Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = null alleles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 274 KiB  
Article
Nullity of GSTM1 and GSTT1 Associated with CD4+ T Cells in HIV-Positive Patients from Southern Brazil
by Marcela Gonçalves Trevisan, Marcieli Borba do Nascimento, Valdir Spada Juníor, Volmir Pitt Benedetti, Lirane Elize Defante Ferreto and Léia Carolina Lucio
Antioxidants 2025, 14(8), 909; https://doi.org/10.3390/antiox14080909 - 25 Jul 2025
Viewed by 349
Abstract
Scientific evidence has suggested, in most cases, that nullity of the GSTM1 and GSTT1 genes is associated with worse pathological outcomes and viral infections. In this sense, the main objective of this work was to determine the genotypic frequencies of GSTM1 and GSTT1 [...] Read more.
Scientific evidence has suggested, in most cases, that nullity of the GSTM1 and GSTT1 genes is associated with worse pathological outcomes and viral infections. In this sense, the main objective of this work was to determine the genotypic frequencies of GSTM1 and GSTT1 polymorphisms in individuals with HIV and to establish a possible relationship with CD4+ T lymphocyte count. This was a cross-sectional study, with a quantitative approach, composed of 182 HIV-positive patients. To detect GSTM1 and GSTT1 polymorphisms by the multiplex polymerase chain reaction (PCR), oral mucosa samples were collected. Regarding genotypic frequencies, GST nullity was high in the population, being 97.5% and 97.6%, respectively, for GSTM1− and GSTT1−. Although there was no association between the GST polymorphism and the viral load and CD4+ T lymphocyte counts at diagnosis, when related to the current CD4+ count, the isolated and combined null alleles, GSTT1 (ORadj: 0.219; p = 0.004), GSTM1 (ORadj: 0.219; p = 0.004), and GSTM1/T1 (ORadj: 0.219; p = 0.004), were defined as factors favorable to a minimum CD4+ T lymphocyte count of 350 cells. Therefore, this study demonstrated a probable relationship between the GSTT1 and GSTM1 genetic polymorphisms and HIV. Full article
(This article belongs to the Special Issue Glutathione and Health: From Development to Disease)
22 pages, 2975 KiB  
Article
Diversity of Pummelos (Citrus maxima (Burm.) Merr.) and Grapefruits (Citrus x aurantium var. paradisi) Inferred by Genetic Markers, Essential Oils Composition, and Phenotypical Fruit Traits
by François Luro, Elodie Marchi, Gilles Costantino, Mathieu Paoli and Félix Tomi
Plants 2025, 14(12), 1824; https://doi.org/10.3390/plants14121824 - 13 Jun 2025
Viewed by 716
Abstract
Pummelo (Citrus maxima) is an ancestral species that has given rise to several major citrus varieties, such as sweet orange (C. x aurantium var. sinensis) and grapefruit (C. x aurantium var. paradisi). This species is also cultivated [...] Read more.
Pummelo (Citrus maxima) is an ancestral species that has given rise to several major citrus varieties, such as sweet orange (C. x aurantium var. sinensis) and grapefruit (C. x aurantium var. paradisi). This species is also cultivated and its fruit consumed, particularly in Asia. Over the course of evolution, the allogamous reproduction of pummelos and the absence of asexual multiplication have contributed to its diversification. To assess its phenotypic diversity and the chemical composition of leaf and peel essential oils, genetic analysis using DNA markers is an essential prerequisite to ensure the identity and if varieties belong to this species. Fifty-eight accessions classified as grapefruits or pummelos were analyzed using 42 SSRs, 4 Indels, and 36 SNP markers. Based on the allelic composition of these markers, 20 cultivars were detected belonging to pummelos, 18 cultivars to grapefruits, and 11 were interspecific hybrids. The grapefruit inter-cultivar SSR diversity is null. The genetic origin of five interspecific hybrids is elucidated. The level of phenotypic diversity and of essential oil composition corroborate the modes of diversification, with high levels for those resulting from crosses and very low levels for the group of grapefruit mutants. Only the characteristics of breeding selection (pulp color, acidity and aspermia) are variable in grapefruits. In the composition of leaf essential oils (LEOs), nine profiles were detected in grapefruits based on variations in six compounds (neral, geranial, β-phellandrene, γ-terpinene, (E)-β-ocimene, and β-pinene). The seven interspecific hybrids involving pummelo as one parent show particular LEO profiles but without specific compounds, with the exception of p-cymenene which is present only in Wheeny. The diversity of peel essential oils in pummelos is lower, but variations in γ-terpinene, β-pinene, limonene, and myrcene make it possible to define seven profiles. With genetic verification the chemical and phenotypic diversity of the two species, pummelo and grapefruit, revealed in this study can be used as a reference for behavior in a specific environment. Full article
(This article belongs to the Special Issue Bio-Active Compounds in Horticultural Plants—2nd Edition)
Show Figures

