Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = northwest Indian Ocean

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2569 KiB  
Article
The Effect of the Marine Environment on the Distribution of Sthenoteuthis oualaniensis in the East Equatorial Indian Ocean
by Shigang Liu, Liyan Zhang, Peng Lian, Jianhua Kang, Puqing Song, Xing Miao, Longshan Lin, Rui Wang and Yuan Li
Fishes 2025, 10(4), 184; https://doi.org/10.3390/fishes10040184 - 17 Apr 2025
Viewed by 338
Abstract
Sthenoteuthis oualaniensis is one of the most commercially important marine cephalopod species distributed throughout tropical and subtropical waters of the Indo-Pacific Seas. The Indian Ocean is a main fishing ground for S. oualaniensis with a high population density. To explore the distribution of [...] Read more.
Sthenoteuthis oualaniensis is one of the most commercially important marine cephalopod species distributed throughout tropical and subtropical waters of the Indo-Pacific Seas. The Indian Ocean is a main fishing ground for S. oualaniensis with a high population density. To explore the distribution of S. oualaniensis in the east equatorial Indian Ocean, four surveys were carried out using light-lift-net fishing vessels. Meanwhile, marine environmental data were also collected, including the sea surface temperature, sea temperature at 100 m depth, mixed layer depth, sea surface chlorophyll-a concentration, sea surface height, and eddy kinetic energy. Generalized Additive Models were used to analyze the relationship between the catch per unit effort (CPUE) for S. oualaniensis and environmental factors. The results showed that the average CPUE of S. oualaniensis was 14.55 kg/h in the four surveys, which was considerably lower than in the South China Sea and Northwest Indian Ocean. In terms of seasonal distribution, the high-CPUE stations were closer to the continental shelf in spring, while they shifted towards the deeper and offshore water in autumn, demonstrating a seasonal migration trend. Pearson correlation analysis showed that CPUE reflected a significant negative correlation with both sea temperature at 100 m depth and eddy kinetic energy (p < 0.001). The Generalized Additive Models revealed that sea surface height was the most significant factor affecting CPUE with a variance explanation of 30.1%. Furthermore, the optimal CPUE prediction model was established by stepwise regression, which contains two factors, sea surface height and eddy kinetic energy, with a variance explanation of 34.9%. This study provides insights into the environmental factors influencing the distribution of S. oualaniensis, which is essential for the sustainable utilization and management of this species. Full article
(This article belongs to the Special Issue Assessment and Management of Fishery Resources)
Show Figures

Figure 1

26 pages, 14749 KiB  
Article
Microbial Seafloor Weathering of Hydrothermal Sulfides: Insights from an 18-Month In Situ Incubation at the Wocan-1 Hydrothermal Field
by Chuanqi Dong, Xiqiu Han, Yejian Wang, Jiqiang Liu and Mingcong Wei
Biology 2025, 14(4), 389; https://doi.org/10.3390/biology14040389 - 9 Apr 2025
Cited by 1 | Viewed by 619
Abstract
The weathering of seafloor hydrothermal sulfides is facilitated by microbial activities, yet the specific mechanisms of different sulfide types are not well understood. Previous studies have primarily been carried out under laboratory conditions, making it difficult to accurately replicate the complex in situ [...] Read more.
The weathering of seafloor hydrothermal sulfides is facilitated by microbial activities, yet the specific mechanisms of different sulfide types are not well understood. Previous studies have primarily been carried out under laboratory conditions, making it difficult to accurately replicate the complex in situ conditions of deep-sea hydrothermal fields. Herein, we deployed two well-characterized pyrite (Py)-dominated and chalcopyrite (Ccp)-dominated sulfide slices, which were placed 300 m from an active venting site in the Wocan-1 hydrothermal field (Carlsberg Ridge, Northwest Indian Ocean) for an 18-month in situ incubation experiment. Microscopic observations and organic matter analyses were conducted on the recovered sulfide slices to investigate the microbial weathering features of different sulfide types. Our results demonstrated that the weathering of the Py-dominated sulfide sample was primarily mediated by extracellular polymeric substances (EPSs) through indirect interactions, whereas the Ccp-dominated sulfide sample exhibited both direct microbial dissolution, resulting in the formation of distinct dissolution pits, and indirect EPS-mediated interactions. Four distinct phases of microbe–sulfide interactions were identified: approach, adsorption, stable attachment, and extensive colonization. Furthermore, the weathering products and biomineralization structures differed significantly between the two sulfide types, reflecting their different microbial colonization processes. Our study confirms that microorganisms are crucial in seafloor sulfide weathering. These findings advance our understanding of microbial-driven processes in sulfide mineral transformations and their role in marine ecosystems. Our findings are also valuable for future research on biogeochemical cycles and for developing bioremediation strategies for deep-sea mining. Full article
Show Figures

