Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (409)

Search Parameters:
Keywords = noninvasive brain stimulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 240 KiB  
Article
The Barriers and Facilitators to the Application of Non-Invasive Brain Stimulation for Injury Rehabilitation and Performance Enhancement: A Qualitative Study
by Chris Haydock, Amanda Timler, Casey Whife, Harrison Tyler and Myles C. Murphy
NeuroSci 2025, 6(3), 72; https://doi.org/10.3390/neurosci6030072 (registering DOI) - 1 Aug 2025
Abstract
Introduction: Despite clinical evidence for efficacy, there has been minimal uptake of transcranial direct current stimulation (tDCS) for musculoskeletal conditions. Thus, our objective was to explore the perceptions and experiences of people living with lower-limb musculoskeletal injury as well as healthy physically active [...] Read more.
Introduction: Despite clinical evidence for efficacy, there has been minimal uptake of transcranial direct current stimulation (tDCS) for musculoskeletal conditions. Thus, our objective was to explore the perceptions and experiences of people living with lower-limb musculoskeletal injury as well as healthy physically active populations and relate this to the usage of tDCS and key aspects of tDCS design that would improve the capacity for implementation. Methods: We conducted a qualitative descriptive study of 16 participants (44% women) using semi-structured focus groups to identify the descriptions and experiences of people living with lower-limb musculoskeletal injury and healthy physically active populations. A thematic template was used to create a coding structure. Codes were then grouped, and key themes were derived from the data. Results: Four primary themes were identified from focus groups. These were (i) the impact of musculoskeletal injuries on health and quality of life, (ii) performance and injury recovery as facilitators to using tDCS, (iii) barriers and facilitators to tCDS application and (iv) design and aesthetic factors for a tDCS device. Discussion: Our qualitative descriptive study identified four themes relevant to the successful implementation of tDCS into rehabilitative and performance practice. To increase the likelihood of successful tDCS implementation, these barriers should be addressed and facilitators promoted. This should include innovative approaches to device application and structure that allow for a stylish, user-friendly design. Full article
9 pages, 464 KiB  
Review
Photobiomodulation as a Hypothetical Strategy to Reverse Botulinum Toxin Effects: Exploring the Neuroregenerative Mechanisms and Translational Potential
by Rodrigo Álvaro Brandão Lopes-Martins, Francisco Gonzalez-Lima, Sérgio Gomes da Silva, Patrícia Sardinha Leonardo, Cristiane Soncino, Roberto Fernandes Pacheco, Carolina Lúcia de Oliveira e Oliveira and Fabrizio dos Santos Cardoso
Life 2025, 15(8), 1206; https://doi.org/10.3390/life15081206 - 28 Jul 2025
Viewed by 268
Abstract
Background: Botulinum toxin type A (BoNT/A) is widely used in both clinical and aesthetic settings to induce temporary neuromuscular paralysis by inhibiting acetylcholine release. Although generally regarded as safe and effective, complications such as iatrogenic ptosis or facial asymmetry may occur and persist [...] Read more.
Background: Botulinum toxin type A (BoNT/A) is widely used in both clinical and aesthetic settings to induce temporary neuromuscular paralysis by inhibiting acetylcholine release. Although generally regarded as safe and effective, complications such as iatrogenic ptosis or facial asymmetry may occur and persist for several weeks or even months, with no standardized method currently available to accelerate recovery. Objective: This article explores the hypothesis that photobiomodulation (PBM)—a non-invasive modality recognized for its neuroregenerative potential—may facilitate the reversal of BoNT/A-induced neuromuscular blockade. Discussion: PBM enhances mitochondrial activity by stimulating cytochrome c oxidase in nerve and muscle tissues, thereby increasing ATP production and modulating intracellular signaling pathways associated with neuroplasticity, cell survival, and synaptogenesis. Preclinical studies have demonstrated that PBM can upregulate neurotrophic factors (e.g., BDNF, NGF), enhance SNAP-25 expression, and promote structural remodeling of neurons in both young and aged brains. These mechanisms are biologically consistent with the regenerative processes required for recovery from BoNT/A-induced effects. While controlled clinical trials for this specific application are currently lacking, anecdotal clinical reports suggest that PBM may accelerate functional recovery in cases of BoNT/A-related complications. Conclusions: Although this approach has not yet been tested in clinical trials, we propose that photobiomodulation may hypothetically serve as a supportive strategy to promote neuromuscular recovery in patients experiencing adverse effects from BoNT/A. This hypothesis is grounded in robust preclinical evidence but requires validation through translational and clinical research. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