Figure 1

13 pages, 3532 KiB  
Case Report
Unraveling the IDH3A: Expanding the Genotypic Spectrum of Macular Pseudocoloboma
by Mirjana Bjeloš, Ana Ćurić, Benedict Rak, Biljana Kuzmanović Elabjer, Mladen Bušić and Katja Rončević
Int. J. Mol. Sci. 2025, 26(7), 3364; https://doi.org/10.3390/ijms26073364 - 3 Apr 2025
Viewed by 479
Abstract
Disease-causing variants in the IDH3A gene are associated with autosomal recessive retinitis pigmentosa 90 (RP90) and Leber congenital amaurosis, with or without macular pseudocoloboma. Here, we report two patients: one compound heterozygous for IDH3A c.364G>A, p.(Ala122Thr), which has conflicting classifications, and for IDH3A [...] Read more.
Disease-causing variants in the IDH3A gene are associated with autosomal recessive retinitis pigmentosa 90 (RP90) and Leber congenital amaurosis, with or without macular pseudocoloboma. Here, we report two patients: one compound heterozygous for IDH3A c.364G>A, p.(Ala122Thr), which has conflicting classifications, and for IDH3A c.293C>T, p.(Pro98Leu), which is likely pathogenic, and the other homozygous for IDH3A c.364G>A, p.(Ala122Thr). This study is aimed at providing evidence to link the latter variants to a clinical phenotype. The first patient was a 6-year-old girl, and the second patient was a 29-year-old female. In both patients, the diagnostic assessments were consistent with the phenotype of RP, characterized by macular pseudocoloboma but of varying severity. Patients’ phenotypes suggest that the c.293C>T, p.(Pro98Leu) variant is linked to a more severe and extensive clinical phenotype, while the c.364G>A, p.(Ala122Thr) variant results in a milder condition, primarily limited to retinal involvement. In Patient 2, the presence of both global and local stereopsis, indicating advanced visual development, suggests that the p.(Ala122Thr) missense variant may act as a hypomorphic allele which likely allows for some residual enzymatic activity of the IDH3A protein. This report highlights that macular pseudocoloboma can manifest even in the absence of a null variant. In contrast, more severe symptoms, such as mitochondrial encephalopathy, seem to be associated with the presence of a null allele. Furthermore, to the best of our knowledge, this is the first report of the IDH3A c.293C>T, p.(Pro98Leu) variant. Full article
(This article belongs to the Special Issue Recent Advances in Molecular and Cellular Research in Ophthalmology)
Show Figures