Figure 1

17 pages, 8502 KiB  
Article
A Lightweight Deep Learning Model for Forecasting the Fishing Ground of Purpleback Flying Squid (Sthenoteuthis oualaniensis) in the Northwest Indian Ocean
by Shengmao Zhang, Junlin Chen, Haibin Han, Fenghua Tang, Xuesen Cui and Yongchuang Shi
Appl. Sci. 2025, 15(3), 1219; https://doi.org/10.3390/app15031219 - 24 Jan 2025
Viewed by 922
Abstract
The purpleback flying squid (Sthenoteuthis oualaniensis) is an economically significant cephalopod species in the Northwest Indian Ocean. Predicting its fishing grounds can provide a crucial foundation for fishery management and production. In this research, we collected data from China’s light-purse seine [...] Read more.
The purpleback flying squid (Sthenoteuthis oualaniensis) is an economically significant cephalopod species in the Northwest Indian Ocean. Predicting its fishing grounds can provide a crucial foundation for fishery management and production. In this research, we collected data from China’s light-purse seine fishery in the Northwest Indian Ocean from 2016 to 2020 to train and validate the AlexNet and VGG11 models. We designed a data partitioning method (DPM) to divide the training set into three scenarios, namely DPM-S1, DPM-S2, and DPM-S3. Firstly, DPM-S1 was employed to select the base model (BM). Subsequently, the optimal BM was lightweighted to obtain the optimal model (OM). The OM, known as the AlexNetMini model, has a model size that is one-third of that of the BM-AlexNet model. Our results also showed the following: (1) the F1-scores for AlexNet and AlexNetMini across the datasets DPM-S1, -S2, and -S3 were 0.6957, 0.7505, and 0.7430 for AlexNet and 0.6992, 0.7495, and 0.7486 for AlexNetMini, suggesting that both models exhibited comparable predictive performance; (2) the optimal dropout values for the AlexNetMini model were 0 and 0.2, and the optimal training set proportion was 0.8; (3) AlexNetMini utilized both DPM-S2 and DPM-S3, yielding comparable outcomes. However, given that the training duration for DPM-S3 was relatively shorter, DPM-S3 was selected as the preferred method for data partitioning. The findings of our study indicated that the lightweight model for the purpleback flying squid fishing ground prediction, specifically AlexNetMini, demonstrated superior performance compared to the original AlexNet model, particularly in terms of efficiency. Our study on the lightweight method for deep learning models provided a reference for enhancing the usability of deep learning in fisheries. Full article
Show Figures

