Combining Visual Feedback and Noninvasive Brain Stimulation for Lower Limb Motor Rehabilitation in Stroke: A Systematic Review of the Current Evidence
Abstract
1. Introduction
2. Methods
2.1. Literature Review Design
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Data Extraction
2.5. Quality Assessment
3. Results
3.1. Study Selection
3.2. Included Studies
Patient Demographics
3.3. Intervention Protocols
3.3.1. NIBS Parameters
3.3.2. Visual Feedback
3.4. Risk of Bias
3.5. Outcomes
3.5.1. Balance
3.5.2. Gait Performance
3.5.3. Motor Performance
3.5.4. Further Outcomes
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report from the American Heart Association. Circulation 2022, 145, E153–E639. [Google Scholar] [CrossRef]
- Feigin, V.L.; Roth, G.A.; Naghavi, M.; Parmar, P.; Krishnamurthi, R.; Chugh, S.; Mensah, G.A.; Norrving, B.; Shiue, I.; Ng, M.; et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016, 15, 913–924. [Google Scholar] [CrossRef]
- Krishnamurthi, R.V.; Feigin, V.L.; Forouzanfar, M.H.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.M.; Truelsen, T.; et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob. Health 2013, 1, e259–e281. [Google Scholar] [CrossRef]
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; De Simone, G.; Ford, E.S.; et al. Heart Disease and Stroke Statistics—2011 Update: A Report from the American Heart Association. Circulation 2011, 123, e18–e209. [Google Scholar] [CrossRef] [PubMed]
- Cauraugh, J. Chronic stroke motor recovery: Duration of active neuromuscular stimulation. J. Neurol. Sci. 2003, 215, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Sathian, K.; Buxbaum, L.J.; Cohen, L.G.; Krakauer, J.W.; Lang, C.E.; Corbetta, M.; Fitzpatrick, S.M. Neurological Principles and Rehabilitation of Action Disorders: Common Clinical Deficits. Neurorehabilit. Neural Repair 2011, 25 (Suppl. S5), 21S–32S. [Google Scholar] [CrossRef]
- Kleim, J.A.; Jones, T.A. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. JSLHR 2008, 51, S225–S239. [Google Scholar] [CrossRef]
- Mekbib, D.B.; Han, J.; Zhang, L.; Fang, S.; Jiang, H.; Zhu, J.; Roe, A.W.; Xu, D. Virtual reality therapy for upper limb rehabilitation in patients with stroke: A meta-analysis of randomized clinical trials. Brain Inj. 2020, 34, 456–465. [Google Scholar] [CrossRef]
- Soleimani, M.; Ghazisaeedi, M.; Heydari, S. The efficacy of virtual reality for upper limb rehabilitation in stroke patients: A systematic review and meta-analysis. BMC Med. Inform. Decis. Mak. 2024, 24, 135. [Google Scholar] [CrossRef]
- Potcovaru, C.-G.; Cinteză, D.; Săndulescu, M.I.; Poenaru, D.; Chiriac, O.; Lambru, C.; Moldoveanu, A.; Anghel, A.M.; Berteanu, M. The Impact of Virtual Reality as a Rehabilitation Method Using TRAVEE System on Functional Outcomes and Disability in Stroke Patients: A Pilot Study. Biomedicines 2024, 12, 2450. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, H.; Wang, H.; Qie, S. Impact of the combination of virtual reality and noninvasive brain stimulation on the upper limb motor function of stroke patients: A systematic review and meta-analysis. J. NeuroEng. Rehabil. 2024, 21, 179. [Google Scholar] [CrossRef] [PubMed]
- Orrù, G.; Conversano, C.; Hitchcott, P.K.; Gemignani, A. Motor stroke recovery after tDCS: A systematic review. Rev. Neurosci. 2020, 31, 201–218. [Google Scholar] [CrossRef] [PubMed]