Figure 1

18 pages, 2334 KiB  
Article
Evaluating the Impact of rs4025935, rs71748309, rs699947, and rs4646994 Genetic Determinants on Polycystic Ovary Syndrome Predisposition—A Case-Control Study
by Reema Almotairi, Rashid Mir, Kholoud S. Almasoudi, Eram Husain and Nabil Mtiraoui
Life 2025, 15(4), 558; https://doi.org/10.3390/life15040558 - 29 Mar 2025
Viewed by 922
Abstract
Background: As a complicated endocrine condition, polycystic ovarian syndrome affects around 20% of women who are of reproductive age. It is linked to an increased risk of endometrial cancer, cardiovascular diseases, mental illnesses, non-alcoholic fatty liver disease, metabolic syndrome, and Type 2 diabetes. [...] Read more.
Background: As a complicated endocrine condition, polycystic ovarian syndrome affects around 20% of women who are of reproductive age. It is linked to an increased risk of endometrial cancer, cardiovascular diseases, mental illnesses, non-alcoholic fatty liver disease, metabolic syndrome, and Type 2 diabetes. Despite numerous genetic studies identifying several susceptibility loci, these only account for approximately 10% of the hereditary factors contributing to PCOS, leaving its etiology largely unknown. While genome-wide association studies (GWAS) have been conducted on various populations to identify SNPs linked to PCOS risk, no such study has been reported in Tabuk. Thus, this study aims to investigate the association of a glutathione S-transferase M1 (GSTM1) deletion, VEGF gene (I/D) insertion/deletion, and VEGF-2578 gene polymorphism with polycystic ovarian syndrome. Methodology: In this research study (case-control), we utilized the ARMS-PCR to determine and analyze the polymorphic variants of VEGF-2578 C/A (rs699947). We employed multiplex PCR for the GSTM1 deletion and MS-PCR (mutation specific PCR) for the vascular endothelial growth factor gene insertion/deletion. Results: The findings indicated statistically significant differences in various biochemical and endocrine serum biomarkers, including lipid profiles (cholesterol, HDL, and LDL), Type 2 diabetes markers (HOMA-IR (Homeostatic Model Assessment for Insulin Resistance), free insulin fasting glucose), and hormone levels (testosterone, LH, progesterone and FSH) in PCOS patients. Specifically, regarding the GSTT1 genotype, individuals with the GSTT1-null genotype had an odds ratio (OR) of 4.16 and a relative risk (RR) of 2.14 compared to those with the GSTT1 genotype, with statistically significant differences (p = 0.0001). However, for the GSTM1 genotype, there was a statistically significant difference (p = 0.0002) in the OR and RR for the GSTM1-null genotype, which were 2.66 and 1.64, respectively. Protective effects were observed for individuals with either GSTT1 (+) GSTM1 (−) or GSTT1 (−) GSTM1 (+) genotypes, as well as for those with both null genotypes, yielding an OR of 0.41 and p < 0.003. The VEGF rs699947 C>A gene variation showed a statistically significant association between PCOS patients and controls (p < 0.020), with the A allele frequency higher among PCOS patients (0.42 vs. 0.30). Similarly, the VEGF rs4646994 I>D gene variation exhibited a statistically significant difference (p < 0.0034), with the D allele being more frequent in PCOS patients (0.52 vs. 0.35). The VEGF-A allele was strongly linked to PCOS susceptibility in the allelic model, exhibiting an OR of 1.62, RR of 1.27, and p < 0.007, while in the allelic comparison, the OR was 1.71, the RR was 1.32, and p < 0.004. Conclusions: This study concluded that null genotypes at rs4025935 and rs71748309, an insertion deletion at rs4646994, and the A allele of rs699947 were significantly associated with PCOS predisposition in our population and these could serve as potential loci for PCOS predisposition. To the best of our knowledge, it is the first study to highlight the association between these genetic variations and the predisposition of PCOS in our populations. Large-scale case-control studies in the future are required to confirm these results. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

17 pages, 3123 KiB  
Article
Loss of ING3 in the Prostate Leads to Activation of DNA Damage Repair Markers
by Viktor Lang, Lisa Barones, ShiTing Misaki Hu, Fatemeh Hashemi, Karen Blote, Karl Riabowol and Dieter Fink
Cancers 2025, 17(6), 1037; https://doi.org/10.3390/cancers17061037 - 20 Mar 2025
Viewed by 2673
Abstract
Background/Objectives: The inhibitor of growth family member 3 (ING3) acts as an epigenetic reader through physical interactions with histone-modifying enzymes and subsequent chromatin remodelling processes. It is involved in various cellular functions, such as cell cycle control, cell growth, and apoptosis. Although ING3 [...] Read more.
Background/Objectives: The inhibitor of growth family member 3 (ING3) acts as an epigenetic reader through physical interactions with histone-modifying enzymes and subsequent chromatin remodelling processes. It is involved in various cellular functions, such as cell cycle control, cell growth, and apoptosis. Although ING3 was assigned tumour suppressor candidate status in some types of cancers, including prostate cancer, some studies suggest it acts to promote growth. To address these contradictory reports regarding its role in the initiation and progression of prostate cancer, we specifically addressed the question of whether ablation of ING3 in the mouse prostate is sufficient to initiate malignant transformation of the prostate and support its (candidate) tumour suppressor status. Methods: To generate the prostate-specific Ing3 knockout mouse, paternal inheritance of the PB-Cre4 transgene was used, while for the generation of a global knockout control, a female mouse harbouring the PB-Cre4 transgene was utilized. To determine the recombination efficiency of the Cre-LoxP system in the prostate at the Ing3 locus, a duplex probe-based digital PCR assay capable of counting undisrupted Ing3 copies was designed. The impact of DNA recombination on the protein level was investigated by immunohistochemical staining of prostate tissue samples. Results: In the prostate-specific knockout, digital PCR analysis revealed mosaic gene deletion. We found recombination efficiencies in the anterior, dorsolateral, and ventral prostate lobes ranging from approximately 15 to 30%. ING3 staining in the prostate was faint with no detectable differences in signal intensity between the knockout specimen and wild-type controls. This low ING3 expression in the prostate is consistent with observations of X-gal staining of an Ing3-LacZ reporter allele. Immunohistochemistry showed increased expression of DNA-damage-associated markers γH2AX and 53BP1. However, no gross anatomical abnormalities or prostate intraepithelial neoplasia (PIN) lesions in the prostate of tissue-specific knockout animals compared to wild-type controls were observed. Conclusions: Altogether, our data provide evidence that disruption of ING3 expression in prostate cells does not lead to malignant transformation and challenges the idea that ING3 acts primarily in a tumour-suppressive manner. Furthermore, this work supports the crucial role of ING3 in maintaining genomic stability, and we confirmed the embryonic lethal phenotype of homozygous Ing3 null mice that is rescued by ectopic expression of ING3. Full article
Show Figures

