Type, Genesis, and Provenance Implications of Amphiboles in Sediments in the Northwest Indian Ocean over 42,000 Years
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
3.1. Material
3.2. Methods
4. Results
4.1. Amphiboles’ Mineral Features
4.2. Chemical Characteristics of Amphibole Grains
Layer Number | CJ08-008-46 | CJ08-008-94 | CJ08-008-102 | CJ08-008-104 | CJ08-008-108 |
---|---|---|---|---|---|
Percentage (%) | |||||
SiO2 | 44.69 | 45.74 | 44.00 | 43.78 | 44.74 |
TiO2 | 0.76 | 0.65 | 0.83 | 1.19 | 0.89 |
Al2O3 | 11.65 | 11.14 | 11.85 | 12.33 | 11.40 |
TFeO | 15.43 | 13.13 | 15.62 | 15.39 | 15.86 |
MnO | 0.35 | 0.30 | 0.36 | 0.34 | 0.38 |
MgO | 10.77 | 12.60 | 10.65 | 10.65 | 10.77 |
CaO | 11.04 | 11.31 | 11.29 | 11.15 | 11.09 |
Na2O | 1.39 | 1.48 | 1.47 | 1.50 | 1.43 |
K2O | 0.67 | 0.47 | 0.75 | 0.73 | 0.73 |
Total | 97.37 | 96.83 | 96.81 | 97.06 | 97.27 |
Layer number | CJ08-008-46 | CJ08-008-94 | CJ08-008-102 | CJ08-008-104 | CJ08-008-108 |
Number of cations | Cation values based on 23 oxygen atoms | ||||
Na | 0.41 | 0.45 | 0.42 | 0.43 | 0.41 |
K | 0.13 | 0.09 | 0.14 | 0.14 | 0.15 |
Mg | 2.34 | 2.65 | 2.31 | 2.32 | 2.30 |
Ca | 1.76 | 1.74 | 1.76 | 1.76 | 1.75 |
Fe2+ | 1.06 | 0.69 | 1.02 | 0.99 | 1.12 |
Fe3+ | 0.86 | 0.93 | 0.92 | 0.91 | 0.85 |
Mn | 0.04 | 0.03 | 0.04 | 0.04 | 0.05 |
Ti | 0.09 | 0.08 | 0.09 | 0.09 | 0.10 |
ⅥAl | 1.43 | 1.47 | 1.55 | 1.57 | 1.47 |
ⅣAl | 0.53 | 0.54 | 0.53 | 0.57 | 0.50 |
Si | 6.57 | 6.53 | 6.45 | 6.43 | 6.53 |
The pressure value (kbar) | CJ08-008-46 | CJ08-008-94 | CJ08-008-102 | CJ08-008-104 | CJ08-008-108 |
P | 4.83 ± 0.5 | 5.04 ± 0.5 | 5.33 ± 0.5 | 5.59 ± 0.5 | 4.87 ± 0.5 |
4.33–5.33 | 4.54–5.54 | 4.83–5.83 | 5.09–6.09 | 4.37–5.37 |
5. Discussion
5.1. Amphibole Classification
5.2. Formation of Amphibole Grains
5.2.1. Genesis of Magmatic Amphibole
5.2.2. Genesis of Metamorphic Amphiboles
5.3. Intragranular Environment of Amphiboles
5.4. Source of Amphiboles
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiem, F.; Franck, B.; Anne-Marie, L. Past productivity variations and organic carbon burial in the gulf of aden since the last glacial maximum. Quaternaire 2016, 27, 213–226. [Google Scholar]
- Sirocko, F.; Sarnthein, M. Wind-borne deposits in the northwestern Indian ocean: Record of holocene sediments versus modern satellite data. Paleoclimatol. Paleometeorol. Mod. Past Patterns Glob. Atmos. Transp. 1989, 282, 401–433. [Google Scholar]
- Rampen, S.W.; Schouten, S.; Koning, E.; Brummer, G.; Damsté, J.S.S. A 90 kyr upwelling record from the northwestern Indian ocean using a novel long-chain diol index. Earth Planet. Sci. Lett. 2008, 276, 207–213. [Google Scholar] [CrossRef]
- Bassinot, F.C.; Marzin, C.; Braconnot, P.; Marti, O.; Mathien-Blard, E.; Lombard, F.; Bopp, L. Holocene evolution of summer winds and marine productivity in the tropical Indian ocean in response to insolation forcing: Data-model comparison. Clim. Past 2011, 7, 485–520. [Google Scholar] [CrossRef]
- Isaji, Y.; Kawahata, H.; Ohkouchi, N.; Ogawa, N.O.; Tamaki, K. Varying responses to Indian monsoons during the past 220 kyr recorded in deep-sea sediments in inner and outer regions of the gulf of aden. J. Geophys. Res-Ocean. 2016, 120, 7253–7270. [Google Scholar] [CrossRef]