Figure 1

21 pages, 4929 KiB  
Article
Climatic Background and Prediction of Boreal Winter PM2.5 Concentrations in Hubei Province, China
by Yuanyue Huang, Zijun Tang, Zhengxuan Yuan and Qianqian Zhang
Atmosphere 2025, 16(1), 52; https://doi.org/10.3390/atmos16010052 - 7 Jan 2025
Viewed by 754
Abstract
This study investigates the climatic background of winter PM2.5 (particulate matter with a diameter of 2.5 micrometers or smaller) concentrations in Hubei Province (DJF-HBPMC) and evaluates its predictability. The key findings are as follows: (1) Elevated DJF-HBPMC levels are associated with an upper-tropospheric [...] Read more.
This study investigates the climatic background of winter PM2.5 (particulate matter with a diameter of 2.5 micrometers or smaller) concentrations in Hubei Province (DJF-HBPMC) and evaluates its predictability. The key findings are as follows: (1) Elevated DJF-HBPMC levels are associated with an upper-tropospheric northerly anomaly, a deepened southern branch trough (SBT) that facilitates southwesterly flow into central and eastern China, and a weakened East Asian winter monsoon (EAWM), which reduces the frequency and intensity of cold air intrusions. Near-surface easterlies and an anomalous anticyclonic circulation over Hubei contribute to reduced precipitation, thereby decreasing the dispersion of pollutants and leading to higher PM2.5 concentrations. (2) Significant correlations are observed between DJF-HBPMC and sea surface temperature (SST) anomalies in specific oceanic regions, as well as sea-ice concentration (SIC) anomalies near the Antarctic. For the atmospheric pattern anomalies over Hubei Province, the North Atlantic SST mode (NA) promotes the southward intrusion of northerlies, while the Northwest Pacific (NWP) and South Pacific (SPC) SST modes enhance wet deposition through increased precipitation, showing a negative correlation with DJF-HBPMC. Conversely, the South Atlantic–Southwest Indian Ocean SST mode (SAIO) and the Ross Sea sea-ice mode (ROSIC) contribute to more stable local atmospheric conditions, which reduce pollutant dispersion and increase PM2.5 accumulation, thus exhibiting a positive correlation with DJF-HBPMC. (3) A multiple linear regression (MLR) model, using selected seasonal SST and SIC indices, effectively predicts DJF-HBPMC, showing high correlation coefficients (CORR) and anomaly sign consistency rates (AS) compared to real-time values. (4) In daily HBPMC forecasting, both the Reversed Unrestricted Mixed-Frequency Data Sampling (RU-MIDAS) and Reversed Restricted-MIDAS (RR-MIDAS) models exhibit superior skill using only monthly precipitation, and the RR-MIDAS offers the best balance in prediction accuracy and trend consistency when incorporating monthly precipitation along with monthly SST and SIC indices. Full article
Show Figures

Figure 1

15 pages, 3416 KiB  
Article
Type, Genesis, and Provenance Implications of Amphiboles in Sediments in the Northwest Indian Ocean over 42,000 Years
by Feng Wang, Yunhai Li, Bingfu Jin, Mengyao Wang, Dongyi Li, Zhikun Lai, Jian Chen, Pengfei Shen, Liang Wang and Mingjiang Cai
J. Mar. Sci. Eng. 2024, 12(11), 1993; https://doi.org/10.3390/jmse12111993 - 5 Nov 2024
Viewed by 826
Abstract
Five layers of detrital amphiboles in the CJ08-008 sediment core from the northwest Indian Ocean have been found. To analyze their genetic types and provenance, an electron probe microanalysis of 300 amphibole grains from the core was conducted to calculate the numerical and [...] Read more.
Five layers of detrital amphiboles in the CJ08-008 sediment core from the northwest Indian Ocean have been found. To analyze their genetic types and provenance, an electron probe microanalysis of 300 amphibole grains from the core was conducted to calculate the numerical and characteristic values of cations in the crystal structure. The results showed that amphiboles with high Si, Ca, and Mg contents and low Na and K contents exhibit a low degree of weathering and that amphiboles mainly comprise tschermakite (46.43~70.69%), followed by magnesiohornblende, in the calcic amphibole subgroup. The types of sources for these amphiboles are mainly different types of metamorphic and magmatic rock. A large proportion of the detrital amphiboles (>60%) are derived from metamorphic rocks, followed by intermediate acid-intrusive rocks. The genetic analysis of amphiboles showed that most of the medium acid-intrusive amphiboles belong to the crust–mantle type, followed by the mantle type. Most of the amphiboles of metamorphic origin are of the low-pressure type. The amphiboles in the CJ08-008 sediment core exhibit characteristics different from those brought by monsoons from surrounding land masses. The variations in the amphiboles indicate different sources, which may have different origins; these origins could include the Carlsberg Ridge, the Owen Fault Zone, or older submarine sediment sequences eroded by turbidity currents. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