21 pages, 5108 KiB  
Article
tDCS and Cognitive Training for Fatigued and Cognitively Impaired People with Multiple Sclerosis: An SCED Study
by Teresa L’Abbate, Nefeli K. Dimitriou, George Dimakopoulos, Franca Tecchio and Grigorios Nasios
Brain Sci. 2025, 15(8), 807; https://doi.org/10.3390/brainsci15080807 - 28 Jul 2025
Viewed by 233
Abstract
Background/Objectives: Fatigue and cognitive impairment are common issues for People with Multiple Sclerosis (PwMS), affecting over 80% and 40–65%, respectively. The relationship between these two debilitating conditions is complex, with cognitive deficits exacerbating fatigue and vice versa. This study investigates the effects [...] Read more.
Background/Objectives: Fatigue and cognitive impairment are common issues for People with Multiple Sclerosis (PwMS), affecting over 80% and 40–65%, respectively. The relationship between these two debilitating conditions is complex, with cognitive deficits exacerbating fatigue and vice versa. This study investigates the effects of a multimodal intervention combining cognitive rehabilitation and neuromodulation to alleviate fatigue and enhance cognitive performance in PwMS. Methods: The research employed multiple baselines across the subjects in a Single-Case Experimental Design (mbSCED) with a cohort of three PwMS diagnosed with Relapsing–Remitting MS. The intervention protocol consisted of a baseline phase followed by a four-week treatment involving transcranial direct current stimulation (tDCS) and cognitive training using RehaCom® software (version 6.9.0). Fatigue levels were measured using the modified Fatigue Impact Scale (mFIS), while cognitive performance was evaluated through standardized neuropsychological assessments. Results: The multimodal protocol exhibited high feasibility and acceptability, with no dropouts. Individual responsiveness outcomes varied, with two PwMS showing significant decreases in fatigue and improvements in cognitive performance, particularly in the trained domains. Their motor performance and quality of life also improved, suggesting that the treatment had indirect beneficial effects. Conclusions: This study provides preliminary evidence for the potential benefits of integrating neuromodulation and cognitive rehabilitation as a personalized therapeutic strategy for managing fatigue and cognitive impairments in MS. Further research is needed to delineate the specific contributions of each intervention component and establish standardized protocols for clinical implementation. The insights gained may lead to more effective, tailored treatment options for PwMS. Full article
Show Figures

Figure 1

35 pages, 638 KiB  
Review
The Influence of Circadian Rhythms on Transcranial Direct Current Stimulation (tDCS) Effects: Theoretical and Practical Considerations
by James Chmiel and Agnieszka Malinowska
Cells 2025, 14(15), 1152; https://doi.org/10.3390/cells14151152 - 25 Jul 2025
Viewed by 467
Abstract
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from [...] Read more.
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from chronobiology, sleep research, and non-invasive brain stimulation, we argue that tDCS produces reliable, polarity-specific after-effects only within a circadian–homeostatic “window of efficacy”. On the circadian (Process C) axis, intrinsic alertness, membrane depolarisation, and glutamatergic gain rise in the late biological morning and early evening, whereas pre-dawn phases are marked by reduced excitability and heightened inhibition. On the homeostatic (Process S) axis, consolidated sleep renormalises synaptic weights, widening the capacity for further potentiation, whereas prolonged wakefulness saturates plasticity and can even reverse the usual anodal/cathodal polarity rules. Human stimulation studies mirror this two-process fingerprint: sleep deprivation abolishes anodal long-term-potentiation-like effects and converts cathodal inhibition into facilitation, while stimulating at each participant’s chronotype-aligned (phase-aligned) peak time amplifies and prolongs after-effects even under equal sleep pressure. From these observations we derive practical recommendations: (i) schedule excitatory tDCS after restorative sleep and near the individual wake-maintenance zone; (ii) avoid sessions at high sleep pressure or circadian troughs; (iii) log melatonin phase, chronotype, recent sleep and, where feasible, core temperature; and (iv) consider mild pre-heating or time-restricted feeding as physiological primers. By viewing Borbély’s two-process model and allied metabolic clocks as adjustable knobs for plasticity engineering, this review provides a conceptual scaffold for personalised, time-sensitive tDCS protocols that could improve reproducibility in research and therapeutic gain in the clinic. Full article
Show Figures