- Kolla, V.; Coumes, F. Morpho-Acoustic and Sedimentologic Characteristics of the Indus Fan. Geo-Mar. Lett. 1983, 3, 133–139. [Google Scholar] [CrossRef]
- Webster, P.J.; Magaña, V.O.; Palmer, T.N.; Shukla, J.; Tomas, R.A.; Yanai, M. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res-Ocean. 1998, 103, 14451–14510. [Google Scholar] [CrossRef]
- Cronan, D.S.; Damiani, V.V.; Kinsman, D.; Thiede, J. Sediments from the Gulf of Aden and Western Indian Ocean. Initial Rep. Deep. Sea Drill. Proc. 1974, 24, 1047–1110. [Google Scholar]
- Yu, Z.; Li, H.; Li, M.; Zhai, S. Hydrothermal signature in the axial-sediments from the carlsberg ridge in the northwest Indian ocean. J. Mar. Syst. 2018, 180, 173–181. [Google Scholar] [CrossRef]
- Qiu, Z.; Han, X.; Li, M.; Wang, Y.; Wang, L. The temporal variability of hydrothermal activity of wocan hydrothermal field, carlsberg ridge, northwest Indian ocean. Ore Geol. Rev. 2021, 2021, 103999. [Google Scholar] [CrossRef]
- Morton, A.C. Geochemical studies of detrital heavy minerals and their application to provenance research. Geol. Soc. 1991, 57, 31–45. [Google Scholar] [CrossRef]
- Crowley, S.F.; Stow, D.A.V.; Croudace, I.W. Mineralogy and geochemistry of Bay of Bengal deep-sea fan sediments, ODP Leg 116: Evidence for an Indian subcontinent contribution to distal fan sedimentation. Geol. Soc. Lond. Spec. Publ. 1998, 131, 151–176. [Google Scholar] [CrossRef]
- Morton, A.C.; Whitham, A.G.; Fanning, C.M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 2005, 182, 3–28. [Google Scholar] [CrossRef]
- Dill, H.G.; Melcher, F.; Fuessl, M.; Weber, B. Accessory minerals in cassiterite: A tool for provenance and environmental analyses of colluvial-fluvial placer deposits (NE Bavaria, Germany). Sediment. Geol. 2006, 191, 171–189. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Chen, Z.; Wei, Z.; Wei, T.; Wei, W. Diagnostic heavy minerals in Plio-Pleistocene sediments of the Yangtze Coast, China with special reference to the Yangtze River connection into the sea. Geomorphology 2009, 113, 129–136. [Google Scholar] [CrossRef]
- Sevastjanova, I.; Hall, R.; Alderton, D. A detrital heavy mineral viewpoint on sediment provenance and tropical weathering in SE Asia. Sediment. Geol. 2012, 280, 179–194. [Google Scholar] [CrossRef]
- Yue, W.; Jin, B.F.; Zhao, B.C. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta. Sediment. Geol. 2018, 364, 42–52. [Google Scholar] [CrossRef]
- Jin, B.F.; Yue, W.; Wang, K.S. The crystallochemistry characteristics and genetic analysis of amphibole in the sediments of the Huanghe River. Acta Oceanol. Sin. 2013, 35, 131–143, (In Chinese with English abstract). [Google Scholar]
- Garcia, D.; Ravenne, C.; Marechal, B.; Moutte, J. Geochemical variability induced by entrainment sorting: Quantified signals for provenance analysis. Sediment. Geol. 2004, 171, 113–128. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock Forming Minerals; Longman: London, UK, 1966. [Google Scholar]