36 pages, 13273 KiB  
Article
Interdecadal Variations in the Seasonal Cycle of Explosive Growth of Southern Hemisphere Storms with Impacts on Southern Australian Rainfall
by Stacey L. Osbrough and Jorgen S. Frederiksen
Atmosphere 2024, 15(11), 1273; https://doi.org/10.3390/atmos15111273 - 24 Oct 2024
Cited by 2 | Viewed by 831
Abstract
Interdecadal variations, since the middle of the 20th century, in the seasonal cycle of Southern Hemisphere extratropical synoptic scale weather systems, are studied and related to associated anomalies in Southern Australian rainfall over south-west Western Australia (SWWA) and southeast Australia (SEA). A data-driven [...] Read more.
Interdecadal variations, since the middle of the 20th century, in the seasonal cycle of Southern Hemisphere extratropical synoptic scale weather systems, are studied and related to associated anomalies in Southern Australian rainfall over south-west Western Australia (SWWA) and southeast Australia (SEA). A data-driven method is employed in which atmospheric fluctuations, specified from 6-hourly lower-tropospheric reanalysis data, are spectrally analysed in space and time to determine the statistics of the intensity and growth rates of growing and decaying eddies. Extratropical storms, blocking and north-west cloud band weather types are investigated in two frequency bands, with periods less than 4 days and between 4 and 8 days, and in three growth rate and three decay rate bins. Southern Australian rainfall variability is found to be most related to changes in explosive storms particularly in autumn and winter. During the first 10 years of the Australian Millennium Drought (AMD), from 1997 to 2006, dramatic changes in rainfall and storminess occurred. Rainfall declines ensued over SEA in all seasons, associated with corresponding reductions in the intensity of fast-growing storms with periods less than 4 days. These changes, compared with the 20-year timespans of 1949 to 1968 and 1975 to 1994, also took place for the longer duration of 1997 to 2016, apart from summer. Over SWWA, autumn and winter rainfall totals have decreased systematically with time for each of the 10-year and 20-year timespans analysed. Southern Australian rainfall variability is also found to be closely related to the local, hemispheric or global features of the circulation of the atmosphere and oceans that we characterise by indices. Local circulation indices of sea level pressure and 700 hPa zonal winds are good predictors of SWWA and SEA annual rainfall variability particularly in autumn and winter with vertical velocity generally less so. The new Subtropical Atmospheric Jet (SAJ) and the Southern Ocean Regional Dipole (SORD) indices are found to be the most skilful non-local predictors of cool season SWWA rainfall variability on annual and decadal timescales. The Indian Ocean Dipole (IOD) and Southern Oscillation Index (SOI) are the strongest non-local predictors of SEA annual rainfall variability from autumn through to late spring, while on the decadal timescale, different indices dominate for different 3-month periods. Full article
Show Figures

Figure 1

20 pages, 9962 KiB  
Article
Investigation of the Historical Trends and Variability of Rainfall Patterns during the March–May Season in Rwanda
by Constance Uwizewe, Li Jianping, Théogène Habumugisha and Ahmad Abdullahi Bello
Atmosphere 2024, 15(5), 609; https://doi.org/10.3390/atmos15050609 - 17 May 2024
Cited by 6 | Viewed by 2226
Abstract
This study explores the spatiotemporal variability and determinants of rainfall patterns during the March to May (MAM) season in Rwanda, incorporating an analysis of teleconnections with oceanic–atmospheric indices over the period 1983–2021. Utilizing the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset, [...] Read more.
This study explores the spatiotemporal variability and determinants of rainfall patterns during the March to May (MAM) season in Rwanda, incorporating an analysis of teleconnections with oceanic–atmospheric indices over the period 1983–2021. Utilizing the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset, the study employs a set of statistical tools including standardized anomalies, empirical orthogonal functions (EOF), Pearson correlation, the Mann–Kendall (MK) trend test, and Sen’s slope estimator to dissect the intricacies of rainfall variability, trends, and their association with large-scale climatic drivers. The findings reveal a distinct southwest to northwest rainfall gradient across Rwanda, with the MK test signaling a decline in annual precipitation, particularly in the southwest. The analysis for the MAM season reveals a general downtrend in rainfall, attributed in part to teleconnections with the Indian Ocean Sea surface temperatures (SSTs). Notably, the leading EOF mode for MAM rainfall demonstrates a unimodal pattern, explaining a significant 51.19% of total variance, and underscoring the pivotal role of atmospheric dynamics and moisture conveyance in shaping seasonal rainfall. The spatial correlation analysis suggests a modest linkage between MAM rainfall and the Indian Ocean Dipole, indicating that negative (positive) phases are likely to result in anomalously wet (dry) conditions in Rwanda. This comprehensive assessment highlights the intricate interplay between local rainfall patterns and global climatic phenomena, offering valuable insights into the meteorological underpinnings of rainfall variability during Rwanda’s critical MAM season. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 3118 KiB  
Article
Morphological Differences and Contour Visualization of Statoliths in Different Geographic Populations of Purpleback Flying Squid (Sthenoteuthis oualaniensis)
by Moxian Chu, Bilin Liu, Liguo Ou, Ziyue Chen and Qingying Li
J. Mar. Sci. Eng. 2024, 12(4), 597; https://doi.org/10.3390/jmse12040597 - 30 Mar 2024
Cited by 1 | Viewed by 1262
Abstract
Statoliths are important hard tissues in cephalopods. Significant differences are found in the external morphology of statoliths in different groups or species. In this study, stepwise discriminant analysis was used to investigate the external morphological differences in purpleback flying squid statoliths in three [...] Read more.
Statoliths are important hard tissues in cephalopods. Significant differences are found in the external morphology of statoliths in different groups or species. In this study, stepwise discriminant analysis was used to investigate the external morphological differences in purpleback flying squid statoliths in three different marine regions, comprising the East Indian Ocean (5° S–2° N, 82°–92° E), Central East Pacific Ocean (02°37′ S–0°59′ N, 99°44′ W–114°19′ W), and Northwest Indian Ocean (17°04′ N–17°18′ N, 61°05′ E–61°32′ E). The contours of statoliths were reconstructed visually by using Fourier analysis and the landmark method. The results obtained by stepwise discriminant analysis showed that the accuracy of identification was 84.4% for the traditional measurement method, 82.9% for the Fourier analysis method, and 87.3% for the landmark method. The contour visualization results showed that the purpleback flying squid statoliths were small in the Central East Pacific Ocean, and the curvature of the side region was the most obvious. The radian differentiation of statoliths was most gentle in the East Indian Ocean. In the Northwest Indian Ocean, the rostral region of statoliths was shorter and the dorsal region was smoother. The reconstruction results detected significant differences in the outer morphology of statoliths in different marine regions. The results obtained in this study show that all three methods are effective for identifying populations, but the landmark method is better than the traditional measurement method. The reconstruction of statolith contours using the Fourier transform and landmark methods provides an important scientific basis for conducting taxonomy, according to statolith morphology. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