- González-Rodriguez, B.; Serradell-Ribé, N.; Viejo-Sobera, R.; Romero-Muñoz, J.P.; Marron, E.M. Transcranial direct current stimulation in neglect rehabilitation after stroke: A systematic review. J. Neurol. 2022, 269, 6310–6329. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Shanmugalingam, A.; McIntyre, A.; Burhan, A.M. The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis. Diagnostics 2021, 11, 227. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, N.; Shen, Z.; Guo, X.; Xing, J.; Tian, S.; Xing, Y. Transcranial direct current stimulation for upper extremity motor dysfunction in poststroke patients: A systematic review and meta-analysis. Clin. Rehabil. 2024, 38, 749–769. [Google Scholar] [CrossRef]
- Carlos, B.M.; Menezes, L.T.; Rosa, B.; Furumoto, B.F.; Feitosa, S.S.; Fernandes, C.A.; Ferreira-Melo, S.E.; Pereira, J.D.; Almeida, S.; Brandão, A.F.; et al. Graph network and symmetry analysis after combined XR and tDCS in stroke rehabilitation. Biomed. Signal Process. Control 2024, 96, 106499. [Google Scholar] [CrossRef]
- Cha, H.G. The Effect of Low-Frequency (1 Hz) rTMS on the Cerebellar Cortex in Patients with Ataxia After a Posterior Circulation Stroke: Randomized Control Trial. J. Magn. 2017, 22, 625–629. [Google Scholar] [CrossRef]
- Cheng, H.L.; Lin, C.H.; Tseng, S.H.; Peng, C.W.; Lai, C.H. Effectiveness of Repetitive Transcranial Magnetic Stimulation Combined with Visual Feedback Training in Improving Neuroplasticity and Lower Limb Function after Chronic Stroke: A Pilot Study. Biology 2023, 12, 515. [Google Scholar] [CrossRef]
- Qurat-ul-ain; Ahmad, Z.; Ishtiaq, S.; Ilyas, S.; Shahid, I.; Tariq, I.; Malik, A.N.; Liu, T.; Wang, J. Short term effects of anodal cerebellar vs. anodal cerebral transcranial direct current stimulation in stroke patients, a randomized control trial. Front. Neurosci. 2022, 16, 1035558. [Google Scholar] [CrossRef]
- Salameh, A.; McCabe, J.; Skelly, M.; Duncan, K.R.; Chen, Z.; Tatsuoka, C.; Bikson, M.; Hardin, E.C.; Daly, J.J.; Pundik, S. Stance Phase Gait Training Post Stroke Using Simultaneous Transcranial Direct Current Stimulation and Motor Learning-Based Virtual Reality-Assisted Therapy: Protocol Development and Initial Testing. Brain Sci. 2022, 12, 701. [Google Scholar] [CrossRef]
- Invernizzi, M.; Negrini, S.; Carda, S.; Lanzotti, L.; Cisari, C.; Baricich, A. The Value of Adding Mirror Therapy for Upper Limb Motor Recovery of Subacute Stroke Patients: A Randomized Controlled Trial. Published Online 2013. Available online: https://air.unimi.it/handle/2434/721399 (accessed on 6 June 2025).
- Chen, J.M.; Li, X.L.; Pan, Q.H.; Yang, Y.; Xu, S.M.; Xu, J.W. Effects of non-invasive brain stimulation on motor function after spinal cord injury: A systematic review and meta-analysis. J. NeuroEng. Rehabil. 2023, 20, 3. [Google Scholar] [CrossRef]
- Donati, D.; Pinotti, E.; Mantovani, M.; Casarotti, S.; Fini, A.; Tedeschi, R.; Caselli, S. The Role of Immersive Virtual Reality in Upper Limb Rehabilitation for Subacute Stroke: A Review. J. Clin. Med. 2025, 14, 1903. [Google Scholar] [CrossRef]
- Hao, J.; Xie, H.; Harp, K.; Chen, Z.; Siu, K.C. Effects of Virtual Reality Intervention on Neural Plasticity in Stroke Rehabilitation: A Systematic Review. Arch. Phys. Med. Rehabil. 2022, 103, 523–541. [Google Scholar] [CrossRef]
- Thieme, H.; Morkisch, N.; Mehrholz, J.; Pohl, M.; Behrens, J.; Borgetto, B.; Dohle, C. Mirror Therapy for Improving Motor Function After Stroke—Thieme, H—2018|Cochrane Library. Available online: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD008449.pub3/full (accessed on 8 June 2025).