Figure 1

28 pages, 1547 KiB  
Review
Brain–Computer Interfaces in Parkinson’s Disease Rehabilitation
by Emmanuel Ortega-Robles, Ruben I. Carino-Escobar, Jessica Cantillo-Negrete and Oscar Arias-Carrión
Biomimetics 2025, 10(8), 488; https://doi.org/10.3390/biomimetics10080488 - 23 Jul 2025
Viewed by 579
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder with motor and non-motor symptoms that are inadequately addressed by current pharmacological and surgical therapies. Brain–computer interfaces (BCIs), particularly those based on electroencephalography (eBCIs), provide a promising, non-invasive approach to personalized neurorehabilitation. This narrative review [...] Read more.
Parkinson’s disease (PD) is a progressive neurological disorder with motor and non-motor symptoms that are inadequately addressed by current pharmacological and surgical therapies. Brain–computer interfaces (BCIs), particularly those based on electroencephalography (eBCIs), provide a promising, non-invasive approach to personalized neurorehabilitation. This narrative review explores the clinical potential of BCIs in PD, discussing signal acquisition, processing, and control paradigms. eBCIs are well-suited for PD due to their portability, safety, and real-time feedback capabilities. Emerging neurophysiological biomarkers—such as beta-band synchrony, phase–amplitude coupling, and altered alpha-band activity—may support adaptive therapies, including adaptive deep brain stimulation (aDBS), as well as motor and cognitive interventions. BCIs may also aid in diagnosis and personalized treatment by detecting these cortical and subcortical patterns associated with motor and cognitive dysfunction in PD. A structured search identified 11 studies involving 64 patients with PD who used BCIs for aDBS, neurofeedback, and cognitive rehabilitation, showing improvements in motor function, cognition, and engagement. Clinical translation requires attention to electrode design and user-centered interfaces. Ethical issues, including data privacy and equitable access, remain critical challenges. As wearable technologies and artificial intelligence evolve, BCIs could shift PD care from intermittent interventions to continuous, brain-responsive therapy, potentially improving patients’ quality of life and autonomy. This review highlights BCIs as a transformative tool in PD management, although more robust clinical evidence is needed. Full article
Show Figures

Graphical abstract

18 pages, 513 KiB  
Perspective
The Use of Non-Invasive Brain Stimulation for the Management of Chronic Musculoskeletal Pain: Fad or Future?
by Philippe Patricio and Hugo Massé-Alarie
Brain Sci. 2025, 15(7), 760; https://doi.org/10.3390/brainsci15070760 - 17 Jul 2025
Viewed by 467
Abstract
This article aims to offer a broad perspective on the use of non-invasive brain stimulation (NIBS) techniques in the context of chronic musculoskeletal pain (CMP) conditions. While NIBS has demonstrated promising efficacy in certain chronic pain populations, its application in the management of [...] Read more.
This article aims to offer a broad perspective on the use of non-invasive brain stimulation (NIBS) techniques in the context of chronic musculoskeletal pain (CMP) conditions. While NIBS has demonstrated promising efficacy in certain chronic pain populations, its application in the management of CMP remains limited. This paper examines the current evidence supporting the use of NIBS for pain relief in CMP, the rationale and proposed mechanisms of action, the importance of patient selection, common methodological limitations in the existing literature, and the potential adverse effects of these techniques. The authors argue that the current evidence is insufficient to support widespread clinical adoption of NIBS for CMP. Advancing the field will require more rigorous study designs, with adequately powered and properly blinded randomized controlled trials. Additionally, future research should address the identification of potential responders to brain stimulation, conduct economic evaluations, and carefully assess the benefit–risk ratio before NIBS can be integrated into routine clinical practice. Full article
(This article belongs to the Special Issue Neuromodulation for Pain Management: Evidence of Safety and Efficacy)
Show Figures