37 pages, 6316 KiB  
Review
Interaction between the Westerlies and Asian Monsoons in the Middle Latitudes of China: Review and Prospect
by Xiang-Jie Li and Bing-Qi Zhu
Atmosphere 2024, 15(3), 274; https://doi.org/10.3390/atmos15030274 - 25 Feb 2024
Cited by 6 | Viewed by 2823
Abstract
The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understanding of the [...] Read more.
The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understanding of the long-term paleoenvironmental changes in the westerly- and monsoon-controlled areas in China’s middle latitudes is not uniform, and the phase relationship between the two at different time scales is also controversial, especially the exception to the “dry gets drier, wet gets wetter” paradigm in global warming between the two. Based on the existing literature data published, integrated paleoenvironmental records, and comprehensive simulation results in recent years, this study systematically reviews the climate and environmental changes in the two major circulation regions in the mid-latitudes of China since the Middle Pleistocene, with a focus on exploring the phase relationship between the two systems at different time scales and its influencing mechanism. Through the reanalysis and comparative analysis of the existing data, we conclude that the interaction and relationship between the two circulation systems are relatively strong and close during the warm periods, but relatively weak during the cold periods. From the perspective of orbital, suborbital, and millennium time scales, the phase relationship between the westerly and Asian summer monsoon (ASM) circulations shows roughly in-phase, out-of-phase, and anti-phase transitions, respectively. There are significant differences between the impacts of the westerly and ASM circulations on the middle-latitude regions of northwest China, the Qinghai–Tibet Plateau, and eastern China. However, under the combined influence of varied environmental factors such as BHLSR (boreal high-latitude solar radiation), SST (sea surface temperature), AMOC (north Atlantic meridional overturning circulation), NHI (Northern Hemisphere ice volume), NAO (North Atlantic Oscillation), ITCZ (intertropical convergence zone), WPSH (western Pacific subtropical high), TIOA (tropical Indian Ocean anomaly), ENSO (El Niño/Southern Oscillation), CGT/SRP (global teleconnection/Silk Road pattern), etc., there is a complex and close coupling relationship between the two, and it is necessary to comprehensively consider their “multi-factor’s joint-action” mechanism and impact, while, in general, the dynamic mechanisms driving the changes of the westerly and ASM circulations are not the same at different time scales, such as orbital, suborbital, centennial to millennium, and decadal to interannual, which also leads to the formation of different types of phase relationships between the two at different time scales. Future studies need to focus on the impact of this “multi-factor linkage mechanism” and “multi-phase relationship” in distinguishing the interaction between the westerly and ASM circulation systems in terms of orbital, suborbital, millennium, and sub-millennium time scales. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

