylamide (NIPA) and alkyl acrylic acids that swell and shrink in response to pH were prepared by dispersion polymerization at 35 °C using N-isopropylacrylamide (transduction monomer), methylenebisacrylamide (crosslinker), 2-dimethoxy-2-phenyl-acetophenone (initiator), N-tert-butylacrylamide (transition temperature modifier), and acrylic [...] Read more.
Copolymers of N-isopropylacrylamide (NIPA) and alkyl acrylic acids that swell and shrink in response to pH were prepared by dispersion polymerization at 35 °C using N-isopropylacrylamide (transduction monomer), methylenebisacrylamide (crosslinker), 2-dimethoxy-2-phenyl-acetophenone (initiator), N-tert-butylacrylamide (transition temperature modifier), and acrylic acid, methacrylic acid, ethacrylic acid, and propacrylic acid (functional comonomer). The diameter of the microspheres of the copolymer varied between 0.5 µm and 1.0 µm. These microspheres were cast into hydrogel membranes prepared by mixing the pH-sensitive swellable polymer particles with aqueous polyvinyl alcohol solutions followed by crosslinking the polyvinyl alcohol with glutaric dialdehyde for use as pH sensors. Large changes in the turbidity of the polyvinyl alcohol membrane monitored using a Cary 6000 UV–visible absorbance spectrometer were observed as the pH of the buffer solution in contact with the membrane was varied. Polymer swelling was reversible for many of these NIPA-based copolymers. The buffer capacity, ionic strength, pH, and temperature of the buffer solution in contact with the membrane were systematically varied to provide an in-depth pH profile of each copolymer. A unique aspect of this study was the investigation of the response of the NIPA-based polymers to changes in the pH of the solution in contact with the membrane at low buffer concentrations (0.5 mM). The response rate and the reversibility of polymer swelling even at low buffer capacity suggest that NIPA-based copolymers can be coupled to an optical fiber for pH sensing in the environment. We envision using these polymers to monitor rising acidity levels in the ocean due to water that has become enriched in carbon dioxide that endangers shell-building organisms by reducing the amount of carbonate available to them. Full article
Show Figures

Figure 1

32 pages, 8583 KB  
Article
Adaptive Thermal Comfort in the Different Buildings of Temperate Climates—Comparison Between High-Latitude Europe and Mountainous Himalayas in India
by Samar Thapa and Giovanni Pernigotto
Sustainability 2025, 17(2), 404; https://doi.org/10.3390/su17020404 - 7 Jan 2025
Cited by 2 | Viewed by 2185
Abstract
Thermal comfort in buildings is essential for occupant well-being and energy efficiency, particularly in naturally ventilated environments where indoor conditions are closely influenced by outdoor climates. Current studies have not fully explored how thermal comfort varies across regions with similar climatic classifications but [...] Read more.
Thermal comfort in buildings is essential for occupant well-being and energy efficiency, particularly in naturally ventilated environments where indoor conditions are closely influenced by outdoor climates. Current studies have not fully explored how thermal comfort varies across regions with similar climatic classifications but distinct geographic and cultural contexts. Addressing this gap, we analyzed and compared the adaptive thermal comfort responses in different naturally ventilated buildings located in temperate oceanic regions arising due to the high latitude in Europe and the elevated Himalayan region of Darjeeling, India. A mixed-methods approach was used with data from classrooms, offices, and residential buildings with adaptive thermal comfort modeling. The results show that European buildings exhibit narrower thermal comfort ranges compared to Darjeeling, for example, 21.2~24.8 °C versus 16.0~21.6 °C for 80% comfortability in classroom settings, respectively. Statistical analysis revealed significant differences in clothing insulation levels, with occupants in Darjeeling buildings demonstrating higher variability (mean rank 2103.31) compared to their European counterparts (mean rank 1207.30, p < 0.001). Additionally, a stronger correlation between indoor and outdoor air temperature was observed in Darjeeling (R: 0.785, p < 0.001), reflecting limited thermal buffering compared to European buildings (R: 0.372, p < 0.001). The paper advances adaptive thermal comfort models that account for regional differences and links these finding to sustainable building practices. The findings provide actionable insights for energy-efficient, climate-responsive building practices while supporting global sustainable development goals. Full article
Show Figures