Figure 1

13 pages, 1083 KiB  
Article
A Reliable Molecular Diagnostic Tool for CA90 (Castanea sativa × Castanea crenata) Hybrid Identification Through SSR
by Toufiq Soale Yussif, Nadine Evora da Cruz, Valentim Coelho, Eugénia Gouveia and Altino Branco Choupina
Agronomy 2025, 15(3), 543; https://doi.org/10.3390/agronomy15030543 - 23 Feb 2025
Viewed by 956
Abstract
Chestnut trees are an essential source of both food and timber. However, the severe threats from invasive pests and diseases compromise their existence and productivity. In Europe, chestnut hybridization programs have been initiated to produce resilient rootstocks in response to ink disease. However, [...] Read more.
Chestnut trees are an essential source of both food and timber. However, the severe threats from invasive pests and diseases compromise their existence and productivity. In Europe, chestnut hybridization programs have been initiated to produce resilient rootstocks in response to ink disease. However, the gap in the identification of these hybrid plants is typically based on field observations and morphological features and remains a challenge. Our study presents a marker set for distinguishing between chestnut hybrid CA90 (Castanea sativa × Castanea crenata), a hybrid with demonstrated resistance to Phytophthora cinnamomi, and other varieties using microsatellite (SSR) markers and bioinformatics tools. We used 35 chestnut samples, including three CA90 controls, hybrids sampled within Portugal, with an aim to define the profiles of the chestnut hybrids and varieties in this study based on band patterns and SSR motifs. We selected and modified nine distinct SSR primers with null allelic features from 43 already developed simple sequence repeat (SSR) markers. PCR amplification and agarose gel electrophoresis were used to amplify and visualize the DNA bands. To confirm genetic variations, 27 amplified bands were sequenced by Sanger sequencing. This analysis identified 31 SSRs across 22 SSR-containing sequences, with trinucleotide (67.74%) repeats being the most common, followed by repeats of dinucleotide (22.58%), mononucleotide (6.45%), and hexanucleotide (3.23%). A total of 18 alleles were observed for the nine loci. The alleles ranged from one to three per locus for the 35 samples. The novel locus CP4 could only be found in CA90 hybrids. This tool can aid in identifying and selecting disease-resistant hybrids, thereby contributing to chestnut production and management strategies. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 6576 KiB  
Article
Enhancing Clinical Applications by Evaluation of Sensitivity and Specificity in Whole Exome Sequencing
by Youngbeen Moon, Chung Hwan Hong, Young-Ho Kim, Jong-Kwang Kim, Seo-Hyeon Ye, Eun-Kyung Kang, Hye Won Choi, Hyeri Cho, Hana Choi, Dong-eun Lee, Yongdoo Choi, Tae-Min Kim, Seong Gu Heo, Namshik Han and Kyeong-Man Hong
Int. J. Mol. Sci. 2024, 25(24), 13250; https://doi.org/10.3390/ijms252413250 - 10 Dec 2024
Viewed by 1474
Abstract
The cost-effectiveness of whole exome sequencing (WES) remains controversial due to variant call variability, necessitating sensitivity and specificity evaluation. WES was performed by three companies (AA, BB, and CC) using reference standards composed of DNA from hydatidiform mole and individual blood at various [...] Read more.
The cost-effectiveness of whole exome sequencing (WES) remains controversial due to variant call variability, necessitating sensitivity and specificity evaluation. WES was performed by three companies (AA, BB, and CC) using reference standards composed of DNA from hydatidiform mole and individual blood at various ratios. Sensitivity was assessed by the detection rate of null–homozygote (N–H) alleles at expected variant allelic fractions, while false positive (FP) errors were counted for unexpected alleles. Sensitivity was approximately 20% for in-house results from BB and CC and around 5% for AA. Dynamic Read Analysis for GENomics (DRAGEN) analyses identified 1.34 to 1.71 times more variants, detecting over 96% of in-house variants, with sensitivity for common variants increasing to 5%. In-house FP errors varied significantly among companies (up to 13.97 times), while DRAGEN minimized this variation. Despite DRAGEN showing higher FP errors for BB and CC, the increased sensitivity highlights the importance of effective bioinformatic conditions. We also assessed the potential effects of target enrichment and proposed optimal cutoff values for the read depth and variant allele fraction in WES. Optimizing bioinformatic analysis based on sensitivity and specificity from reference standards can enhance variant detection and improve the clinical utility of WES. Full article
(This article belongs to the Special Issue Cancer Biology: From Genetic Aspects to Treatment)
Show Figures