- Ramachandran, V.S.; Altschuler, E.L. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain J. Neurol. 2009, 132 Pt 7, 1693–1710. [Google Scholar] [CrossRef]
- Jeannerod, M. Neural Simulation of Action: A Unifying Mechanism for Motor Cognition. NeuroImage 2001, 14, S103–S109. [Google Scholar] [CrossRef]
- Hao, J.; He, Z.; Yu, X.; Remis, A. Comparison of immersive and non-immersive virtual reality for upper extremity functional recovery in patients with stroke: A systematic review and network meta-analysis. Neurol. Sci. 2023, 44, 2679–2697. [Google Scholar] [CrossRef]
- Terrill, A.L.; Schwartz, J.K.; Belagaje, S.R. Best Practices for The Interdisciplinary Rehabilitation Team: A Review of Mental Health Issues in Mild Stroke Survivors. Stroke Res. Treat. 2018, 2018, 6187328. [Google Scholar] [CrossRef]
- De Rooij, I.J.M.; van de Port, I.G.L.; Punt, M.; Moorsel, P.J.M.A.-V.; Kortsmit, M.; van Eijk, R.P.A.; Visser-Meily, J.M.A.; Meijer, J.-W.G. Effect of Virtual Reality Gait Training on Participation in Survivors of Subacute Stroke: A Randomized Controlled Trial. Phys. Ther. 2021, 101, pzab051. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Luber, B.; Brem, A.-K.; Bikson, M.; Brunoni, A.R.; Kadosh, R.C.; Dubljević, V.; Fecteau, S.; Ferreri, F.; Flöel, A.; et al. Non-invasive brain stimulation and neuroenhancement. Clin. Neurophysiol. Pract. 2022, 7, 146–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, D.; Zhao, Y.Y.; Hai, H.; Ma, Y.W. Effects of high-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex on motor recovery in severe hemiplegic stroke: A randomized clinical trial. Brain Stimul. 2020, 13, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Du, J.; Xu, Q.; Yang, F.; Zeng, F.; Weng, Y.; Dai, X.-J.; Qi, R.; Liu, X.; Lu, G.; et al. Dynamic Network Analysis Reveals Altered Temporal Variability in Brain Regions after Stroke: A Longitudinal Resting-State fMRI Study. Neural Plast. 2018, 2018, 9394156. [Google Scholar] [CrossRef]
- Oosterveer, D.M.; Wermer, M.J.H.; Volker, G.; Vlieland, T.P.M.V. Are There Differences in Long-Term Functioning and Recovery Between Hemorrhagic and Ischemic Stroke Patients Receiving Rehabilitation? J. Stroke Cerebrovasc. Dis. 2022, 31, 106294. [Google Scholar] [CrossRef]
- Perna, R.; Temple, J. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes. Behav. Neurol. 2015, 2015, 891651. [Google Scholar] [CrossRef]
- San, X.; Lv, Z.; Xu, P.; Wang, J.; Lan, T. The prevention of stroke by statins: A meta-analysis. Medicine 2022, 101, e30606. [Google Scholar] [CrossRef]
- Chaudhary, D.; Khan, A.; Shahjouei, S.; Gupta, M.; Lambert, C.; Avula, V.; Schirmer, C.M.; Holland, N.; Griessenauer, C.J.; Azarpazhooh, M.R.; et al. Trends in ischemic stroke outcomes in a rural population in the United States. J. Neurol. Sci. 2021, 422, 117339. [Google Scholar] [CrossRef]
Author and Year | Country | Sample Size (Intervention/ Control) | Mean Age (±SD) | Sex Ratio (M/F) | Stroke Characteristics (Ischemic/Hemorrhagic) | Interval Stroke-Treatment (Months) | Side of Stroke (R/L) |
---|---|---|---|---|---|---|---|
Carlos et al. (2024) [16] | Brazil | 10/NA | 60 ± 12 | 6/4 | 10/0 | 32 ± 23 | 7/3 |
Cha et al. (2017) [17] | Republic of Korea | 15/15 | 62.67 ± 6.99 | 15/15 | 19/11 | <6 | NA |