- Liu, J.H. Hornblende genetic mineral family and its application. J. Chang. Inst. Geol. 1986, 9, 41–48. (In Chinese) [Google Scholar]
- Chen, G.Y.; Sun, D.S.; Yin, H.A. Genetic Mineralogy and Prospecting Mineralogy; Chongqing Publishing House: Chongqing, China, 1988. (In Chinese) [Google Scholar]
- Derkachev, A.N.; Nikolaeva, N.A. Associations of heavy minerals in sediments of western part of south china sea. Geol. Pac. Ocean 1999, 14, 503–534. [Google Scholar]
- Lin, X.T.; Li, W.R.; Shi, Z.B. Characteristics of heavy minerals in clastic sediments of Yellow River provenance. Mar. Geol. Quat. Geol. 2003, 23, 7–21, (In Chinese with English abstract). [Google Scholar]
- Wang, Z.B.; Yang, S.Y.; Li, R.H.; Zhang, Z.X.; Li, J.; Bai, F.L. The clastic mineral composition of the sediments of the Yellow River system and the constraint of sedimentary dynamic environment. Mar. Geol. Quat. Geol. 2010, 30, 73–85, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. IMA report: Nomenclature of the amphibole supergroup. Am. Miner. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Jin, B.F.; Yue, W.; Wang, K.S. Chemical composition of detrital amphibole in the sediments of the Huanghe River, Liaohe River and Yalu River, and its implication for sediment provenance. Acta Oceanol. Sin. 2014, 36, 11–21, (In Chinese with English abstract). [Google Scholar]
- Fan, S.M.; Jin, B.F.; Yue, W.; Dang, L.L.; Wang, M.Y.; Kong, Q.X. Type and genesis of amphibole in the Huanghe River and Changjiang River estuaries and significance of its provenance. Geosci. J. 2021, 25, 575–587. [Google Scholar] [CrossRef]
- Miles, P.R.; Munschy, M.; Ségoufin, J. Structure and early evolution of the Arabian Sea and east Somali Basin. Geophys. J. Int. 1998, 134, 876–888. [Google Scholar] [CrossRef]
- Li, G.; Yan, W.; Zhong, L.; Xia, Z.; Wang, S. Provenance of heavy mineral deposits on the northwestern shelf of the South China Sea, evidence from single-mineral chemistry. Mar. Geol. 2015, 363, 112–124. [Google Scholar] [CrossRef]
- Mudholkar, A.V.; Ambre Kodagali, V.N.; Ranade, G.H.; Kak, R.; Valsangkar, A.B. Geomorphological and petrological observations along a segment of slow-spreading Carlsberg Ridge. Curr. Sci. India 2002, 82, 982–989. [Google Scholar]
- Zheng, Q.R. Calculated Fe3+ and Fe2+ contents by electron probe analysis values. Acta Mineral. Sin. 1983, 12, 55–62. (In Chinese) [Google Scholar]
- Schumacher, J.C.; Wang, L.B. Estimation of iron trivalent ratio in electron probe analysis of amphibole. Acta Petrol. Et Mineral. 2001, 20, 189–198. [Google Scholar]
- Johnson, M.C.; Rutherford, M.J. Experimental calibration of the aluminum-in-hornblende geobarometer with applicable to long valley caldera (california) volcanic rocks. Geology 1989, 17, 837–841. [Google Scholar] [CrossRef]
- Oberti, R.; Cannillo, E.; Toscani, G. How to name amphiboles after the IMA 2012 report: Rules of thumb and a new PC program for monoclinic amphiboles. Period. Miner. 2012, 81, 257–267. [Google Scholar]
- Leake, B.E. Nomenclature of amphiboles. Am. Mineral. 1978, 63, 1023–1052. [Google Scholar]