Figure 1

17 pages, 2099 KiB  
Article
The Relationship of Duffy Gene Polymorphism with High-Sensitivity C-Reactive Protein, Mortality, and Cardiovascular Outcomes in Black Individuals
by Edward T. Ha, Jeffery Haessler, Kent D. Taylor, Bjoernar Tuftin, Matt Briggs, Manish A. Parikh, Stephen J. Peterson, Robert E. Gerszten, James G. Wilson, Karl Kelsey, Usman A. Tahir, Teresa Seeman, Stephen S. Rich, April P. Carson, Wendy S. Post, Charles Kooperberg, Jerome I. Rotter, Laura M. Raffield, Paul Auer and Alex P. Reiner
Genes 2024, 15(11), 1382; https://doi.org/10.3390/genes15111382 - 27 Oct 2024
Viewed by 2270
Abstract
Background: Black adults have higher incidence of all-cause mortality and worse cardiovascular disease (CVD) outcomes when compared to other U.S. populations. The Duffy chemokine receptor is not expressed on erythrocytes in a large majority of Black adults, but the clinical implications of this [...] Read more.
Background: Black adults have higher incidence of all-cause mortality and worse cardiovascular disease (CVD) outcomes when compared to other U.S. populations. The Duffy chemokine receptor is not expressed on erythrocytes in a large majority of Black adults, but the clinical implications of this are unclear. Methods: Here, we investigated the relationship of Duffy receptor status, high-sensitivity C-reactive protein (hs-CRP), and mortality and incident CVD events (coronary heart disease, stroke, and heart failure) in self-identified Black members of three contemporary, longitudinal cohort studies (the Women’s Health Initiative, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis). Data on 14,358 Black participants (9023 Duffy-null and 5335 Duffy-receptor-positive, as defined using single-nucleotide polymorphism (SNP) rs2814778) were included in this analysis. Results: Duffy null was strongly associated with higher hs-CRP (meta-analysis p = 2.62 × 10−9), but the association was largely attenuated, though still marginally significant (p = 0.005), after conditioning on known CRP locus alleles in linkage disequilibrium with the Duffy gene. In our discovery cohorts, Duffy-null status appeared to be associated with a higher risk of all-cause mortality and incident stroke, though these associations were attenuated and non-significant following adjustment for traditional risk factors including hs-CRP. Moreover, the association of Duffy-null status with mortality could not be replicated in an independent sample of Black adults from the UK Biobank. Conclusions: These findings suggest that the higher levels of hs-CRP found in Duffy-null individuals may be in part independent of CRP alleles known to influence circulating levels of hs-CRP. During the follow-up of this community-based sample of Black participants, Duffy-null status was not associated with mortality or incident CVD events independently of traditional risk factors including hs-CRP. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

15 pages, 1930 KiB  
Review
NF-κB in Alzheimer’s Disease: Friend or Foe? Opposite Functions in Neurons and Glial Cells
by Barbara Kaltschmidt, Nele Johanne Czaniera, Wiebke Schulten and Christian Kaltschmidt
Int. J. Mol. Sci. 2024, 25(21), 11353; https://doi.org/10.3390/ijms252111353 - 22 Oct 2024
Cited by 4 | Viewed by 2201
Abstract
Alzheimer’s disease (AD) is a devasting neurodegenerative disease afflicting mainly glutamatergic neurons together with a massive neuroinflammation mediated by the transcription factor NF-κB. A 65%-plus increase in Alzheimer’s patients by 2050 might be a major threat to society. Hallmarks of AD are neurofibrillary [...] Read more.
Alzheimer’s disease (AD) is a devasting neurodegenerative disease afflicting mainly glutamatergic neurons together with a massive neuroinflammation mediated by the transcription factor NF-κB. A 65%-plus increase in Alzheimer’s patients by 2050 might be a major threat to society. Hallmarks of AD are neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau and amyloid beta (Aβ) plaques. Here, we review the potential involvement of transcription factor NF-κB by hereditary mutations of the tumor necrosis factor pathway in AD patients. One of the greatest genetic risk factors is APOE4. Recently, it was shown that the APOE4 allele functions as a null allele in human astrocytes not repressing NF-κB anymore. Moreover, NF-κB seems to be involved in the repair of DNA double-strand breaks during healthy learning and memory, a function blunted in AD. NF-κB could be a friend to healthy neurons by repressing apoptosis and necroptosis. But a loss of neuronal NF-κB and activation of glial NF-κB in AD makes it a foe of neuronal survival. Hopeful therapies include TNFR2 receptor bodies relieving the activation of glial NF-κB by TNFα. Full article
Show Figures