Figure 1

18 pages, 2288 KB  
Article
Ratiometric Fluorescent pH Sensing with Carbon Dots: Fluorescence Mapping across pH Levels for Potential Underwater Applications
by Wiktoria Karolina Szapoczka, Chiara Olla, Cristina Carucci, Adam Leo Truskewycz, Tore Skodvin, Andrea Salis, Carlo Maria Carbonaro, Bodil Holst and Peter James Thomas
Nanomaterials 2024, 14(17), 1434; https://doi.org/10.3390/nano14171434 - 2 Sep 2024
Cited by 6 | Viewed by 3237
Abstract
Ocean acidification has become a major climate change concern requiring continuous observation. Additionally, in the industry, pH surveillance is of great importance. Consequently, there is a pressing demand to develop robust and inexpensive pH sensors. Ratiometric fluorescence pH sensing stands out as a [...] Read more.
Ocean acidification has become a major climate change concern requiring continuous observation. Additionally, in the industry, pH surveillance is of great importance. Consequently, there is a pressing demand to develop robust and inexpensive pH sensors. Ratiometric fluorescence pH sensing stands out as a promising concept. The application of carbon dots in fluorescent sensing presents a compelling avenue for the advancement of pH-sensing solutions. This potential is underpinned by the affordability of carbon dots, their straightforward manufacturing process, low toxicity, and minimal susceptibility to photobleaching. Thus, investigating novel carbon dots is essential to identify optimal pH-sensitive candidates. In this study, five carbon dots were synthesized through a simple solvothermal treatment, and their fluorescence was examined as a function of pH within the range of 5–9, across an excitation range of 200–550 nm and an emission range of 250–750 nm. The resulting optical features showed that all five carbon dots exhibited pH sensitivity in both the UV and visible regions. One type of carbon dot, synthesized from m-phenylenediamine, displayed ratiometric properties at four excitation wavelengths, with the best results observed when excited in the visible spectrum at 475 nm. Indeed, these carbon dots exhibited good linearity over pH values of 6–9 in aqueous Carmody buffer solution by calculating the ratio of the green emission band at 525 nm to the orange one at 630 nm (I525nm/I630nm), demonstrating highly suitable properties for ratiometric sensing. Full article
Show Figures

Figure 1

14 pages, 5954 KB  
Technical Note
Seasonal Coastal Erosion Rates Calculated from PlanetScope Imagery in Arctic Alaska
by Galen Cassidy, Matthew Wiseman, Kennedy Lange, Claire Eilers and Alice Bradley
Remote Sens. 2024, 16(13), 2365; https://doi.org/10.3390/rs16132365 - 28 Jun 2024
Cited by 3 | Viewed by 2224
Abstract
Erosion along the coastline of the Alaskan Arctic poses an existential threat to several communities. Rising air temperatures have been implicated in accelerating erosion rates through permafrost thaw, decreasing sea ice cover (increasing ocean fetch and wave energy), and shortening the duration of [...] Read more.
Erosion along the coastline of the Alaskan Arctic poses an existential threat to several communities. Rising air temperatures have been implicated in accelerating erosion rates through permafrost thaw, decreasing sea ice cover (increasing ocean fetch and wave energy), and shortening the duration of a shore-fast ice buffer, which all mean that erosion rates are higher in summer than they are in winter. However, the resolution of available satellite imagery has historically been too low to allow for the quantification of seasonal erosion rates across large areas of the Arctic, and so erosion rates are generally measured at annual to decadal time scales. This study uses PlanetScope high-resolution satellite imagery to calculate seasonal erosion rates in the Alaskan Arctic. Erosion rates as high as 38 cm/day (equivalent to 140 m/year) were measured using twice-annual images from 2017–2023 on two stretches of Alaska’s Beaufort Sea coast: Drew Point and Cape Halkett. The highest erosion rates are measured in the summer, with winter erosion rates consistently below 10 cm/day (usually within error margin of zero) and summer erosion rates exceeding 20 cm/day in three out of the seven years of data. Summer erosion rates are shown to correlate well with local air temperatures in July–September, July sea surface temperatures, and with Beaufort Sea sea ice area in May–August. Wind speeds and number of windy days do not correlate well with summer erosion rates. This study demonstrates the feasibility of using PlanetScope imagery to calculate erosion rates at seasonal time resolution without field measurements and shows the magnitude of difference between summer and winter season erosion rates. Full article
(This article belongs to the Special Issue Remote Sensing in Marine-Coastal Environments)
Show Figures