Figure 1

13 pages, 569 KiB  
Systematic Review
Combining Visual Feedback and Noninvasive Brain Stimulation for Lower Limb Motor Rehabilitation in Stroke: A Systematic Review of the Current Evidence
by Leonardo Di Cosmo, Santiago Nieto Cuervo, Francesca Pellicanò, Francesca Romana Centini, Jad El Choueiri, Chiara Learmonth, Filippo Emanuele Colella, Lorenzo De Rossi, Delia Cannizzaro and Alessio Baricich
J. Clin. Med. 2025, 14(14), 5027; https://doi.org/10.3390/jcm14145027 - 16 Jul 2025
Viewed by 293
Abstract
Background and Objectives: Recent technological advances have introduced new interventions in the field of stroke rehabilitation. Among them, visual feedback (VF) and non-invasive brain stimulation (NIBS) have gained considerable attention, with growing evidence supporting their efficacy. However, their combined application in lower limb [...] Read more.
Background and Objectives: Recent technological advances have introduced new interventions in the field of stroke rehabilitation. Among them, visual feedback (VF) and non-invasive brain stimulation (NIBS) have gained considerable attention, with growing evidence supporting their efficacy. However, their combined application in lower limb recovery remains to be established. This systematic review aims to evaluate the current evidence on the therapeutic effect of combining VF and NIBS for lower limb motor rehabilitation in stroke patients. Methods: Following PRISMA guidelines, PubMed, Embase, Scopus, and Cochrane databases were searched for randomized controlled trials and observational studies comparing VF and NIBS interventions with either their monotherapy, placebo, or standard treatment. The outcomes evaluated for lower limb function included balance, gait, and motor performance. Results: From 997 studies screened, 5 studies (3 RCTs and 2 cohort studies) were included. Despite heterogeneity in the immersion level, NIBS protocols, and outcome measures, evidence emerged supporting the efficacy of combined VF and NIBS across multiple outcomes. However, the degree to which these interventions outperform standard therapies remains uncertain, primarily due to a limited number of comparator studies and the quality of the existing data. Conclusions: This review provides preliminary insights into the potential of combining VF and NIBS in stroke patients affected by lower limb motor impairments. Future research should focus on standardizing protocols and addressing demographic variability to enhance the reliability and comparability of findings. Full article
(This article belongs to the Special Issue Innovations in Neurorehabilitation)
Show Figures

Figure 1

26 pages, 2058 KiB  
Review
Neuromodulation Interventions for Language Deficits in Alzheimer’s Disease: Update on Current Practice and Future Developments
by Fei Chen, Yuyan Nie and Chen Kuang
Brain Sci. 2025, 15(7), 754; https://doi.org/10.3390/brainsci15070754 - 16 Jul 2025
Viewed by 328
Abstract
Alzheimer’s disease (AD) is a leading cause of dementia, characterized by progressive cognitive and language impairments that significantly impact communication and quality of life. Neuromodulation techniques, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS), have [...] Read more.
Alzheimer’s disease (AD) is a leading cause of dementia, characterized by progressive cognitive and language impairments that significantly impact communication and quality of life. Neuromodulation techniques, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS), have emerged as promising interventions. This study employs bibliometric analysis to evaluate global research trends in neuromodulation treatments for AD-related language impairments. A total of 88 publications from the Web of Science Core Collection (2006–2024) were analyzed using bibliometric methods. Key indicators such as publication trends, citation patterns, collaboration networks, and research themes were examined to map the intellectual landscape of this field. The analysis identified 580 authors across 65 journals, with an average of 34.82 citations per article. Nearly half of the publications were produced after 2021, indicating rapid recent growth. The findings highlight a predominant focus on non-invasive neuromodulation methods, particularly rTMS and tDCS, within neurosciences and neurology. While research activity is increasing, significant challenges persist, including ethical concerns, operational constraints, and the translational gap between research and clinical applications. This study provides insights into the current research landscape and future directions for neuromodulation in AD-related language impairments. The results emphasize the need for novel neuromodulation techniques and interdisciplinary collaboration to enhance therapeutic efficacy and clinical integration. Full article
(This article belongs to the Special Issue Noninvasive Neuromodulation Applications in Research and Clinics)
Show Figures