Figure 1

15 pages, 674 KiB  
Review
Genetic Diversity of Rhipicephalus (Boophilus) microplus for a Global Scenario: A Comprehensive Review
by Muthu Sankar, Binod Kumar, Haranahally Vasanthachar Manjunathachar, Balasamudram Chandrasekhar Parthasarathi, Abhijit Nandi, Chemmangat Kunnath Subramanian Neethu, Gaurav Nagar and Srikant Ghosh
Pathogens 2024, 13(6), 516; https://doi.org/10.3390/pathogens13060516 - 18 Jun 2024
Cited by 4 | Viewed by 2618
Abstract
Rhipicephalus microplus poses a substantial threat to livestock health and agricultural economies worldwide. Its remarkable adaptability to diverse environments and hosts is a testament to its extensive genetic diversity. This review delves into the genetic diversity of R. microplus, employing three pivotal [...] Read more.
Rhipicephalus microplus poses a substantial threat to livestock health and agricultural economies worldwide. Its remarkable adaptability to diverse environments and hosts is a testament to its extensive genetic diversity. This review delves into the genetic diversity of R. microplus, employing three pivotal genetic markers: the cytochrome c oxidase I (COX1) gene, ribosomal genes, and microsatellites. The COX1 gene, a crucial tool for genetic characterization and phylogenetic clustering, provides insights into the adaptability of ticks. Ribosomal genes, such as internal transcribed spacer regions (ITS-1 and2) as well as 18S and 28S, are routinely utilized for species differentiation. However, their use is limited due to indels (insertions and deletions). Microsatellites and minisatellites, known for their high polymorphism, have been successfully employed to study populations and genetic diversity across various tick species. Despite their effectiveness, challenges such as null alleles and marker variations warrant careful consideration. Bm86, a well-studied vaccine candidate, exhibits substantial genetic diversity. This diversity directly influences vaccine efficacy, posing challenges for developing a universally effective Bm86-based vaccine. Moreover, the review emphasizes the prevalence of genes associated with synthetic pyrethroid resistance. Identifying single nucleotide polymorphisms in the acaricide-resistant genes of R. microplus has facilitated the development of molecular markers for detecting and monitoring resistance against synthetic pyrethroids. However, mutations in sodium channels, the target site for synthetic pyrethroid, correlate well with the resistance status of R. microplus, which is not the case with other acaricide target genes. This study underscores the importance of understanding genetic diversity in developing effective tick management strategies. The choice of genetic marker should be tailored based on the level of taxonomic resolution and the group of ticks under investigation. A holistic approach combining multiple markers and integrating additional molecular and morphological data may offer a more comprehensive understanding of tick diversity and relationships. This research has far-reaching implications in formulating breeding programs and the development of vaccine against ticks and tick-borne diseases (TTBDs) as well as strategies for the management of resistant ticks. Full article
(This article belongs to the Section Ticks)
Show Figures

Figure 1

12 pages, 1128 KiB  
Article
Genetic Diversity of HMW-GS and the Correlation of Grain Quality Traits in Bread Wheat (Triticum aestivum L.) in Hubei Province, China
by Xiaofang Wang, Yue An, Junpeng Chen, Mengwei Wang, Chengyang Wang, Wei Hua, Qifei Wang, Song Gao, Daorong Zhang, Dong Ling, Xifeng Ren and Jinghuan Zhu
Agronomy 2024, 14(6), 1158; https://doi.org/10.3390/agronomy14061158 - 29 May 2024
Viewed by 1388
Abstract
High-molecular-weight glutenin subunits (HMW-GS) are an important component of total cereal proteins in wheat. It is closely related to the processing quality of flour. Here, we analyzed allelic variations at the Glu-1 locus in 163 wheat accessions from Hubei Province, China with SDS-PAGE. [...] Read more.
High-molecular-weight glutenin subunits (HMW-GS) are an important component of total cereal proteins in wheat. It is closely related to the processing quality of flour. Here, we analyzed allelic variations at the Glu-1 locus in 163 wheat accessions from Hubei Province, China with SDS-PAGE. Among the 15 alleles detected, alleles 1, 7+8, and 2+12 were the major alleles, and 7, 6+8, and 2+10 were rare alleles. The breeding lines had higher genetic diversity than the commercial varieties. Alleles 7 and 6+8 significantly reduced the grain protein content and wet gluten content of wheat. The “1, 7+9, 5+10” and “1, 14+15, and 2+12” allelic combinations significantly increased the grain protein content, hardness index, test weight, and wet gluten content of wheat. Alleles 7+9, 14+15, and 5+10 were identified as alleles related to high wheat quality. The “1, 7, 5+10”, “1, 6+8, 5+10”, “null, 7+9, 2+12”, “1, 14+15, 2+12”, and “1, 7+9, 5+10” allelic combinations had greater effects on wheat grain quality traits. These results demonstrate the effects of HMW-GS on wheat grain quality traits and provide a reference for the genetic improvement of wheat quality. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