Figure 1

21 pages, 10477 KB  
Article
Experimental Hydrothermal Alteration of Rhyolite and Andesite at 325 °C and 300 Bar: Implications for a Potential Role of Volcanic Glass in the Fluid Composition in the Okinawa Trough
by Masafumi Saitoh, Takazo Shibuya, Takuya Saito, Junji Torimoto, Hisahiro Ueda, Tomoki Sato and Katsuhiko Suzuki
Minerals 2024, 14(3), 259; https://doi.org/10.3390/min14030259 - 29 Feb 2024
Cited by 3 | Viewed by 2569
Abstract
The experimental study of water–rock reactions under high-temperature and -pressure conditions is a useful approach to constrain controlling factors of the fluid composition in a natural hydrothermal system. Previous studies have focused mainly on the mid-ocean ridge fields, and the hydrothermal alteration of [...] Read more.
The experimental study of water–rock reactions under high-temperature and -pressure conditions is a useful approach to constrain controlling factors of the fluid composition in a natural hydrothermal system. Previous studies have focused mainly on the mid-ocean ridge fields, and the hydrothermal alteration of intermediate-to-felsic rocks has been less emphasized despite its potential importance in the fluid chemistry in an arc/back-arc basin setting. We examined the alteration processes of fresh rhyolite and andesite rocks collected from the middle and southern Okinawa Trough, respectively, at 325 °C and 300 bar (the estimated condition at the reaction zone in the fields), especially focusing on the behavior of silica between the solid and liquid phases. The experimental fluids are characterized by the high Si concentration up to 30 mM, indicating the substantial dissolution of volcanic glass in the analyzed rocks. The high Si concentration in the fluids was presumably buffered by amorphous silica, precipitated from the fluids as a precursor of hydrothermal quartz, during the experiments. Our results emphasize a previously overlooked role of volcanic glass/amorphous silica in the fluid composition in the Okinawa Trough and are consistent with the previous model of pumice replacement mineralization for the SMS deposit formation in the trough. Full article
(This article belongs to the Special Issue Submarine Volcanism, Related Hydrothermal Systems and Mineralizations)
Show Figures

