Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Capture and Sampling
2.2. DNA and RNA Extraction and Sequencing
2.3. Evaluation of Genome Contamination, Size, Heterozygosity, and Repeat Sequence Rate
2.4. Genome Assembly and Assessment of Genomic Integrity and Consistency
2.5. Genome Assembly at the Chromosomal Level
2.6. Genome Prediction and Annotation
2.7. Gene Family Identification and Dynamics Analysis and Phylogenetic Tree Construction
2.8. Positive Selection and Collinearity Analyses
3. Results
3.1. Genome Sequencing Data
3.2. Genome Assembly and Evaluation
3.3. Hi-C Technology-Assisted Genome Assembly at the Chromosomal Level
3.4. Genome Annotation
3.5. Gene Family Clustering, Expansion, and Contraction and Phylogenetic Analyses
3.6. Positive Selection and Collinearity Analyses
4. Discussion
4.1. Characterization of the E. muticus Genome
4.2. Role of Autophagy-Related Genes in the Formation of Whip-like Tail in E. muticus
4.3. Evolution of Innate Immune System in E. muticus
4.4. Important Role of DNA Repair-Related Genes in Maintaining Genome Stability of E. muticus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Froese, R.; Pauly, D. FishBase. World Wide Web Electronic Publication. Version (10/2023). Available online: http://www.fishbase.org (accessed on 3 November 2023).
- Shao, K.T. The Fish Database of Taiwan. Available online: http://fishdb.sinica.edu.tw (accessed on 26 September 2023).
- Nakamura, I.; Parin, N.V. An annotated and illustrated catalogue of the Snake Mackerels, Snoeks, Escolars, Gemfishes, Sackfishes, Domine, Oilfish, Cutlassfishes, Scabbardfishes, Hairtails and Frostfishes known to date. FAO Fish. Synopis. 1993, 125, 61–107. [Google Scholar]
- He, X.; Luo, Z.; Zhao, C.; Huang, L.; Yan, Y.; Kang, B. Species Composition, Growth, and Trophic Traits of Hairtail (Trichiuridae), the Most Productive Fish in Chinese Marine Fishery. Animals 2022, 12, 3078. [Google Scholar] [CrossRef]
- Chen, G.B.; Li, Y.Z.; Zhao, X.Y.; Chen, Y.Z.; Jin, X.S. Acoustic assessment of five groups commercial fish in South China Sea. Acta Oceanol. Sin. 2006, 28, 128–134. [Google Scholar]
- Luo, B.Z. Life history patterns and geographical variation of ecological parameters for marine fishes in the coastal waters of China. Oceanol. Limnol. Sin. 1992, 23, 63–73. [Google Scholar]
- Wang, K.L.; Zhang, P.J.; Liu, L.Y.; You, F.; Xu, C.; Wang, J.F. Research on the population biochemical genetic structure and identification of ribbonfish in the coastal waters of China. Acta Oceanol. Sin. 1994, 16, 93–104. [Google Scholar]
- Zhang, Q.Y.; Hong, W.S.; Chen, S.X. Stock changes and resource protection of the large yellow croaker (Larimichthys crocea) and ribbon fish (Trichiurus japonicus) in coastal waters of China. J. Appl. Oceanogr. 2017, 36, 438–445. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, J.H.; Jia, S.G. Characteristics of submarine water temperature distribution of Trichiurus haumela in the East China Sea and Southern Yellow Sea with the improvement of the analysis methods. J. Fish. China 2021, 45, 871–886. [Google Scholar] [CrossRef]
- Memon, K.H.; Qun, L.; Kalhoro, M.A.; Chang, M.S.; Baochao, L.; Memon, A.M.; Hyder, S.; Tabassum, S. Growth and Mortality Parameters of Hairtail Lepturacanthus savala from Pakistan Waters. Pak. J. Zool. 2016, 48, 829–837. [Google Scholar]
- Hsu, K.C.; Yi, M.R.; Gu, S.; He, X.-B.; Luo, Z.-S.; Kang, B.; Lin, H.-D.; Yan, Y.-R. Composition, Demographic History, and Population Structures of Trichiurus. Front. Mar. Sci. 2022, 9, 875042. [Google Scholar] [CrossRef]
- James, P. MBAI Memoir No. 1: The Ribbon-Fishes of the Family Trichiuridae of India; Western Printers & Printers, Bombay-13: Madras State, India, 1967; pp. 87–122. [Google Scholar]
- Liu, J.; Wu, R.X.; Kang, B.; Ma, L. Fishes of Beibu Gulf; Science Press: Beijing, China, 2016; p. 339. [Google Scholar]
- Pauly, D.; Christensen, V.V.; Dalsgaard, J.; Froese, R.; Torres, F. Fishing down Marine Food Webs. Science 1998, 279, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Miqueleiz, I.; Miranda, R.; Ariño, A.H.; Ojea, E. Conservation-Status Gaps for Marine Top-Fished Commercial Species. Fishes 2022, 7, 2. [Google Scholar] [CrossRef]
- Liu, S.; Zu, D.; Liu, Q.; Dai, F.; Ma, Q.; Zhuang, Z. Isolation and characterization of polymorphic microsatellite markers for Eupleurogrammus muticus. Conserv. Genet. Resour. 2015, 7, 487–488. [Google Scholar] [CrossRef]
- Xu, B.; Jin, X. Variations in fish community structure during winter in the southern Yellow Sea over the period 1985–2002. Fish. Res. 2005, 71, 79–91. [Google Scholar] [CrossRef]
- Tucker, D.W. Studies on the trichiuroid fishes—3. A preliminary revision of the family Trichiuridae. Bull. Br. Mus. (Nat. Hist.) Zool. 1956, 4, 112–128. [Google Scholar] [CrossRef]
- Rizvi, A.F.; Chakraborty, S.K.; Deshmukh, V.D. Stock assessment of small head hair tail Eupleurogrammus muticus (Gray) (Pisces/Trichiuridae) from Mumbai coast. Indian J. Mar. Sci. 2003, 32, 85–88. [Google Scholar]