19 pages, 5045 KiB  
Article
Climate Driver Influences on Prediction of the Australian Fire Behaviour Index
by Rachel Taylor, Andrew G. Marshall, Steven Crimp, Geoffrey J. Cary and Sarah Harris
Atmosphere 2024, 15(2), 203; https://doi.org/10.3390/atmos15020203 - 5 Feb 2024
Cited by 3 | Viewed by 1810
Abstract
Fire danger poses a pressing threat to ecosystems and societies worldwide. Adequate preparation and forewarning can help reduce these threats, but these rely on accurate prediction of extreme fire danger. With the knowledge that climatic conditions contribute heavily to overall fire danger, this [...] Read more.
Fire danger poses a pressing threat to ecosystems and societies worldwide. Adequate preparation and forewarning can help reduce these threats, but these rely on accurate prediction of extreme fire danger. With the knowledge that climatic conditions contribute heavily to overall fire danger, this study evaluates the skill with which episodes of extreme fire danger in Australia can be predicted from the activity of large-scale climate driver patterns. An extremal dependence index for extreme events is used to depict the historical predictive skill of the Australian Bureau of Meteorology’s subseasonal climate prediction system in replicating known relationships between the probability of top-decile fire danger and climate driver states at a lead time of 2–3 weeks. Results demonstrate that the El Niño Southern Oscillation, Southern Annular Mode, persistent modes of atmospheric blocking, Indian Ocean Dipole and Madden-Julian Oscillation are all key for contributing to predictability of fire danger forecasts in different regions during critical fire danger periods. Northwest Australia is found to be particularly predictable, with the highest mean index differences (>0.50) when certain climate drivers are active, compared with the climatological index mean. This integrated approach offers a valuable resource for decision-making in fire-prone regions, providing greater confidence to users relying on fire danger outlooks for key management decisions, such as those involved in the sectors of national park and forest estate management, agriculture, emergency services, health and energy. Furthermore, the results highlight strengths and weaknesses in both the Australian Fire Danger Rating System and the operational climate model, contributing additional information for improving and refining future iterations of these systems. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Observations, Modeling, and Impacts)
Show Figures

Figure 1

25 pages, 3924 KiB  
Article
Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus
by Fang-Yuan Han, Ren-Xie Wu, Ben-Ben Miao, Su-Fang Niu, Qing-Hua Wang and Zhen-Bang Liang
Animals 2024, 14(3), 434; https://doi.org/10.3390/ani14030434 - 29 Jan 2024
Cited by 1 | Viewed by 2007
Abstract
Smallhead hairtail (Eupleurogrammus muticus) is an important marine economic fish distributed along the northern Indian Ocean and the northwest Pacific coast; however, little is known about the mechanism of its genetic evolution. This study generated the first genome assembly of E. [...] Read more.
Smallhead hairtail (Eupleurogrammus muticus) is an important marine economic fish distributed along the northern Indian Ocean and the northwest Pacific coast; however, little is known about the mechanism of its genetic evolution. This study generated the first genome assembly of E. muticus at the chromosomal level using a combination of PacBio SMRT, Illumina Nova-Seq, and Hi-C technologies. The final assembled genome size was 709.27 Mb, with a contig N50 of 25.07 Mb, GC content of 40.81%, heterozygosity rate of 1.18%, and repetitive sequence rate of 35.43%. E. muticus genome contained 21,949 protein-coding genes (97.92% of the genes were functionally annotated) and 24 chromosomes. There were 143 expansion gene families, 708 contraction gene families, and 4888 positively selected genes in the genome. Based on the comparative genomic analyses, we screened several candidate genes and pathways related to whip-like tail formation, innate immunity, and DNA repair in E. muticus. These findings preliminarily reveal some molecular evolutionary mechanisms of E. muticus at the genomic level and provide important reference genomic data for the genetic studies of other trichiurids. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 18647 KiB  
Article
Impacts of Sea Surface Temperature Variability in the Indian Ocean on Drought Conditions over India during ENSO and IOD Events
by Vaibhav Kumar, Hone-Jay Chu and Abhishek Anand
J. Mar. Sci. Eng. 2024, 12(1), 136; https://doi.org/10.3390/jmse12010136 - 9 Jan 2024
Cited by 6 | Viewed by 4434
Abstract
The characteristics of terrestrial droughts are closely linked to simultaneous fluctuations in climatic factors, notably influenced by sea surface temperature (SST). This study explores the response of vegetation photosynthesis, indicated by solar-induced chlorophyll fluorescence (SIF), in India during the summer monsoon period (JJAS) [...] Read more.
The characteristics of terrestrial droughts are closely linked to simultaneous fluctuations in climatic factors, notably influenced by sea surface temperature (SST). This study explores the response of vegetation photosynthesis, indicated by solar-induced chlorophyll fluorescence (SIF), in India during the summer monsoon period (JJAS) under drought conditions. Notably, statistically significant associations between SST variations in the tropical Indian Ocean and land-based drought responses (precipitation, temperature, soil moisture, and SIF) were observed, which were attributed to atmospheric teleconnections. The positive phases of El Niño and the Indian Ocean Dipole (IOD) significantly impacted SST, triggering severe droughts in India in 2009 and 2015. The results revealed that positive SST anomalies weaken monsoon flow during the onset period, reducing moisture transmission to the Indian subcontinent. In 2009, the precipitation anomaly showed severe drought conditions (<−1.5) primarily in the northwest, central northeast, and west-central subregions, respectively, with soil moisture deficit and reduced photosynthetic activity (indicated by negative SIF anomalies) mirroring precipitation anomalies. In 2015, moderate to severe drought conditions affected regions primarily in the west-central and peninsular areas, with corresponding consistency in SIF anomalies and soil moisture deficits. These conditions led to decreased photosynthetic rates and negative SIF anomalies observed across India. The findings provide insights for predicting droughts and understanding ecosystem impacts across India amidst rapidly changing climate conditions in the Indian Ocean region. Full article
(This article belongs to the Special Issue Sea Surface Temperature: From Observation to Applications II)
Show Figures