Figure 1

17 pages, 3362 KB  
Article
A Tidal Flat Adjacent to a Fringe Mangrove Forest Mitigates pCO2 Increases and Enhances Lateral Export of Dissolved Carbon
by Wataru Nakamura, Kangnian Wang, Kenji Ono, Toru Endo, Shin Watanabe, Taiki Mori, Keita Furukawa, Kiyoshi Fujimoto and Jun Sasaki
J. Mar. Sci. Eng. 2023, 11(12), 2356; https://doi.org/10.3390/jmse11122356 - 13 Dec 2023
Cited by 6 | Viewed by 3099
Abstract
Carbon export from mangrove forests to the oceans partly acts as a sink for atmospheric CO2, exceeding the rate of carbon burial in mangrove soils. Primary production in ecosystems adjacent to mangroves may prevent degassing and enhance further carbon export from [...] Read more.
Carbon export from mangrove forests to the oceans partly acts as a sink for atmospheric CO2, exceeding the rate of carbon burial in mangrove soils. Primary production in ecosystems adjacent to mangroves may prevent degassing and enhance further carbon export from mangroves to the oceans. In this study, we continuously monitored carbonate chemistry parameters (pCO2, dissolved inorganic carbon (DIC), total alkalinity (TA)) and dissolved organic carbon (DOC) in a tidal flat adjacent to a fringe mangrove forest over a spring-neap tidal cycle. Mean pCO2 during the entire period was 923 ± 318 μatm, and the export of TA, DIC, and DOC from the mangroves to the ocean was 36 ± 26 mmol m−2 d−1, 42 ± 39 mmol m−2 d−1, and 10 ± 9 mmol m−2 d−1, respectively. Semi-monthly pCO2 variations in the mangrove front were controlled by the tidal level during spring tide and by photosynthesis and respiration on the tidal flat during neap tide. This means that during neap tide, photosynthesis on the tidal flat offset the increase in pCO2 caused by the porewater export from the mangrove soil. The DIC/TA export ratio in this study was 1.17 ± 0.08, which was lower than the global average of 1.41 ± 1.39, indicating that the tidal flat adjacent to the mangrove forest may act as a buffer zone to mitigate the increase in pCO2, resulting in much of the exported DIC being stored in the ocean. Full article
(This article belongs to the Section Chemical Oceanography)
Show Figures

Figure 1

17 pages, 4446 KB  
Article
Regime Shifts in the Damage Caused by Tropical Cyclones in the Guangdong–Hong Kong–Macao Greater Bay Area of China
by Manli Zheng, Lin Mu, Wenjuan Li, Fei Wang and Yan Li
J. Mar. Sci. Eng. 2023, 11(10), 1889; https://doi.org/10.3390/jmse11101889 - 28 Sep 2023
Cited by 3 | Viewed by 1794
Abstract
Tropical cyclones (TCs) pose a significant threat in terms of wind-induced damage and storm risk to the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China. In this research, annual power dissipation index (PDI) and storm surge and wave destructive potential (SDP) index from [...] Read more.
Tropical cyclones (TCs) pose a significant threat in terms of wind-induced damage and storm risk to the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China. In this research, annual power dissipation index (PDI) and storm surge and wave destructive potential (SDP) index from June to November were used to estimate the damage caused by the TC events in the buffer zone of the GBA. The regime shifts in 1993 and 2013 were identified through the Bayesian changepoint detection in six TC datasets. The TC-induced damage during 1994–2012 (the low-damage period) was weaker than that in 1977–1993 and 2013–2020 (the high-damage periods). The intensity and size of stronger TCs are the dominant factors responsible for the interdecadal changes in the TC damage. This may be explained by the influences of sea surface temperature (SST), surface latent heat flux and mid-level relative humidity. During high-damage periods, TCs can extract more energy from the ocean, leading to increased TC intensity and larger size. Conversely, during low-damage periods, TCs undergo a decrease in energy intake, resulting in reduced TC power and smaller size. The variations in the SST are relative to the Luzon Strait transport. In addition, the reduction in TC translation speed is unfavorable for the development of TCs in low-damage periods. Further research suggested that mid-level steering flow affects the TC movement velocity. The results offer valuable insights into the variations in the TC-induced damage in the GBA. Full article
Show Figures