- Burhanuddin, A.I.; Iwatsuki, Y. Comparative of Meristic and Morphometric Characters between Two Smallhead Hairtail Fishes Eupleurogrammus muticus (Gray, 1831) and E. Glossodon (Bleeker, 1860) (Percifomes: Trichiuridae). Biota 2006, 11, 142–145. [Google Scholar]
- Eighani, M.; Daliri, M.; Paighambari, S.Y.; Alizadeh, E. Length-weight relationship and GSI index of smallhead hairtail, Eupleurogrammus muticus (Gray, 1831), northern Persian Gulf, Hormozgan coastal waters. J. Appl. Ichthyol. 2014, 30, 257–258. [Google Scholar] [CrossRef]
- Meng, Z.N.; Zhuang, Z.M.; Jin, X.S.; Tang, Q.S.; Su, Y.Q. Analysis of RAPD and mitochondrial 16S rRNA gene sequences from Trichiurus lepturus and Eupleurogrammus muticus in the Yellow Sea. Prog. Nat. Sci. 2003, 11, 1170–1176. [Google Scholar] [CrossRef]
- Wu, R.X.; Miao, B.B.; Han, F.Y.; Niu, S.F.; Liang, Y.S.; Liang, Z.B.; Wang, Q.H. Chromosome-Level Genome Assembly Provides Insights into the Evolution of the Special Morphology and Behaviour of Lepturacanthus savala. Genes 2023, 14, 1268. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. The Inoue Method for Preparation and Transformation of Competent E. coli: “Ultra-Competent” Cells. CSH Protoc. 2006, 2006, pdb.prot3944. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Shi, Y.; Yuan, J.; Hu, X.; Zhang, H.; Li, N.; Li, Z.; Chen, Y.; Mu, D.; Fan, W. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv 2013, arXiv:1308.2012. [Google Scholar]
- Gordon, S.P.; Tseng, E.; Salamov, A.; Zhang, J.; Meng, X.; Zhao, Z.; Kang, D.; Underwood, J.; Grigoriev, I.V.; Figueroa, M.; et al. Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. PLoS ONE 2015, 10, e0132628. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef]
- Roach, M.J.; Schmidt, S.A.; Borneman, A.R. Purge Haplotigs: Allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinform. 2018, 19, 460. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Stanke, M.; Keller, O.; Gunduz, I.; Hayes, A.; Waack, S.; Morgenstern, B. AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006, 34, W435–W439. [Google Scholar] [CrossRef]
- Mistry, J.; Finn, R.D.; Eddy, S.R.; Bateman, A.; Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013, 41, e121. [Google Scholar] [CrossRef]
- Lieberman-Aiden, E.; van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 2009, 326, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Dudchenko, O.; Batra, S.S.; Omer, A.D.; Nyquist, S.K.; Hoeger, M.; Durand, N.C.; Shamim, M.S.; Machol, I.; Lander, E.S.; Aiden, A.P.; et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 2017, 356, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Durand, N.C.; Shamim, M.S.; Machol, I.; Rao, S.S.P.; Huntley, M.H.; Lander, E.S.; Aiden, E.L. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 2016, 3, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Durand, N.C.; Robinson, J.T.; Shamim, M.S.; Machol, I.; Mesirov, J.P.; Lander, E.S.; Aiden, E.L. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. 2016, 3, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Tarailo-Graovac, M.; Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 2009, 25, 4.10.1–4.10.14. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, H. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007, 35, W265–W268. [Google Scholar] [CrossRef]
- Price, A.L.; Jones, N.C.; Pevzner, P.A. De novo identification of repeat families in large genomes. Bioinformatics 2005, 21, i351–i358. [Google Scholar] [CrossRef]
- Birney, E.; Clamp, M.; Durbin, R. GeneWise and Genomewise. Genome Res. 2004, 14, 988–995. [Google Scholar] [CrossRef]
- Burge, C.; Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997, 268, 78–94. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Holt, C.; Yandell, M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 2011, 12, 491. [Google Scholar] [CrossRef]
- Parra, G.; Bradnam, K.; Korf, I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 2007, 23, 1061–1067. [Google Scholar] [CrossRef]
- Bairoch, A.; Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000, 28, 45–48. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Griffiths-Jones, S.; Moxon, S.; Marshall, M.; Khanna, A.; Eddy, S.R.; Bateman, A. Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2005, 33, D121–D124. [Google Scholar] [CrossRef]
- Li, L.; Stoeckert, C.J., Jr.; Roos, D.S. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003, 13, 2178–2189. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamada, K.D.; Tomii, K.; Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018, 34, 2490–2492. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. PAML: A program package for phylogenetic analysis by maximum likelihood. Bioinformatics 1997, 13, 555–556. [Google Scholar] [CrossRef]