- Bong, W.; Matsumura, K.; Yokoyama, K.; Nakai, I. Provenance study of early and middle bronze age pottery from Kaman-Kalehyük, Turkey, by heavy mineral analysis and geochemical analysis of individual amphibole grains. J. Archaeol. Sci. 2010, 37, 2165–2178. [Google Scholar] [CrossRef]
- Mange, M.A.; Morton, A.C. Geochemistry of heavy minerals. Dev. Sedimentol. 2007, 58, 345–391. [Google Scholar]
- Xue, J.Z.; Bai, X.R.; Chen, W. Genetic Mineralogy; China University of Geosciences Press: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Wang, M.Y.; Jin, B.F.; Liu, J.; Gao, M.S.; Gao, J.H.; Jia, J.J. Genetic types and provenance indication of clastic amphibole in the South Yellow Sea. Front. Mar. Sci. 2024, 11, 1382352. [Google Scholar] [CrossRef]
- Xie, J.; Ding, Z.L. Analysis of heavy mineral composition and sand source in sandy land of Northeast China. Chin. Sci. D Earth Sci. 2007, 37, 1065–1072. [Google Scholar]
- Xie, Y.W.; Zhang, Y.Q. Typomorphic characteristics and genetic significance of hornblende in granitoids from Hengduan Mountains. J. Mineral. 1990, 10, 35–45. (In Chinese) [Google Scholar]
- Wang, P.; Pan, Z.L.; Weng, L.B. Systematic Mineralogy; Geological Publishing House: Beijing, China, 1982. (In Chinese) [Google Scholar]
- Wang, K.S.; Shi, X.F.; Lin, Z.H. Assemblages, provinces and provenances of Heavy Minerals on the shelf of the southern Yellow Sea and northern East China Sea. Adv. Mar. Sci. 2003, 21, 31–40, (In Chinese with English abstract). [Google Scholar]
- Pandey, D.; Clift, P.D.; Kulhanek, D.K.; Mishra, R.; Hahn, A.; Gurumurthy, G.P.; Scardia, G. Deep sea drilling in the Arabian Sea: Constraining Tectonic-Monsoon Interactions in South Asia. Integr. Ocean. Drill. Program Prelim. Rep. 2015, 355, 6–46. [Google Scholar]
- Huang, Y.; Xiao, J.; Xiang, R.; Liu, S.; Khokiattiwong, S.; Kornkanitnan, N.; Fan, J.; Wen, R.; Zhang, S.; Liu, J. Holocene indian summer monsoon variations inferred from end-member modeling of sediment grain size in the andaman sea. Quat. Int. 2020, 558, 28–38. [Google Scholar] [CrossRef]
- Jin, Q.; Wei, J.; Lau, W.K.; Pu, B.; Wang, C. Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges. Earth-Sci. Rev. 2021, 215, 103562. [Google Scholar] [CrossRef]
- Guan, Y.L.; Chen, L.; Jiang, Z.X.; Li, S.Z.; Xiao, C.F.; Chen, L. Source-sink processes, paleoenvironment and paleomonsoon evolution in the Northeast Indian Ocean. Earth Sci. Front. 2022, 5, 102–118. [Google Scholar]
- Hadiseh, R.S.; Hesamaddin, M.; Mohssen, M. Geochemistry and geochronology of amphibolites from the Sirjan area, Sanandaj-Sirjan zone of Iran: Jurassic metamorphism prior to Arabia and Eurasia collision. J. Geodyn. 2021, 143, 101786. [Google Scholar]
- Gao, X.F.; Xiao, P.X.; Guo, L.; Xi, D.R. Opening of an early Paleozoic limited oceanic basin in the northern Altyn area: Constraints from plagiogranites in the Hongliugou-Lapeiquan ophiolitic mélange. Sci. China Earth Sci. 2011, 54, 1871–1879. [Google Scholar] [CrossRef]
- Yang, Q.K.; Huang, Q.T.; Chen, J.; Zhao, Z.X.; Song, Q.; Zhang, C.; Wang, J. Metamorphic temperature and pressure of the Daru Co amphibolite in western Bangong-Nujiang Suture Zone and their geological significance. Chin. J. Geol. 2023, 58, 1503–1520. [Google Scholar]