Figure 1

17 pages, 2249 KiB  
Article
Seasonal Water Mass Transformation in the Eastern Indian Ocean from In Situ Observations
by Noir P. Purba, Mohd Fadzil Akhir, Widodo S. Pranowo, Subiyanto and Zuraini Zainol
Atmosphere 2024, 15(1), 1; https://doi.org/10.3390/atmos15010001 - 19 Dec 2023
Cited by 3 | Viewed by 2316
Abstract
The Eastern Indian Ocean (EIO) is one of the eastern boundary areas, which control currents circulation and atmospheric dynamics. This research mainly aimed to identify and analyze the water mass transformation in the EIO. The investigated physical properties of the ocean are the [...] Read more.
The Eastern Indian Ocean (EIO) is one of the eastern boundary areas, which control currents circulation and atmospheric dynamics. This research mainly aimed to identify and analyze the water mass transformation in the EIO. The investigated physical properties of the ocean are the temperature, salinity, seasonal temperature–salinity, and water column stability. An extensive amount of in situ data measurements from 1950 to 2018 was downloaded from the global datasets inventory. The visualization and analysis of the data were defined in monthly spatial and vertical profiles. The result showed the mixed layer is shallower during the northwest monsoon relative to the southwest monsoon. The surface water in the EIO is documented to be warmer due to the interaction with the atmosphere. Furthermore, low-salinity surface water around the Java Seas area is caused by a mixing with fresh water from the eastern Indonesia rivers. The data also confirmed that, at latitude 16° S, the maximum salinity occurred at a depth between 150 and 350 m. There are ten types of water masses found in the EIO, which originate from several regions, including the Indonesia Seas, Pacific Ocean, Indian Ocean, and Antarctic. During the northwest and southeast monsoons, a stable layer is found at a depth of 40 to 150 m and 80 to 150 m, respectively. For further research, it is recommended to focus on the coastal region, particularly the Timor Sea and Northwestern Australia, to investigate the dynamics between the Indonesian Throughflow, Holloway Currents, and Leeuwin Currents. Additionally, deep water observations below 800 m are crucial for a comprehensive understanding of the oceanographic variability in the deep layers of the EIO. Full article
(This article belongs to the Special Issue Recent Advances in Researches of Ocean Climate Variability)
Show Figures