- Mendes, F.K.; Vanderpool, D.; Fulton, B.; Hahn, M.W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 2021, 36, 5516–5518. [Google Scholar] [CrossRef]
- Yang, Z.; Nielsen, R. Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites along Specific Lineages. Mol. Biol. Evol. 2002, 19, 908–917. [Google Scholar] [CrossRef]
- Yang, Z.; Wong, W.S.W.; Nielsen, R. Bayes Empirical Bayes Inference of Amino Acid Sites under Positive Selection. Mol. Biol. Evol. 2005, 22, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, G.; Han, H.; Li, Y.; Li, J.; Wang, J.; Cao, G.; Li, X. Genome collinearity analysis illuminates the evolution of donkey chromosome 1 and horse chromosome 5 in perissodactyls: A comparative study. BMC Genom. 2021, 22, 665. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Bowers, J.E.; Wang, X.; Ming, R.; Alam, M.; Paterson, A.H. Synteny and Collinearity in Plant Genomes. Science 2008, 320, 486–488. [Google Scholar] [CrossRef]
- Delcher, A.; Salzberg, S.; Phillippy, A. Using MUMmer to Identify Similar Regions in Large Sequence Sets. Curr. Protoc. Bioinform. 2003, 00, 10.3.1–10.3.18. [Google Scholar] [CrossRef] [PubMed]
- Sims, D.; Sudbery, I.; Ilott, N.E.; Heger, A.; Ponting, C.P. Sequencing depth and coverage: Key considerations in genomic analyses. Nat. Rev. Genet. 2014, 15, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.; Bradnam, K.; St John, J.; Darling, A.; Lin, D.; Fass, J.; Yu, H.O.K.; Buffalo, V.; Zerbino, D.R.; Diekhans, M. Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Res. 2011, 21, 2224–2241. [Google Scholar] [CrossRef]
- Song, N.; Zhao, X.; Cai, C.; Gao, T. Profile of the genomic characteristics and comparative studies of five Trichiuridae species by genome survey sequencing. Front. Mar. Sci. 2022, 9, 962307. [Google Scholar] [CrossRef]
- Kazazian, H.H.J. Mobile Elements: Drivers of Genome Evolution. Science 2004, 303, 1626–1632. [Google Scholar] [CrossRef]
- Nelson, J.S.; Grande, T.C.; Wilson, M.V.H. Fishes of the World, 5th ed.; John Wiley & Sons: New York, NY, USA, 2016; pp. 13–526. [Google Scholar] [CrossRef]
- He, C.; Klionsky, D.J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu. Rev. Genet. 2009, 43, 67–93. [Google Scholar] [CrossRef]
- Ichimiya, T.; Yamakawa, T.; Hirano, T.; Yokoyama, Y.; Hayashi, Y.; Hirayama, D.; Wagatsuma, K.; Itoi, T.; Nakase, H. Autophagy and Autophagy-Related Diseases: A Review. Int. J. Mol. Sci. 2020, 21, 8974. [Google Scholar] [CrossRef]
- Cecconi, F.; Levine, B. The Role of Autophagy in Mammalian Development: Cell Makeover Rather than Cell Death. Dev. Cell 2008, 15, 344–357. [Google Scholar] [CrossRef]
- Di Bartolomeo, S.; Nazio, F.; Cecconi, F. The Role of Autophagy During Development in Higher Eukaryotes. Traffic 2010, 11, 1280–1289. [Google Scholar] [CrossRef]
- Malagoli, D.; Abdalla, F.C.; Cao, Y.; Feng, Q.; Fujisaki, K.; Gregorc, A.; Matsuo, T.; Nezis, I.P.; Papassideri, I.S.; Sass, M.; et al. Autophagy and its physiological relevance in arthropods: Current knowledge and perspectives. Autophagy 2010, 6, 575–588. [Google Scholar] [CrossRef]
- Romanelli, D.; Casati, B.; Franzetti, E.; Tettamanti, G. A Molecular View of Autophagy in Lepidoptera. Biomed. Res. Int. 2014, 2014, 902315. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, S.; Tashiro, Y. Cup-shaped Mitochondria in the Posterior Silk Gland of Bombyx mori in the Prepupal Stadium. Cell Struct. Funct. 1976, 1, 137–145. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Z.Y.; Li, W.F.; Li, Q.R.; Deng, X.J.; Yang, W.Y.; Cao, Y.; Zhou, C.Z. Systematic cloning and analysis of autophagy-related genes from the silkworm Bombyx mori. BMC Mol. Biol. 2009, 10, 50. [Google Scholar] [CrossRef]
- Changotra, H.; Kaur, S.; Yadav, S.S.; Gupta, G.L.; Parkash, J.; Duseja, A. ATG5: A central autophagy regulator implicated in various human diseases. Cell Biochem. Funct. 2022, 40, 650–667. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Zhou, X.J.; Zhang, H. Exploring the Role of Autophagy-Related Gene 5 (ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases. Front. Immunol. 2018, 9, 2334. [Google Scholar] [CrossRef]
- Mizushima, N.; Yamamoto, A.; Hatano, M.; Kobayashi, Y.; Kabeya, Y.; Suzuki, K.; Tokuhisa, T.; Ohsumi, Y.; Yoshimori, T. Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells. J. Cell Biol. 2001, 152, 657–668. [Google Scholar] [CrossRef]
- You, Z.; Xu, Y.; Wan, W.; Zhou, L.; Li, J.; Zhou, T.; Shi, Y.; Liu, W. TP53INP2 contributes to autophagosome formation by promoting LC3-ATG7 interaction. Autophagy 2019, 15, 1309–1321. [Google Scholar] [CrossRef]
- Collier, J.J.; Guissart, C.; Olahova, M.; Sasorith, S.; Piron-Prunier, F.; Suomi, F.; Zhang, D.; Martinez-Lopez, N.; Leboucq, N.; Bahr, A.; et al. Developmental Consequences of Defective ATG7-Mediated Autophagy in Humans. N. Engl. J. Med. 2021, 384, 2406–2417. [Google Scholar] [CrossRef]