12 pages, 1447 KiB  
Article
Genetic Diversity, Linkage Disequilibrium, and Population Structure in a Common Bean Reference Collection
by Daniel Ambachew, Jorge Mario Londoño, Nohra Rodriguez Castillo, Asrat Asfaw and Matthew Wohlgemuth Blair
Agronomy 2024, 14(5), 985; https://doi.org/10.3390/agronomy14050985 - 8 May 2024
Cited by 3 | Viewed by 2224
Abstract
An in-depth understanding of the extent and pattern of genetic diversity and population structure in crop populations is of paramount importance for any crop improvement program to efficiently promote the translation of genetic diversity into genetic gain. A reference collection of 150 common [...] Read more.
An in-depth understanding of the extent and pattern of genetic diversity and population structure in crop populations is of paramount importance for any crop improvement program to efficiently promote the translation of genetic diversity into genetic gain. A reference collection of 150 common bean genotypes selected from the International Center for Tropical Agriculture’s global core collection was evaluated using single-nucleotide polymorphism (SNP) markers to quantify the amount of genetic diversity, linkage disequilibrium, and population structure. The cultivars and landraces of the collection were diverse and originated from 14 countries, and wild accessions were used as controls for each gene pool. The collection was genotyped using an SNP array, generating a total of 5398 locus calls distributed across the entire bean genome. The SNP data quality was checked, and two datasets were generated. The first dataset (Dataset_1) comprised a set of 5108 SNPs and 150 genotypes after filtering for 10% missing alleles and an MAF < 0.05. The second dataset (Dataset_2) comprised a set of 2300 SNPs that remained after removing any null-allele SNPs and LD pruning for a criterion of r2 < 0.2. Dataset_1 was used for a principal coordinate analysis (PCoA), phylogenetic relationship determination, an analysis of molecular variance (AMOVA), and a discriminant analysis of principal components. Dataset_2 was used for a population structure analysis using STRUCTURE software and is proposed for a genome-wide association study (GWAS). The population structure analysis split the reference collection into two subpopulations according to an Andean or Mesoamerican gene pool. The Mesoamerican populations displayed higher genetic differentiation and tended to split into more groups that were somewhat aligned with common bean races. Andean beans were characterized by a larger average LD but lower LD percentage, a small average genetic distance between members of the population, and a higher major allele frequency, which suggested narrower genetic diversity compared to the Mesoamerican gene pool. In conclusion, the results indicated the presence of high genetic diversity, which is useful for a GWAS. However, the presence of significant linkage disequilibrium requires that genetic distance be considered as a co-factor for any further genetic studies. Overall, the molecular variation observed in the genotypes shows that this reference collection is valuable as a genebank-derived diversity panel which is useful for marker trait association studies. Full article
(This article belongs to the Special Issue Marker Assisted Selection and Molecular Breeding in Major Crops)
Show Figures

Figure 1

20 pages, 22640 KiB  
Article
The First Defined Null Allele of the Notch Regulator, a Suppressor of Deltex: Uncovering Its Novel Roles in Drosophila melanogaster Oogenesis
by Marian B. Wilkin, Rory Whiteford, Tanveer Akbar, Samira Hosseini-Alghaderi, Raluca Revici, Ann-Marie Carbery and Martin Baron
Biomolecules 2024, 14(5), 522; https://doi.org/10.3390/biom14050522 - 26 Apr 2024
Cited by 2 | Viewed by 2098
Abstract
Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent [...] Read more.
Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of Su(dx) result in developmental phenotypes in the Drosophila wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and Su(dx) functions to provide the developmental robustness of Notch activity to environmental temperature shifts. The full developmental functions of Su(dx) are unclear; however, this is due to a lack of a clearly defined null allele. Here we report the first defined null mutation of Su(dx), generated by P-element excision, which removes the complete open reading frame. We show that the mutation is recessive-viable, with the Notch gain of function phenotypes affecting wing vein and leg development. We further uncover new roles for Su(dx) in Drosophila oogenesis, where it regulates interfollicular stalk formation, egg chamber separation and germline cyst enwrapment by the follicle stem cells. Interestingly, while the null allele exhibited a gain in Notch activity during oogenesis, the previously described Su(dx)SP allele, which carries a seven amino acid in-frame deletion, displayed a Notch loss of function phenotypes and an increase in follicle stem cell turnover. This is despite both alleles displaying similar Notch gain of function in wing development. We attribute this unexpected context-dependent outcome of Su(dx)sp being due to the partial retention of function by the intact C2 and WW domain regions of the protein. Our results extend our understanding of the developmental role of Su(dx) in the tissue renewal and homeostasis of the Drosophila ovary and illustrate the importance of examining an allelic series of mutations to fully understand developmental functions. Full article
(This article belongs to the Special Issue Regulation of Notch Signaling Pathway and Its Relation to Diseases)
Show Figures