Figure 1

16 pages, 9840 KiB  
Article
Spatiotemporal Variation in the Meteorological Drought Comprehensive Index in the Beijing–Tianjin–Hebei Region during 1961–2023
by Wupeng Du, Zhixin Hao, Mengxin Bai, Liang Zhang, Chengpeng Zhang, Zirui Wang and Pei Xing
Water 2023, 15(24), 4230; https://doi.org/10.3390/w15244230 - 8 Dec 2023
Cited by 7 | Viewed by 1734
Abstract
It is crucial to investigate the characteristics of meteorological drought in the Beijing–Tianjin–Hebei (BTH) region to improve the accuracy of agriculture and water resource monitoring and management. In this study, using instrumental observation data from 85 meteorological stations in the BTH region during [...] Read more.
It is crucial to investigate the characteristics of meteorological drought in the Beijing–Tianjin–Hebei (BTH) region to improve the accuracy of agriculture and water resource monitoring and management. In this study, using instrumental observation data from 85 meteorological stations in the BTH region during 1961–2023 derived from the National Meteorological Information Center, we first calculated the meteorological drought comprehensive index (MCI) and analyzed the spatiotemporal characteristics of the MCI. In the BTH region, the MCI intensity from May to June was the most severe in the intraseasonal variation. The trend of the decreasing drought intensity in May–June has occurred for the past 60 years. The southern region in the BTH region was more likely to experience droughts. Next, the spatial patterns of the top two EOF modes of the May–June MCI were depicted. The primary spatial pattern of the BTH, which was characterized by consistent changes in the MCI throughout the entire BTH region, could be represented by the first mode’s R2 of 69.01%. Then, we compared the spatial pattern of the MCI intensity under different return periods. Using the May–June MCI of 1961–2023, the drought intensity gradually increased from northwest to southeast for the 10-, 20-, and 50-year return periods. However, the drought intensity decreased and then increased from northwest to southeast based on the 1991–2023 MCI. Notably, a 20-year return period of severe drought affected Beijing and northern Hebei in 2023. Finally, we discussed the linkages of drought in the BTH region and atmospheric circulation/sea surface temperature (SST) anomalies, which were calculated using the Pearson correlation coefficient and wavelet coherence. We suggest that the MCI variations in the BTH region may be related to the SST anomalies of the Indian Ocean in 1961–1990 and the Pacific Ocean in 1991–2023, respectively. The abovementioned studies have enlightened us to focus on predicting the Pacific SST for drought, which will facilitate agricultural production and water resource management in the BTH region. Full article
(This article belongs to the Special Issue Drought Monitoring and Risk Assessment)
Show Figures

Figure 1

15 pages, 6168 KiB  
Technical Note
Inclination Trend of the Agulhas Return Current Path in Three Decades
by Yan Lin, Liru Lin, Dongxiao Wang and Xiao-Yi Yang
Remote Sens. 2023, 15(24), 5652; https://doi.org/10.3390/rs15245652 - 7 Dec 2023
Cited by 1 | Viewed by 1666
Abstract
The Agulhas Return Current (ARC), as a primary component of the Agulhas system, contributes to water exchange and mass transport between the southern portions of the Indian and Atlantic Ocean basins. In this study, satellite altimeter data and reanalysis datasets, and a new [...] Read more.
The Agulhas Return Current (ARC), as a primary component of the Agulhas system, contributes to water exchange and mass transport between the southern portions of the Indian and Atlantic Ocean basins. In this study, satellite altimeter data and reanalysis datasets, and a new set of criteria for the piecewise definition of the jet axis are used to explore the long-term change of the ARC’s axis position in recent three decades. It is found that the ARC axis exhibits a significant slanting trend with its western part (35–48°E) migrating northward and the eastern part (48–70°E) migrating southward. The meridional movement of the ARC path could be attributed to large-scale wind forcing. The anomalous surface wind stress curl, by Ekman pumping mechanism, leads to positive–negative–positive sea surface height anomalies in the western section and negative–positive–negative anomalies in the eastern section, thus the ARC axis tilts accordingly, in a northwest–southeast direction. Further analysis suggests that this ARC slanting trend is more dependent on the southward shift of the downstream axis and less on the topographic steering upstream. The downstream axis is more likely to interact with the ACC fronts and its migration could dominate the local EKE pattern by changing the background circulation and energy cascade direction. For the headstream west of 35°E, the ARC axis is more subject to topography, thus the EKE change is more dominated by eddy activity processes, including shedding, propagation and merging. This study provides some new insights into the long-term change of ARC and its interaction with the local EKE variability. Full article
Show Figures

Figure 1

Back to TopTop