- Tsuboyama, K.; Koyama-Honda, I.; Sakamaki, Y.; Koike, M.; Morishita, H.; Mizushima, N. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 2016, 354, 1036–1041. [Google Scholar] [CrossRef]
- He, H.; Dang, Y.; Dai, F.; Guo, Z.; Wu, J.; She, X.; Pei, Y.; Chen, Y.; Ling, W.; Wu, C.; et al. Post-translational Modifications of Three Members of the Human MAP1LC3 Family and Detection of a Novel Type of Modification for MAP1LC3B. J. Biol. Chem. 2003, 278, 29278–29287. [Google Scholar] [CrossRef] [PubMed]
- Weidberg, H.; Shvets, E.; Shpilka, T.; Shimron, F.; Shinder, V.; Elazar, Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010, 29, 1792–1802. [Google Scholar] [CrossRef] [PubMed]
- Franzetti, E.; Huang, Z.J.; Shi, Y.X.; Xie, K.; Deng, X.J.; Li, J.P.; Li, Q.R.; Yang, W.Y.; Zeng, W.N.; Casartelli, M.; et al. Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 2012, 17, 305–324. [Google Scholar] [CrossRef] [PubMed]
- Varga, M.; Sass, M.; Papp, D.; Takacs-Vellai, K.; Kobolak, J.; Dinnyes, A.; Klionsky, D.J.; Vellai, T. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ. 2014, 21, 547–556. [Google Scholar] [CrossRef]
- Eskelinen, E.L.; Schmidt, C.K.; Neu, S.; Willenborg, M.; Fuertes, G.; Salvador, N.; Tanaka, Y.; Lüllmann-Rauch, R.; Hartmann, D.; Heeren, J.; et al. Disturbed Cholesterol Traffic but Normal Proteolytic Function in LAMP-1/LAMP-2 Double-deficient Fibroblasts. Mol. Biol. Cell 2004, 15, 3132–3145. [Google Scholar] [CrossRef]
- Yim, W.W.; Mizushima, N. Lysosome biology in autophagy. Cell Discov. 2020, 6, 6. [Google Scholar] [CrossRef]
- Subramaniam, S.; Stansberg, C.; Cunningham, C. The interleukin 1 receptor family. Dev. Comp. Immunol. 2004, 28, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Adamopoulos, I.E.; Pflanz, S. The emerging role of Interleukin 27 in inflammatory arthritis and bone destruction. Cytokine Growth Factor Rev. 2013, 24, 115–121. [Google Scholar] [CrossRef]
- Pascual-Figal, D.A.; Januzzi, J.L. The Biology of ST2: The International ST2 Consensus Panel. Am. J. Cardiol. 2015, 115, 3B–7B. [Google Scholar] [CrossRef]
- Karaesmen, E.; Hahn, T.; Dile, A.J.; Rizvi, A.A.; Wang, J.; Wang, T.; Haagenson, M.D.; Preus, L.; Zhu, Q.; Liu, Q.; et al. Multiple functional variants in the IL1RL1 region are pretransplant markers for risk of GVHD and infection deaths. Blood Adv. 2019, 3, 2512–2524. [Google Scholar] [CrossRef]
- McGeachy, M.J.; Cua, D.J. Th17 Cell Differentiation: The Long and Winding Road. Immunity 2008, 28, 445–453. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, X.; Zhu, L.; Yuan, G.; Li, L.; Pei, C.; Kong, X. Molecular characterizations, immune modulation, and antibacterial activity of interleukin-17A/F1a and interleukin-17A/F1b in common carp Cyprinus carpio. Fish Shellfish Immunol. 2022, 127, 561–571. [Google Scholar] [CrossRef]
- Gal, P.; Ambrus, G.; Zavodszky, P. C1s, the Protease Messenger of C1. Immunobiology 2002, 205, 383–394. [Google Scholar] [CrossRef]
- Kishore, U.; Reid, K.B. C1q: Structure, function, and receptors. Immunopharmacology 2000, 49, 159–170. [Google Scholar] [CrossRef]
- Gaboriaud, C.; Thielens, N.M.; Gregory, L.A.; Rossi, V.; Fontecilla-Camps, J.C.; Arlaud, G.J. Structure and activation of the C1 complex of complement: Unraveling the puzzle. Trends Immunol. 2004, 25, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Morgan, B.P. The Human Complement System in Health and Disease. Ann. Rheum. Dis. 1998, 57, 581. [Google Scholar] [CrossRef]
- Sumaiya, K.; Langford, D.; Natarajaseenivasan, K.; Shanmughapriya, S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol. Ther. 2022, 233, 108024. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, X.; Diao, Q.; Zhang, P.; Wu, Y.; Cao, Z.; Zhou, Y.; Liu, C.; Sun, Y. Macrophage migration inhibitory factor (MIF) of golden pompano (Trachinotus ovatus) is involved in the antibacterial immune response. Dev. Comp. Immunol. 2022, 133, 104445. [Google Scholar] [CrossRef] [PubMed]
- Alejo, A.; Tafalla, C. Chemokines in teleost fish species. Dev. Comp. Immunol. 2011, 35, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, M.; Sironi, M.; Pozzoli, U.; Ferrer-Admettla, A.; Pattini, L.; Nielsen, R. Signatures of Environmental Genetic Adaptation Pinpoint Pathogens as the Main Selective Pressure through Human Evolution. PLOS Genet. 2011, 7, e1002355. [Google Scholar] [CrossRef]
- Ebert, D.; Fields, P.D. Host–parasite co-evolution and its genomic signature. Nat. Rev. Genet. 2020, 21, 754–768. [Google Scholar] [CrossRef]
- You, X.; Bian, C.; Zan, Q.; Xu, X.; Liu, X.; Chen, J.; Wang, J.; Qiu, Y.; Li, W.; Zhang, X.; et al. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nat. Commun. 2014, 5, 5594. [Google Scholar] [CrossRef]