Figure 1

41 pages, 699 KiB  
Review
Neurobiological Mechanisms of Action of Transcranial Direct Current Stimulation (tDCS) in the Treatment of Substance Use Disorders (SUDs)—A Review
by James Chmiel and Donata Kurpas
J. Clin. Med. 2025, 14(14), 4899; https://doi.org/10.3390/jcm14144899 - 10 Jul 2025
Viewed by 751
Abstract
Introduction: Substance use disorders (SUDs) pose a significant public health challenge, with current treatments often exhibiting limited effectiveness and high relapse rates. Transcranial direct current stimulation (tDCS), a noninvasive neuromodulation technique that delivers low-intensity direct current via scalp electrodes, has shown promise in [...] Read more.
Introduction: Substance use disorders (SUDs) pose a significant public health challenge, with current treatments often exhibiting limited effectiveness and high relapse rates. Transcranial direct current stimulation (tDCS), a noninvasive neuromodulation technique that delivers low-intensity direct current via scalp electrodes, has shown promise in various psychiatric and neurological conditions. In SUDs, tDCS may help to modulate key neurocircuits involved in craving, executive control, and reward processing, potentially mitigating compulsive drug use. However, the precise neurobiological mechanisms by which tDCS exerts its therapeutic effects in SUDs remain only partly understood. This review addresses that gap by synthesizing evidence from clinical studies that used neuroimaging (fMRI, fNIRS, EEG) and blood-based biomarkers to elucidate tDCS’s mechanisms in treating SUDs. Methods: A targeted literature search identified articles published between 2008 and 2024 investigating tDCS interventions in alcohol, nicotine, opioid, and stimulant use disorders, focusing specifically on physiological and neurobiological assessments rather than purely behavioral outcomes. Studies were included if they employed either neuroimaging (fMRI, fNIRS, EEG) or blood tests (neurotrophic and neuroinflammatory markers) to investigate changes induced by single- or multi-session tDCS. Two reviewers screened titles/abstracts, conducted full-text assessments, and extracted key data on participant characteristics, tDCS protocols, neurobiological measures, and clinical outcomes. Results: Twenty-seven studies met the inclusion criteria. Across fMRI studies, tDCS—especially targeting the dorsolateral prefrontal cortex—consistently modulated large-scale network activity and connectivity in the default mode, salience, and executive control networks. Many of these changes correlated with subjective craving, attentional bias, or extended time to relapse. EEG-based investigations found that tDCS can alter event-related potentials (e.g., P3, N2, LPP) linked to inhibitory control and salience processing, often preceding or accompanying changes in craving. One fNIRS study revealed enhanced connectivity in prefrontal regions under active tDCS. At the same time, two blood-based investigations reported the partial normalization of neurotrophic (BDNF) and proinflammatory markers (TNF-α, IL-6) in participants receiving tDCS. Multi-session protocols were more apt to drive clinically meaningful neuroplastic changes than single-session interventions. Conclusions: Although significant questions remain regarding optimal stimulation parameters, sample heterogeneity, and the translation of acute neural shifts into lasting behavioral benefits, this research confirms that tDCS can induce detectable neurobiological effects in SUD populations. By reshaping activity across prefrontal and reward-related circuits, modulating electrophysiological indices, and altering relevant biomarkers, tDCS holds promise as a viable, mechanism-based adjunctive therapy for SUDs. Rigorous, large-scale studies with longer follow-up durations and attention to individual differences will be essential to establish how best to harness these neuromodulatory effects for durable clinical outcomes. Full article
(This article belongs to the Special Issue Substance and Behavioral Addictions: Prevention and Diagnosis)
Show Figures