Figure 1

24 pages, 12083 KB  
Article
Inshore Ship Detection Based on Multi-Modality Saliency for Synthetic Aperture Radar Images
by Zhe Chen, Zhiquan Ding, Xiaoling Zhang, Xiaoting Wang and Yuanyuan Zhou
Remote Sens. 2023, 15(15), 3868; https://doi.org/10.3390/rs15153868 - 4 Aug 2023
Cited by 14 | Viewed by 2327
Abstract
Synthetic aperture radar (SAR) ship detection is of significant importance in military and commercial applications. However, a high similarity in intensity and spatial distribution of scattering characteristics between the ship target and harbor facilities, along with a fuzzy sea-land boundary due to the [...] Read more.
Synthetic aperture radar (SAR) ship detection is of significant importance in military and commercial applications. However, a high similarity in intensity and spatial distribution of scattering characteristics between the ship target and harbor facilities, along with a fuzzy sea-land boundary due to the strong speckle noise, result in a low detection accuracy and high false alarm rate for SAR ship detection with complex inshore scenes. In this paper, a new inshore ship detection method based on multi-modality saliency is proposed to overcome these challenges. Four saliency maps are established from different perspectives: an ocean-buffer saliency map (OBSM) outlining more accurate coastline under speckle noises; a local stability saliency map (LSSM) addressing pixel spatial distribution; a super-pixel saliency map (SPSM) extracting critical region-based features for inshore ship detection; and an intensity saliency map (ISM) to highlight target pixels with intensity distribution. By combining these saliency maps, ship targets in complex inshore scenes can be successfully detected. The method provides a novel interdisciplinary perspective (surface metrology) for SAR image segmentation, discovers the difference in spatial characteristics of SAR image elements, and proposes a novel robust CFAR procedure for background clutter fitting. Experiments on a public SAR ship detection dataset (SSDD) shows that our method achieves excellent detection performance, with a low false alarm rate, in offshore scenes, inshore scenes, inshore scenes with confusing metallic port facilities, and large-scale scenes. The results outperform several widely used methods, such as CFAR-based methods and super-pixel methods. Full article
(This article belongs to the Special Issue Applications of Synthetic Aperture Radar (SAR) in Target Detection)
Show Figures

Graphical abstract

17 pages, 4072 KB  
Article
Assessment of Water Quality in a Coastal Region of Sea Dike Construction in Korea and the Impact of Low Dissolved Oxygen Concentrations on pH Changes
by Yong-Woo Lee, Yong Hwa Oh, Sang Heon Lee, Dohyun Kim and DongJoo Joung
J. Mar. Sci. Eng. 2023, 11(6), 1247; https://doi.org/10.3390/jmse11061247 - 19 Jun 2023
Cited by 5 | Viewed by 5023
Abstract
To investigate the factors affecting water quality in coastal regions with sea dike constructions, surface water outside a sea dike was monitored for six years from 2015 to 2020 in the Saemangeum region of Korea. Statistical analyses of the six years of high-frequency [...] Read more.
To investigate the factors affecting water quality in coastal regions with sea dike constructions, surface water outside a sea dike was monitored for six years from 2015 to 2020 in the Saemangeum region of Korea. Statistical analyses of the six years of high-frequency measurements revealed that the water quality in this system was predominantly governed by natural processes followed by pollutant inputs as the secondary influencing factor. Severe dissolved oxygen (DO) depletion was observed in the surface waters during warm periods, probably owing to the advection of DO-depleted water from elsewhere to the surface layer. Based on the apparent oxygen utilization (AOU)–pH relationship (r = 0.52, n = 1837), the maximum AOU (180 µM) led to a pH decrease from 8.04 to 7.50, which was considerably lower than the estimated value of 7.72. This extra pH drop was probably due to a reduction in the buffering capacity associated with increased CO2 in the water column originating from the atmosphere and in situ production, as well as local water column redox reactions associated with benthic inputs of reduced chemical species. Overall, persistent DO depletion with ongoing eutrophication/hypoxia could accelerate ocean acidification in Korean coastal waters, which could be more acute in coastal regions with artificial coastal constructions. Full article
(This article belongs to the Section Chemical Oceanography)
Show Figures

Figure 1

Back to TopTop