- Oldenburg, M.; Krüger, A.; Ferstl, R.; Kaufmann, A.; Nees, G.; Sigmund, A.; Bathke, B.; Lauterbach, H.; Suter, M.; Dreher, S.; et al. TLR13 Recognizes Bacterial 23S rRNA Devoid of Erythromycin Resistance–Forming Modification. Science 2012, 337, 1111–1115. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, T.; Chen, J.; Wu, L.; Wu, X.; Zhang, W.; Luo, J.; Xia, J.; Meng, Z.; Liu, X. Whole-genome sequencing of brown-marbled grouper (Epinephelus fuscoguttatus) provides insights into adaptive evolution and growth differences. Mol. Ecol. Resour. 2022, 22, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wen, J.; Hu, R.; Pei, S.; Li, T.; Shan, B.; Huang, H.; Zhu, C. Transcriptome Responses to Different Environments in Intertidal Zones in the Peanut Worm Sipunculus nudus. Biology 2023, 12, 1182. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.H.; Wang, J.X.; Yu, K.C.; Jiang, R.; Liu, X.H.; Wang, S.B.; Liu, X.Z. Community Structure and geographical distribution of bacterial on surface layer sediments in the East China Sea. Oceanol. Limnol. Sin. 2015, 46, 1119–1131. [Google Scholar]
- Wu, S.; Zhou, L.; Zhou, Y.; Wang, H.; Xiao, J.; Yan, S.; Wang, Y. Diverse and unique viruses discovered in the surface water of the East China Sea. BMC Genom. 2020, 21, 441. [Google Scholar] [CrossRef]
- Jing, Z.; Zeng, R. Bacterial community in deep subseafloor sediments from the western Pacific “warm pool”. Sci. China Ser. D-Earth Sci. 2008, 51, 618–624. [Google Scholar] [CrossRef]
- Wang, J.; Kan, J.; Borecki, L.; Zhang, X.; Wang, D.; Sun, J. A snapshot on spatial and vertical distribution of bacterial communities in the eastern Indian Ocean. Acta Oceanol. Sin. 2016, 35, 85–93. [Google Scholar] [CrossRef]
- Feng, J.X.; Riddle, N.C. Epigenetics and genome stability. Mamm. Genome 2020, 31, 181–195. [Google Scholar] [CrossRef]
- Giglia-Mari, G.; Zotter, A.; Vermeulen, W. DNA damage response. Cold Spring Harb. Perspect. Biol. 2011, 3, a000745. [Google Scholar] [CrossRef]
- Sancar, A.; Lindsey-Boltz, L.A.; Unsal-Kacmaz, K.; Linn, S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu. Rev. Biochem. 2004, 73, 39–85. [Google Scholar] [CrossRef] [PubMed]
- Kottemann, M.C.; Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 2013, 493, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.A.; Semlow, D.R.; Kamimae-Lanning, A.N.; Kochenova, O.V.; Chistol, G.; Hodskinson, M.R.; Amunugama, R.; Sparks, J.L.; Wang, M.; Deng, L.; et al. TRAIP is a master regulator of DNA interstrand crosslink repair. Nature 2019, 567, 267–272. [Google Scholar] [CrossRef]
- Liang, F.; Miller, A.S.; Tang, C.; Maranon, D.; Williamson, E.A.; Hromas, R.; Wiese, C.; Zhao, W.; Sung, P.; Kupfer, G.M. The DNA-binding activity of USP1-associated factor 1 is required for efficient RAD51-mediated homologous DNA pairing and homology-directed DNA repair. J. Biol. Chem. 2020, 295, 8186–8194. [Google Scholar] [CrossRef]
- Huang, Y.; Leung, J.W.; Lowery, M.; Matsushita, N.; Wang, Y.; Shen, X.; Huong, D.; Takata, M.; Chen, J.; Li, L. Modularized Functions of the Fanconi Anemia Core Complex. Cell Rep. 2014, 7, 1849–1857. [Google Scholar] [CrossRef]
- Benitez, A.; Liu, W.; Palovcak, A.; Wang, G.; Moon, J.; An, K.; Kim, A.; Zheng, K.; Zhang, Y.; Bai, F.; et al. FANCA Promotes DNA Double-Strand Break Repair by Catalyzing Single-Strand Annealing and Strand Exchange. Mol. Cell 2018, 71, 621–628.e4. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.M.; Alon, N.; Buchwald, M. FANCC, FANCE, and FANCD2 Form a Ternary Complex Essential to the Integrity of the Fanconi Anemia DNA Damage Response Pathway. J. Biol. Chem. 2005, 280, 36118–36125. [Google Scholar] [CrossRef]
- Smogorzewska, A.; Matsuoka, S.; Vinciguerra, P.; McDonald, E.R., 3rd; Hurov, K.E.; Luo, J.; Ballif, B.A.; Gygi, S.P.; Hofmann, K.; D’Andrea, A.D.; et al. Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair. Cell 2007, 129, 289–301. [Google Scholar] [CrossRef]
- Shah, R.B.; Kernan, J.L.; van Hoogstraten, A.; Ando, K.; Li, Y.; Belcher, A.L.; Mininger, I.; Bussenault, A.M.; Raman, R.; Ramanagoudr-Bhojappa, R.; et al. FANCI functions as a repair/apoptosis switch in response to DNA crosslinks. Dev. Cell 2021, 56, 2207–2222.E7. [Google Scholar] [CrossRef]
- Ling, C.; Ishiai, M.; Ali, A.M.; Medhurst, A.L.; Neveling, K.; Kalb, R.; Yan, Z.; Xue, Y.; Oostra, A.B.; Auerbach, A.D.; et al. FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J. 2007, 26, 2104–2114. [Google Scholar] [CrossRef]
- Haber, J.E.; Heyer, W.D. The Fuss about Mus81. Cell 2001, 107, 551–554. [Google Scholar] [CrossRef]
- Abraham, J.; Lemmers, B.; Hande, M.P.; Moynahan, M.E.; Chahwan, C.; Ciccia, A.; Essers, J.; Hanada, K.; Chahwan, R.; Khaw, A.K.; et al. EME1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO J. 2003, 22, 6137–6147. [Google Scholar] [CrossRef]
- Cantor, S.B.; Bell, D.W.; Ganesan, S.; Kass, E.M.; Drapkin, R.; Grossman, S.; Wahrer, D.C.; Sgroi, D.C.; Lane, W.S.; Haber, D.A.; et al. BACH1, a Novel Helicase-like Protein, Interacts Directly with BRCA1 and Contributes to Its DNA Repair Function. Cell 2001, 105, 149–160. [Google Scholar] [CrossRef]