Figure 1

13 pages, 784 KiB  
Review
Invasive and Non-Invasive Neuromodulation for the Treatment of Substance Use Disorders: A Review of Reviews
by Tyler S. Oesterle, Nicholas L. Bormann, Majd Al-Soleiti, Simon Kung, Balwinder Singh, Michele T. McGinnis, Sabrina Correa da Costa, Teresa Rummans, Mohit Chauhan, Juan M. Rojas Cabrera, Sara A. Vettleson-Trutza, Kristen M. Scheitler, Hojin Shin, Kendall H. Lee and Mark S. Gold
Brain Sci. 2025, 15(7), 723; https://doi.org/10.3390/brainsci15070723 - 6 Jul 2025
Viewed by 632
Abstract
Background: Invasive and non-invasive neuromodulation in psychiatry represents a burgeoning field that leverages advanced neuromodulation techniques to address substance use disorders (SUDs). Aims: This narrative review synthesizes findings from multiple reviews to evaluate the efficacy of neuromodulation in treating SUDs. Methods: A comprehensive [...] Read more.
Background: Invasive and non-invasive neuromodulation in psychiatry represents a burgeoning field that leverages advanced neuromodulation techniques to address substance use disorders (SUDs). Aims: This narrative review synthesizes findings from multiple reviews to evaluate the efficacy of neuromodulation in treating SUDs. Methods: A comprehensive literature search was conducted between December 2024 and April 2025, focusing on systematic reviews and meta-analyses that examined various neuromodulation modalities, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). The selected reviews were analyzed to identify common themes, outcomes, and gaps in the current understanding of these treatments for SUDs. Results: 11 reviews met the final inclusion criteria; 5 focused on non-invasive neuromodulation (rTMS, tDCS) and 6 on invasive neuromodulation (DBS). Non-invasive neurostimulation was associated with modest improvements in craving and cognitive dysfunction in individuals with SUDs. Similarly, invasive neuromodulation (DBS), through high-frequency stimulation of the bilateral nucleus accumbens, appeared to reduce cravings and improve comorbid psychiatric symptoms in both preclinical and human studies. Importantly, small sample sizes, heterogeneity in targets and stimulation protocols, and short follow-up periods significantly limit the generalizability of current findings from both non-invasive and invasive neuromodulation studies. Conclusions: As novel and more effective therapies for the treatment of SUD are desperately needed, procedural interventional psychiatry holds promise. However, despite encouraging results, existing evidence is still preliminary, and larger, rigorously designed studies are warranted to further establish the safety and efficacy of neuromodulatory interventions for SUD treatment. Full article
(This article belongs to the Special Issue Psychedelic and Interventional Psychiatry)
Show Figures

Figure 1

15 pages, 1264 KiB  
Review
State-Dependent Brain Stimulation for Visual Neurorehabilitation: Principles and Applications
by Kuzma Strelnikov and Juha Silvanto
Vision 2025, 9(3), 50; https://doi.org/10.3390/vision9030050 - 20 Jun 2025
Viewed by 422
Abstract
The effects of Transcranial Magnetic Stimulation (TMS) depend on stimulation parameters such as intensity, location, frequency, and duration. In clinical practice, these parameters are often adapted from studies carried out in healthy individuals. However, in this narrative review, we indicate that the impact [...] Read more.
The effects of Transcranial Magnetic Stimulation (TMS) depend on stimulation parameters such as intensity, location, frequency, and duration. In clinical practice, these parameters are often adapted from studies carried out in healthy individuals. However, in this narrative review, we indicate that the impact of TMS is also highly state-dependent, meaning it is influenced by the excitability of the targeted brain region at the time of stimulation. This state-dependency complicates the translation of findings from healthy individuals to clinical populations, as neurological disorders often alter brain states, limiting the applicability of standard stimulation protocols. To address this challenge, stimulation parameters must be chosen within a framework that accounts for the interaction between external stimulation and the brain’s internal state. Such an approach enhances the specificity of interventions, allowing for targeted modulation of neural populations by manipulating brain states prior to stimulation. State-dependent TMS has shown promise in conditions like cortical blindness and amblyopia, where tailored approaches based on the brain state associated with the condition have facilitated more precise and effective treatments. We advocate that integrating state-dependent knowledge tailored to the specifics of visual disorders alongside judicious selection of stimulation parameters holds the potential to establish a comprehensive paradigm for future investigations. Full article
(This article belongs to the Section Visual Neuroscience)
Show Figures