- Jiang, Y.; Zhou, X.; Rui, X.; Guo, K.; He, J.; Yang, W. Ocean ridge granite and its geochemical characteristics in western Qinghai-Xizang plateau. Chin. J. Geochem. 2001, 20, 177–183. [Google Scholar] [CrossRef]
- Wanless, V.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, C.B.; Klein, E.M. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers. Chem. Geol. 2011, 287, 54–65. [Google Scholar] [CrossRef]
- Wanless, V.; Shaw, A. Lower crustal crystallization and melt evolution at mid-ocean ridges. Nat. Geosci. 2012, 5, 651–655. [Google Scholar] [CrossRef]
- Wu, W.; Liu, C.Z.; Mitchell, R.; Wen, Y. Petrogenesis of Dacites in a Triassic Volcanic Arc in the South China Sea: Constraints from Whole Rock and Mineral Geochemistry. Front. Earth Sci. 2022, 9, 780007. [Google Scholar]
CJ08-008 Layers (cm) | Test Age (ka) | Calibration Calendar Age (cal. Ka) | Sedimentation Rate (cm/ka) |
---|---|---|---|
20 | 11.85 ± 0.04 | 11.22 ± 0.15 | 1.78 |
40 | 16.46 ± 0.05 | 17.02 ± 0.23 | 3.45 |
46 | 18.76 | 3.45 | |
60 | 21.68 ± 0.07 | 23.09 ± 0.30 | 3.29 |
80 | 29.16 ± 0.15 | 30.63 ± 0.53 | 2.65 |
94 | 35.91 | 2.65 | |
102 | 38.92 | 2.65 | |
104 | 39.68 | 2.65 | |
108 | 41.19 | 2.65 |
Amphiboles Species | CJ08-008-46 | CJ08-008-94 | CJ08-008-102 | CJ08-008-104 | CJ08-008-108 |
---|---|---|---|---|---|
Mhb | 31.58 | 38.00 | 39.29 | 29.31 | 50.00 |
Ts | 68.42 | 62.00 | 60.71 | 70.69 | 46.43 |
Sdg | 0.00 | 0.00 | 0.00 | 0.00 | 3.57 |
Genetic Types | CJ08-008-46 | CJ08-008-94 | CJ08-008-102 | CJ08-008-104 | CJ08-008-108 |
---|---|---|---|---|---|
metamorphic rocks | 70.69 | 68.63 | 71.67 | 76.67 | 60.38 |
magmatic genesis in medium acid-intrusive rocks | 17.24 | 13.73 | 21.67 | 18.33 | 30.19 |
retrogressive metamorphics | 12.07 | 17.65 | 6.67 | 5.00 | 9.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Li, Y.; Jin, B.; Wang, M.; Li, D.; Lai, Z.; Chen, J.; Shen, P.; Wang, L.; Cai, M. Type, Genesis, and Provenance Implications of Amphiboles in Sediments in the Northwest Indian Ocean over 42,000 Years. J. Mar. Sci. Eng. 2024, 12, 1993. https://doi.org/10.3390/jmse12111993
Wang F, Li Y, Jin B, Wang M, Li D, Lai Z, Chen J, Shen P, Wang L, Cai M. Type, Genesis, and Provenance Implications of Amphiboles in Sediments in the Northwest Indian Ocean over 42,000 Years. Journal of Marine Science and Engineering. 2024; 12(11):1993. https://doi.org/10.3390/jmse12111993
Chicago/Turabian StyleWang, Feng, Yunhai Li, Bingfu Jin, Mengyao Wang, Dongyi Li, Zhikun Lai, Jian Chen, Pengfei Shen, Liang Wang, and Mingjiang Cai. 2024. "Type, Genesis, and Provenance Implications of Amphiboles in Sediments in the Northwest Indian Ocean over 42,000 Years" Journal of Marine Science and Engineering 12, no. 11: 1993. https://doi.org/10.3390/jmse12111993
APA StyleWang, F., Li, Y., Jin, B., Wang, M., Li, D., Lai, Z., Chen, J., Shen, P., Wang, L., & Cai, M. (2024). Type, Genesis, and Provenance Implications of Amphiboles in Sediments in the Northwest Indian Ocean over 42,000 Years. Journal of Marine Science and Engineering, 12(11), 1993. https://doi.org/10.3390/jmse12111993