- Langland, G.; Elliott, J.; Li, Y.; Creaney, J.; Dixon, K.; Groden, J. The BLM Helicase Is Necessary for Normal DNA Double-Strand Break Repair. Cancer Res. 2002, 62, 2766–2770. [Google Scholar] [PubMed]
- Nimonkar, A.V.; Genschel, J.; Kinoshita, E.; Polaczek, P.; Campbell, J.L.; Wyman, C.; Modrich, P.; Kowalczykowski, S.C. BLM–DNA2–RPA–MRN and EXO1–BLM–RPA–MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 2011, 25, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Sheng, Q.; Nakanishi, K.; Ohashi, A.; Wu, J.; Christ, N.; Liu, X.; Jasin, M.; Couch, F.J.; Livingston, D.M. Control of BRCA2 Cellular and Clinical Functions by a Nuclear Partner, PALB2. Mol. Cell 2006, 22, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Westermark, U.K.; Reyngold, M.; Olshen, A.B.; Baer, R.; Jasin, M.; Moynahan, M.E. BARD1 Participates with BRCA1 in Homology-Directed Repair of Chromosome Breaks. Mol. Cell. Biol. 2003, 23, 7926–7936. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.R.; Solomon, E. BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum. Mol. Genet. 2004, 13, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Wu-Baer, F.; Ludwig, T.; Baer, R. The UBXN1 Protein Associates with Autoubiquitinated Forms of the BRCA1 Tumor Suppressor and Inhibits Its Enzymatic Function. Mol. Cell. Biol. 2010, 30, 2787–2798. [Google Scholar] [CrossRef] [PubMed]
- Marra, N.J.; Stanhope, M.J.; Jue, N.K.; Wang, M.; Sun, Q.; Pavinski Bitar, P.; Richards, V.P.; Komissarov, A.; Rayko, M.; Kliver, S.; et al. White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability. Proc. Natl. Acad. Sci. USA 2019, 116, 4446–4455. [Google Scholar] [CrossRef] [PubMed]
- Copenhaver, G.P.; Mu, Y.; Bian, C.; Liu, R.; Wang, Y.; Shao, G.; Li, J.; Qiu, Y.; He, T.; Li, W.; et al. Whole genome sequencing of a snailfish from the Yap Trench (~7000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genet. 2021, 17, e1009530. [Google Scholar] [CrossRef]
- Sullivan, M.R.; Bernstein, K.A. RAD-ical New Insights into RAD51 Regulation. Genes 2018, 9, 629. [Google Scholar] [CrossRef]
- Liu, N.; Lamerdin, J.E.; Tebbs, R.S.; Schild, D.; Tucker, J.D.; Shen, M.R.; Brookman, K.W.; Siciliano, M.J.; Walter, C.A.; Fan, W.; et al. XRCC2 and XRCC3, New Human Rad51-Family Members, Promote Chromosome Stability and Protect against DNA Cross-Links and Other Damages. Mol. Cell 1998, 1, 783–793. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H.; Feng, C.; Lu, Z.; Liu, J.; Huang, Y.; Tang, H.; Xu, Z.; Pu, Y.; Zhang, H. Genetic adaptations of sea anemone to hydrothermal environment. Sci. Adv. 2023, 9, eadh0474. [Google Scholar] [CrossRef]
Type | Platform | Library Size (bp) | Raw Data (Gb) | Clean Data (Gb) | Coverage (×) |
---|---|---|---|---|---|
Illumina Nova | Illumina NovaSeq-6000 | 350 | 71.40 | 63.03 | 99.1 |
PacBio SMRT | PacBio Sequel II | 15 k | 59.57 | 34.97 | 48.5 |
Hi-C | Illumina NovaSeq-6000 | 350 | 75.20 | 74.25 | 104.4 |
Illumina RNA-Seq | Illumina NovaSeq-6000 | 350 | 7.10 | 6.71 | 9.8 |
ONT RNA-Seq | NanoPromethION | - | 9.09 | 8.61 | 12.6 |
Total | 222.36 | 187.57 | 274.4 |
Methods | Gene Set | Number | Average Gene Length (bp) | Average CDS Length (bp) | Average Exon Per Gene | Average Exon Length (bp) | Average Intron Length (bp) |
---|---|---|---|---|---|---|---|
De novo | Genscan | 36,114 | 13,128.07 | 1419.77 | 7.78 | 182.56 | 1727.59 |
AUGUSTUS | 36,217 | 9868.25 | 1270.82 | 6.96 | 182.72 | 1443.6 | |
Homolog | Etheostoma spectabile | 30,817 | 12,295.23 | 1472.87 | 8.29 | 177.59 | 1483.41 |
Homo sapiens | 24,338 | 13,205.29 | 1321.50 | 8.24 | 160.32 | 1640.46 | |
Larimichthys crocea | 32,085 | 12,203.04 | 1478.14 | 8.27 | 178.64 | 1474.12 | |
Thunnus maccoyii | 32,571 | 12,375.79 | 1501.14 | 8.32 | 180.47 | 1485.64 | |
Perca flavescens | 31,479 | 12,242.79 | 1463.95 | 8.30 | 176.36 | 1475.98 | |
Takifugu rubripes | 28,393 | 12,451.37 | 1509.68 | 8.63 | 174.96 | 1433.9 | |
Thunnus albacares | 32,146 | 12,393.48 | 1508.74 | 8.43 | 179.07 | 1465.57 | |
Danio rerio | 29,225 | 12,428.59 | 1442.84 | 8.26 | 174.65 | 1512.68 | |
Sander lucioperca | 32,372 | 12,404.23 | 1482.49 | 8.32 | 178.23 | 1492.16 | |
Oryzias latipes | 30,041 | 12,304.19 | 1507.13 | 8.34 | 180.76 | 1471.05 | |
Transcriptome | RNAseq | 10,859 | 17,854.09 | 1764.30 | 11.53 | 312.82 | 1353.38 |
ISOseq | 1698 | 10,846.91 | 1173.28 | 9.55 | 231.66 | 1010.05 | |
BUSCO | 3661 | 11,770.51 | 1843.36 | 12.31 | 149.74 | 877.63 | |
MAKER | 22,903 | 14,826.32 | 1668.48 | 9.72 | 259.16 | 1411.85 | |
HiCESAP | 21,949 | 15,159.85 | 1727.52 | 10.27 | 259.53 | 1347.92 |
Species | Genes | Unclustered | Genes | Family | Unique | Unique | Common | Common | Single-Copy |
---|---|---|---|---|---|---|---|---|---|
Number | Genes | In Families | Number | Families | Families Genes | Families | Families Genes | Genes | |
Eupleurogrammus muticus | 21,949 | 1123 | 20,826 | 15,686 | 25 | 89 | 6711 | 10,925 | 3006 |
Lepturacanthus savala | 23,625 | 2040 | 21,585 | 15,681 | 47 | 926 | 6711 | 10,880 | 3006 |