Figure 1

21 pages, 1609 KiB  
Article
Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study
by Marco Muccio, Giuseppina Pilloni, Lillian Walton Masters, Peidong He, Lauren Krupp, Abhishek Datta, Marom Bikson, Leigh Charvet and Yulin Ge
Bioengineering 2025, 12(6), 672; https://doi.org/10.3390/bioengineering12060672 - 19 Jun 2025
Viewed by 585
Abstract
Transcranial direct current stimulation (tDCS) is a safe, well-tolerated method of non-invasively eliciting cortical neuromodulation. It has gained recent interest, especially for its positive clinical outcomes in neurodegenerative diseases such as multiple sclerosis (MS). However, its simultaneous (during tDCS) and cumulative effects (following [...] Read more.
Transcranial direct current stimulation (tDCS) is a safe, well-tolerated method of non-invasively eliciting cortical neuromodulation. It has gained recent interest, especially for its positive clinical outcomes in neurodegenerative diseases such as multiple sclerosis (MS). However, its simultaneous (during tDCS) and cumulative effects (following repeated tDCS sessions) on the regional brain activity during rest need further investigation, especially in MS. This study aims to elucidate tDCS’ underpinnings, alongside its therapeutic impact in MS patients, using concurrent tDCS-MRI methods. In total, 20 MS patients (age = 48 ± 12 years; 8 males) and 28 healthy controls (HCs; age = 36 ± 15 years; 12 males) were recruited. They participated in a tDCS-MRI session, during which resting-state functional MRI (rs-fMRI) was used to measure the levels of the fractional amplitude of low-frequency fluctuations (fALFFs), which is an index of regional neuronal activity, before and during left anodal dorsolateral prefrontal cortex (DLPFC) tDCS (2.0 mA for 15 min). MS patients were then asked to return for an identical tDCS-MRI visit (follow-up) after 20 identical at-home tDCS sessions. Simultaneous tDCS-induced changes in fALFF are seen across cortical and subcortical areas in both HC and MS patients, with some regions showing increased and others decreased brain activity. In HCs, fALFF increased in the right pre- and post-central gyrus whilst it decreased in subcortical regions. Conversely, MS patients initially displayed increases in more posterior cortical regions but decreases in the superior and temporal cortical regions. At follow-up, MS patients showed reversed patterns, emphasizing significant cumulative effects of tDCS treatment upon brain excitation. Such long-lasting changes are further supported by greater pre-tDCS fALFFs measured at follow-up compared to baseline, especially around the cuneus. The results were significant after correcting for multiple comparisons (p-FDR < 0.05). Our study shows that tDCS has both simultaneous and cumulative effects on neuronal activity measured with rs-fMRI, especially involving major brain areas distant from the site of stimulation, and it is responsible for fatigue and cognitive and motor skills. Full article
Show Figures

Figure 1

16 pages, 1628 KiB  
Article
Anatomical Characteristics Predict Response to Transcranial Direct Current Stimulation (tDCS): Development of a Computational Pipeline for Optimizing tDCS Protocols
by Giulia Caiani, Emma Chiaramello, Marta Parazzini, Eleonora Arrigoni, Leonor J. Romero Lauro, Alberto Pisoni and Serena Fiocchi
Bioengineering 2025, 12(6), 656; https://doi.org/10.3390/bioengineering12060656 - 15 Jun 2025
Viewed by 570
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique promisingly used to treat neurological and psychological disorders. Nevertheless, the inter-subject heterogeneity in its after-effects frequently limits its efficacy. This can be attributed to fixed-dose methods, which do not consider inter-subject anatomical [...] Read more.
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique promisingly used to treat neurological and psychological disorders. Nevertheless, the inter-subject heterogeneity in its after-effects frequently limits its efficacy. This can be attributed to fixed-dose methods, which do not consider inter-subject anatomical variations. This work attempts to overcome this constraint by examining the effects of age and anatomical features, including the volume of cerebrospinal fluid (CSF), the thickness of the skull, and the composition of brain tissue, on electric field distribution and cortical excitability. A computational approach was used to map the electric field distribution over the brain tissues of realistic head models reconstructed from MRI images of twenty-three subjects, including adults and children of both genders. Significant negative correlations (p < 0.05) were found in the data between the maximum electric field strength and anatomical variable parameters. Furthermore, this study showed that the percentage of brain tissue exposed to an electric field amplitude above a pre-defined threshold (i.e., 0.227 V/m) was the main factor influencing the responsiveness to tDCS. In the end, the research suggests multiple regression models as useful tool to predict subjects’ responsiveness and to support a personalized approach that tailors the injected current to the morphology of the patient. Full article
Show Figures