Figure 1

23 pages, 4204 KiB  
Article
Interconnections between the Cation/Alkaline pH-Responsive Slt and the Ambient pH Response of PacC/Pal Pathways in Aspergillus nidulans
by Irene Picazo and Eduardo A. Espeso
Cells 2024, 13(7), 651; https://doi.org/10.3390/cells13070651 - 8 Apr 2024
Cited by 1 | Viewed by 2087
Abstract
In the filamentous ascomycete Aspergillus nidulans, at least three high hierarchy transcription factors are required for growth at extracellular alkaline pH: SltA, PacC and CrzA. Transcriptomic profiles depending on alkaline pH and SltA function showed that pacC expression might be under SltA [...] Read more.
In the filamentous ascomycete Aspergillus nidulans, at least three high hierarchy transcription factors are required for growth at extracellular alkaline pH: SltA, PacC and CrzA. Transcriptomic profiles depending on alkaline pH and SltA function showed that pacC expression might be under SltA regulation. Additional transcriptional studies of PacC and the only pH-regulated pal gene, palF, confirmed both the strong dependence on ambient pH and the function of SltA. The regulation of pacC expression is dependent on the activity of the zinc binuclear (C6) cluster transcription factor PacX. However, we found that the ablation of sltA in the pacX mutant background specifically prevents the increase in pacC expression levels without affecting PacC protein levels, showing a novel specific function of the PacX factor. The loss of sltA function causes the anomalous proteolytic processing of PacC and a reduction in the post-translational modifications of PalF. At alkaline pH, in a null sltA background, PacC72kDa accumulates, detection of the intermediate PacC53kDa form is extremely low and the final processed form of 27 kDa shows altered electrophoretic mobility. Constitutive ubiquitination of PalF or the presence of alkalinity-mimicking mutations in pacC, such as pacCc14 and pacCc700, resembling PacC53kDa and PacC27kDa, respectively, allowed the normal processing of PacC but did not rescue the alkaline pH-sensitive phenotype caused by the null sltA allele. Overall, data show that Slt and PacC/Pal pathways are interconnected, but the transcription factor SltA is on a higher hierarchical level than PacC on regulating the tolerance to the ambient alkalinity in A. nidulans. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

15 pages, 4704 KiB  
Article
Drosophila Importin Alpha 1 (Dα1) Is Required to Maintain Germline Stem Cells in the Testis Niche
by James Heaney, Jiamin Zhao, Franca Casagranda, Kate L. Loveland, Nicole A. Siddall and Gary R. Hime
Cells 2024, 13(6), 494; https://doi.org/10.3390/cells13060494 - 12 Mar 2024
Viewed by 1749
Abstract
Stem cell maintenance and differentiation can be regulated via the differential activity of transcription factors within stem cells and their progeny. For these factors to be active, they need to be transported from their site of synthesis in the cytoplasm into the nucleus. [...] Read more.
Stem cell maintenance and differentiation can be regulated via the differential activity of transcription factors within stem cells and their progeny. For these factors to be active, they need to be transported from their site of synthesis in the cytoplasm into the nucleus. A tissue-specific requirement for factors involved in nuclear importation is a potential mechanism to regulate stem cell differentiation. We have undertaken a characterization of male sterile importin alpha 1 (Dα1) null alleles in Drosophila and found that Dα1 is required for maintaining germline stem cells (GSCs) in the testis niche. The loss of GSCs can be rescued by ectopic expression of Dα1 within the germline but the animals are still infertile, indicating a second role for Dα1 in spermatogenesis. Expression of a Dα1 dominant negative transgene in GSCs confirmed a functional requirement for Dα1 in GSC maintenance but expression of the transgene in differentiating spermatogonia did not exhibit a phenotype indicating a specific role for Dα1 within GSCs. Our data indicate that Dα1 is utilized as a regulatory protein within GSCs to facilitate nuclear importation of proteins that maintain the stem cell pool. Full article
Show Figures

Figure 1

Back to TopTop