Thunnus albacares | 24,623 | 429 | 24,194 | 17,161 | 23 | 49 | 6711 | 11,427 | 3006 |
Thunnus maccoyii | 24,646 | 475 | 24,171 | 17,180 | 22 | 61 | 6711 | 11,423 | 3006 |
Hippocampus comes | 21,175 | 1439 | 19,736 | 14,602 | 67 | 170 | 6711 | 10,931 | 3006 |
Acanthopagrus latus | 23,773 | 405 | 23,368 | 16,666 | 57 | 168 | 6711 | 11,429 | 3006 |
Cheilinus undulatus | 23,303 | 521 | 22,782 | 15,995 | 86 | 410 | 6711 | 11,358 | 3006 |
Echeneis naucrates | 21,275 | 194 | 21,081 | 15,518 | 21 | 62 | 6711 | 11,220 | 3006 |
Epinephelus akaara | 23,923 | 1322 | 22,601 | 16,077 | 66 | 184 | 6711 | 11,659 | 3006 |
Epinephelus fuscoguttatus | 24,005 | 1055 | 22,950 | 16,191 | 121 | 338 | 6711 | 11,574 | 3006 |
Larimichthys crocea | 23,354 | 660 | 22,694 | 16,573 | 43 | 118 | 6711 | 11,372 | 3006 |
Latimeria chalumnae | 20,932 | 3250 | 17,682 | 13,208 | 174 | 696 | 6711 | 9681 | 3006 |
Monopterus albus | 21,343 | 915 | 20,428 | 15,304 | 41 | 99 | 6711 | 10,979 | 3006 |
Perca flavescens | 23,736 | 739 | 22,997 | 16,417 | 41 | 122 | 6711 | 11,376 | 3006 |
Periophthalmus magnuspinnatus | 21,293 | 597 | 20,696 | 15,033 | 53 | 223 | 6711 | 11,140 | 3006 |
Rhincodon typus | 21,868 | 4491 | 17,377 | 12,554 | 193 | 662 | 6711 | 10,029 | 3006 |
Sander lucioperca | 24,714 | 687 | 24,027 | 16,892 | 60 | 157 | 6711 | 11,484 | 3006 |
Takifugu flavidus | 29,408 | 4177 | 25,231 | 15,690 | 261 | 1349 | 6711 | 10,980 | 3006 |
Takifugu rubripes | 22,064 | 407 | 21,657 | 15,320 | 42 | 107 | 6711 | 11,445 | 3006 |
Tetraodon nigroviridis | 27,918 | 7741 | 20,177 | 14,512 | 222 | 541 | 6711 | 11,285 | 3006 |
1. Expansion (67 Gene Families, Top 20 KEGG Pathways, p-Value < 0.05) | ||
---|---|---|
KEGG Pathways | p-Value | Genes |
Ascorbate and aldarate metabolism | 2.97 × 10−7 | ugt3, ugt1a1 |
Pentose and glucuronate interconversions | 5.85 × 10−7 | ugt3, ugt1a1 |
Chemical carcinogenesis—DNA adducts | 5.85 × 10−7 | ugt3, ugt1a1 |
Porphyrin and chlorophyll metabolism | 7.94 × 10−7 | ugt3, ugt1a1 |
Drug metabolism—cytochrome P450 | 1.21 × 10−6 | ugt3, ugt1a1 |
Metabolism of xenobiotics by cytochrome P450 | 1.39 × 10−6 | ugt3, ugt1a1 |
Notch signaling pathway | 1.97 × 10−6 | hes5 |
Steroid hormone biosynthesis | 3.58 × 10−6 | ugt3, ugt1a1 |
Retinol metabolism | 8.61 × 10−6 | ugt3, ugt1a1 |
Drug metabolism—other enzymes | 2.24 × 10−5 | ugt3, ugt1a1 |
Steroid biosynthesis | 1.74 × 10−4 | soat1 |
Bile secretion | 2.24 × 10−4 | ugt3, ugt1a1 |
Viral protein interaction with cytokine and cytokine receptor | 5.96 × 10−4 | ccr3, ccr5 |
Breast cancer | 8.91 × 10−4 | hes5 |
Hypertrophic cardiomyopathy | 0.001042306 | ttn |
Chemokine signaling pathway | 0.001245404 | tiam1, ccr3, ccr5 |
Epithelial cell signaling in Helicobacter pylori infection | 0.001703999 | ptprz1 |
Human papillomavirus infection | 0.001826957 | hes5, dlg1l |
Dilated cardiomyopathy | 0.002127476 | ttn |
Cholesterol metabolism | 0.004796358 | soat1 |
2. Contraction (123 gene families, Top 20 KEGG pathways, p-value < 0.05) | ||
KEGG Pathways | p-Value | Genes |
ABC transporters | 4.31 × 10−20 | abcc8, abcc12, abcc10, abcc5, etc. |
Axon guidance | 2.48 × 10−19 | epha2, epha8, epha3, epha6, etc. |
Antifolate resistance | 4.78 × 10−11 | abcc4, abcc5, abcc2, abcc3, etc. |
Antigen processing and presentation | 2.85 × 10−9 | hspa5, hsc71, hspa8, hsc70 |
Legionellosis | 1.63 × 10−7 | hsc71, hspa8, hsp70 |
Longevity regulating pathway—multiple species | 8.54 × 10−7 | hsc71, hspa8, hsp70 |
Systemic lupus erythematosus | 2.52 × 10−6 | h3f3b, hist2h3d |
Protein processing in endoplasmic reticulum | 2.71 × 10−6 | hsc71, hspa8, hspa5, hsp70 |
Toxoplasmosis | 5.46 × 10−6 | hsc71, hspa8, hsp70 |
Spliceosome | 5.70 × 10−6 | hsc71, hspa8, hsp70 |
Measles | 1.04 × 10−5 | hsc71, hspa8, hsp70 |
MAPK signaling pathway | 1.06 × 10−5 | hsc71, hspa8, epha2, hsp70 |
Estrogen signaling pathway | 1.89 × 10−5 | hsc71, hspa8, hsp70 |
Lipid and atherosclerosis | 2.53 × 10−5 | hspa5, hsc71, hspa8, hsp70 |
Neutrophil extracellular trap formation | 3.25 × 10−5 | h3f3b, hist2h3d |
Alcoholism | 4.49 × 10−5 | h3f3b, hist2h3d |
Prion disease | 1.26 × 10−4 | hsc71, hspa5, hspa8, hsp70 |
Transcriptional misregulation in cancer | 2.07 × 10−4 | h3f3b, hist2h3d |
Vitamin digestion and absorption | 2.46 × 10−4 | abcc1 |
Bile secretion | 4.76 × 10−4 | abcc4, abcc2, abcc3 |
Group 1 (Genes: 1566; KEGG Pathways: 21, p-Value < 0.05) | ||
---|---|---|
(Eupleurogrammus muticus and Lepturacanthus savala) vs. (Acanthopagrus latus, Epinephelus fuscoguttatus, Epinephelus akaara, Perca flavescens, Larimichthys crocea, and Sander lucioperca) | ||
KEGG Pathways | p-Value | Genes |
Novobiocin biosynthesis | 0.00 | tat |
Fanconi anemia pathway | 3.59 × 10−6 | slx1a, eme1, palb2, fanca, etc. |
Non-homologous end-joining | 0.001790458 | polm, nhej1, dntt |
Homologous recombination | 0.003095449 | eme1, blm, brca1, bard1, etc. |