Figure 1

73 pages, 4141 KiB  
Systematic Review
Neurotechnological Approaches to Cognitive Rehabilitation in Mild Cognitive Impairment: A Systematic Review of Neuromodulation, EEG, Virtual Reality, and Emerging AI Applications
by Evgenia Gkintoni, Stephanos P. Vassilopoulos, Georgios Nikolaou and Apostolos Vantarakis
Brain Sci. 2025, 15(6), 582; https://doi.org/10.3390/brainsci15060582 - 28 May 2025
Cited by 3 | Viewed by 2093
Abstract
Background/Objectives: Mild Cognitive Impairment (MCI) represents a clinical syndrome characterized by cognitive decline greater than expected for an individual’s age and education level but not severe enough to significantly interfere with daily activities, with variable trajectories that may remain stable, progress to dementia, [...] Read more.
Background/Objectives: Mild Cognitive Impairment (MCI) represents a clinical syndrome characterized by cognitive decline greater than expected for an individual’s age and education level but not severe enough to significantly interfere with daily activities, with variable trajectories that may remain stable, progress to dementia, or occasionally revert to normal cognition. This systematic review examines neurotechnological approaches to cognitive rehabilitation in MCI populations, including neuromodulation, electroencephalography (EEG), virtual reality (VR), cognitive training, physical exercise, and artificial intelligence (AI) applications. Methods: A systematic review following PRISMA guidelines was conducted on 34 empirical studies published between 2014 and 2024. Studies were identified through comprehensive database searches and included if they employed neurotechnological interventions targeting cognitive outcomes in individuals with MCI. Results: Evidence indicates promising outcomes across multiple intervention types. Neuromodulation techniques showed beneficial effects on memory and executive function. EEG analyses identified characteristic neurophysiological markers of MCI with potential for early detection and monitoring. Virtual reality enhanced assessment sensitivity and rehabilitation engagement through ecologically valid environments. Cognitive training demonstrated the most excellent efficacy with multi-domain, adaptive approaches. Physical exercise interventions yielded improvements through multiple neurobiological pathways. Emerging AI applications showed potential for personalized assessment and intervention through predictive modeling and adaptive algorithms. Conclusions: Neurotechnological approaches offer promising avenues for MCI rehabilitation, with the most substantial evidence for integrated interventions targeting multiple mechanisms. Neurophysiological monitoring provides valuable biomarkers for diagnosis and treatment response. Future research should focus on more extensive clinical trials, standardized protocols, and accessible implementation models to translate these technological advances into clinical practice. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

37 pages, 822 KiB  
Review
The Effect of Transcranial Direct Current Stimulation on Basketball Performance—A Scoping Review
by James Chmiel and Rafał Buryta
J. Clin. Med. 2025, 14(10), 3354; https://doi.org/10.3390/jcm14103354 - 12 May 2025
Viewed by 1059
Abstract
Introduction: Basketball performance requires not only intermittent high-intensity movements—such as sprinting, jumping, and rapid directional changes—but also rapid decision-making under cognitive and psychological stress. Transcranial direct current stimulation (tDCS) has emerged as a potential modality to enhance both physical and mental performance [...] Read more.
Introduction: Basketball performance requires not only intermittent high-intensity movements—such as sprinting, jumping, and rapid directional changes—but also rapid decision-making under cognitive and psychological stress. Transcranial direct current stimulation (tDCS) has emerged as a potential modality to enhance both physical and mental performance due to its capacity to modulate cortical excitability and promote synaptic plasticity. Although the broader literature suggests that tDCS can benefit motor performance and endurance across various sports, its specific impact on basketball remains underexplored. Methods: This scoping review aimed to summarize current evidence on the effects of tDCS in basketball. A comprehensive literature search was conducted across databases including PubMed/Medline, Google Scholar, and Cochrane, identifying studies published between January 2008 and February 2025. Only clinical trials investigating tDCS interventions in basketball players were included. Eleven articles met the inclusion criteria and were synthesized narratively, with a focus on stimulation parameters (site, duration, intensity) and performance outcomes (shooting accuracy, dribbling, sprinting, decision-making, fatigue). Results: The reviewed studies indicated that tDCS—particularly when applied over the motor cortex—was associated with moderate improvements in shooting accuracy, dribbling time, repeated-sprint performance, and decision-making under fatigue. Some studies reported delayed rather than immediate benefits, suggesting that tDCS may prime neural networks for enhanced learning and retention. However, not all findings were consistent; certain interventions produced minimal or no significant effects, especially regarding subjective mental fatigue and cognitive workload. The variability in electrode placements and stimulation protocols highlights the need for methodological standardization. Conclusions: Current evidence partially supports the potential of tDCS to improve specific performance domains in basketball, particularly in skill acquisition, neuromuscular efficiency, and decision-making. Nevertheless, the findings are limited by small sample sizes, heterogeneous protocols, and a lack of long-term follow-up. Future research should prioritize larger, multisite studies with standardized tDCS parameters and ecologically valid outcome measures to confirm the efficacy and practical relevance of tDCS in competitive basketball settings. Full article
(This article belongs to the Special Issue Innovations in Neurorehabilitation)
Show Figures

Figure 1

Back to TopTop