Ferroptosis | 0.004991427 | atg5, atg7, map1lc3b, map1lc3c, etc. |
Bacterial secretion system | 0.004708158 | srp54 |
Base excision repair | 0.006208329 | mpg, parp4, smug1, neil3, etc. |
RNA transport | 0.007638419 | eif2b3, gemin5, nup188, acin1, etc. |
Oxidative phosphorylation | 0.009939509 | ndufb9, ppa1, atp6v0b, atp5g3, etc. |
Cell cycle—caulobacter | 0.01347929 | clpp |
Sesquiterpenoid and triterpenoid biosynthesis | 0.01347929 | sqle |
Caffeine metabolism | 0.02573447 | uox |
Aminobenzoate degradation | 0.02573447 | echs1 |
Naphthalene degradation | 0.02573447 | adh5 |
DNA replication | 0.03018216 | rnaseh2b, zmcm3, dna2, rfc1, etc. |
Autophagy—yeast | 0.03827173 | rab7, ip6k1, vps8, kras, etc. |
Ribosome biogenesis in eukaryotes | 0.03438198 | eif6, nob1, pop4, dkc1, etc. |
One carbon pool by folate | 0.03736458 | dhfr, mthfr, mthfd2, etc. |
Cytokine–cytokine receptor interaction | 0.04263281 | il1rl1, il17a, ngfr, tnfrsf1b, etc. |
Ubiquinone and other terpenoid-quinone biosynthesis | 0.04447989 | tat, coq6 |
Citrate cycle (TCA cycle) | 0.04820553 | dld, dlat, sdha, suclg1, etc. |
Group 2 (Genes: 1022; KEGG Pathways: 20, p-Value < 0.05) | ||
(Eupleurogrammus muticus) vs. (Acanthopagrus latus, Epinephelus fuscoguttatus, Epinephelus akaara, Perca flavescens, Larimichthys crocea, and Sander lucioperca) | ||
KEGG Pathways | p-Value | Genes |
Novobiocin biosynthesis | 0.00 | tat |
Fanconi anemia pathway | 7.11 × 10−8 | palb2, fance, faap100, blm, etc. |
Homologous recombination | 0.000144 | eme1, xrcc3, palb2, brip1, etc. |
Mismatch repair | 0.00209 | msh3, pold1, exo1 |
Cytokine–cytokine receptor interaction | 0.00485 | il1rl1, ngfr, prlr, il22ra1, etc. |
Aminobenzoate degradation | 0.0105 | ehhadh |
Lysosome | 0.012 | lamp2, lipa, man2b1, ppt1, etc. |
Base excision repair | 0.0127 | mpg, parp4, pold1 |
Notch signaling pathway | 0.0151 | cir1, dtx3, dtx2, maml2, etc. |
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis | 0.0157 | pigk, pigo, pgap1 |
Ribosome biogenesis in eukaryotes | 0.0163 | drosha, riok2, dkc1, rpp40, etc. |
Non-homologous end-joining | 0.0203 | nhej1 |
Tropane, piperidine and pyridine alkaloid biosynthesis | 0.0337 | tat |
Caprolactam degradation | 0.0337 | ehhadh |
JAK-STAT signaling pathway | 0.0358 | ccnd3, il22ra1, prlr, il12b, etc. |
Ribosome | 0.0361 | rps26, rpl29, mrps18c, rpl23, etc. |
Aminoacyl-tRNA biosynthesis | 0.0397 | sars, sepsecs, wars2 |
Nucleotide excision repair | 0.0432 | ercc3, ercc5, pold1, ccnh |
Phenylalanine, tyrosine and tryptophan biosynthesis | 0.0437 | tat |
Phenylalanine metabolism | 0.0461 | tat, mif |
Group 3 (Genes: 2300; KEGG Pathways: 17, p-Value < 0.05) | ||
(Eupleurogrammus muticus and Lepturacanthus savala) vs. (Thunnus albacares and Thunnus maccoyii) | ||
KEGG Pathways | p-Value | Genes |
Cytokine–cytokine receptor interaction | 5.95 × 10−5 | ngfr, ccr6, il17a, il22ra1, etc. |
Fanconi anemia pathway | 6.21 × 10−4 | eme1, palb2, fanca, brip1, etc. |
Base excision repair | 7.34 × 10−4 | mpg, lig3, smug1, nthl1, etc. |
Viral protein interaction with cytokine and cytokine receptor | 8.07 × 10−4 | il6, ccr6, tnfsf14, il22ra1, etc. |
Lipoic acid metabolism | 0.009138648 | lipt2 |
Sphingolipid metabolism | 0.01278764 | psap, plpp3, cerk, cers5, etc. |
DNA replication | 0.01548808 | rnaseh2b, pole2, dna2, prim2, etc. |
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis | 0.01839599 | pigk, pigo, pigw, pigt, etc. |
Complement and coagulation cascades | 0.01912686 | c5, c9, c1s, c1qa, etc. |
Ribosome | 0.02090745 | mrpl16, rps10, mrpl21, mrpl11, etc. |
Ubiquinone and other terpenoid-quinone biosynthesis | 0.02202827 | tat, vkorc1l1, coq6 |
Nucleotide excision repair | 0.02460608 | rbx1, gtf2h3, pole2, ccnh, etc. |
Biotin metabolism | 0.02567046 | hlcs |
RNA transport | 0.03514058 | eif2b3, nup188, gemin5, gemin6, etc. |
JAK-STAT signaling pathway | 0.03880553 | prl, il6, lifr, csf2rb, etc. |
Caffeine metabolism | 0.04809981 | uox |
Apoptosis—multiple species | 0.04856226 | ngfr, cyc, tnfrsfla, diablo, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, F.-Y.; Wu, R.-X.; Miao, B.-B.; Niu, S.-F.; Wang, Q.-H.; Liang, Z.-B. Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus. Animals 2024, 14, 434. https://doi.org/10.3390/ani14030434
Han F-Y, Wu R-X, Miao B-B, Niu S-F, Wang Q-H, Liang Z-B. Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus. Animals. 2024; 14(3):434. https://doi.org/10.3390/ani14030434
Chicago/Turabian StyleHan, Fang-Yuan, Ren-Xie Wu, Ben-Ben Miao, Su-Fang Niu, Qing-Hua Wang, and Zhen-Bang Liang. 2024. "Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus" Animals 14, no. 3: 434. https://doi.org/10.3390/ani14030434
APA StyleHan, F.-Y., Wu, R.-X., Miao, B.-B., Niu, S.-F., Wang, Q.-H., & Liang, Z.-B. (2024). Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus. Animals, 14(3), 434. https://doi.org/10.3390/ani14030434