Cheng et al. (2023) [18] | Taiwan | (10 + 10)/10 | 59.93 ± 15.43 | 19/11 | NA | 36.47 ± 24.71 | 15/15 |
Qurat-ul-ain et al. (2022) [19] | Pakistan | (22 + 22)/22 | 57.48 ± 5.99 | 54/12 | 50/16 | NA | 33/33 |
Salameh et al. (2022) [20] | USA | 5/NA | 58.6 ± 7 | 5/0 | 3/5 | 68 | 1/4 |
Author | Type of NIBS Utilized | Stimulation Site | Intensity and Duration | Frequency | Temporal Relation |
---|---|---|---|---|---|
Carlos et al. (2024) [16] | Anodal tDCS | Ipsilesional M1 | 2 mA current, with a ramp-up and ramp-down time of 30 s, for 30 min per session. | 10 sessions over 2 weeks, every morning on weekdays. | In parallel; tDCS administered throughout the entire session. |
Cha et al. (2017) [17] | rTMS | Experimental group: Cerebellum Sham group: rTMS on irrelevant brain localization | 1 Hz, for 15 min | 20 sessions, once a day, 5 times a week for a period of 4 weeks. | In series: rTMS was performed before mirror therapy. |
Cheng et al. (2023) [18] | rTMS | Experimental group: Contralesional M1 Sham group: perpendicularly to the scalp and the same stimulus intensity and pattern. | 1 Hz, for 10 min | 3 sessions per week for 4 weeks. | In series: rTMS administered for 10 min before 40 min VF training |
Qurat-ul-ain et al. (2022) [19] | Anodal + Cathodal tDCS | Cerebellar stimulation group (CbSG): Anode, ipsilesional cerebellum + Cathode, contralesional cerebellum M1 Stimulation Group (MSG): Anode, ipsilesional M1 + Cathode, contralesional M1 No sham group | 2 mA current, stable over 20 min | 3 consecutive training sessions over 3 days. | In parallel: tDCS administered throughout the session. |
Salameh et al. (2022) [20] | Anodal + Cathodal tDCS | Anode: ipsilesional M1 Cathode: homologous contralesional M1 | 2 mA current, stable over 15 min | 10 gait training sessions over 2 weeks | In parallel: tDCS administered over the first 15 min of the phase one treadmill VR training. In phase two, no tDCS was used (30 min of overground training) |
Author, Year | Type of Visual Feedback | Qualitative Description of Feedback Protocol |
---|---|---|
Carlos et al. (2024) [16] | XR | Immersive VR system, “GestureCollection”, including stationary marches with obstacle tasks to improve spatial awareness, followed by a five-minute obstacle-free march in a Google Maps-based environment. |
Cha et al. (2017) [17] | Mirror Therapy | Participants visualized their reflected image while performing tasks. |
Cheng et al. (2023) [18] | Game-Based VR | Developed an ankle haptic exercise program integrated with a flying video game where the patient’s paretic ankle controlled an aircraft presented on a screen. |
Qurat-ul-ain et al. (2022) [19] | Xbox Kinect | Xbox Kinect sessions for lower limb rehabilitation through games, like soccer and basketball. Infrared tracking tracked active movements. |
Salameh et al. (2022) [20] | VR | V-Gait VR system, a treadmill-based setup where users navigate obstacles while receiving audio-visual feedback. |
Author and Year | Group | Balance (BBS) | Gait (TUG/6 MWT) | Motor Function (FMA) | Assessment Timing | |||
---|---|---|---|---|---|---|---|---|
Pre-Therapy | Post-Therapy | Pre-Therapy | Post-Therapy | Pre-Therapy | Post-Therapy | |||
Carlos et al. (2024) [16] | XR training + tDCS | 43.6 | 47.5 | TUG: 36.8 | TUG: 32.0 | 24.2 | 26.3 | T0: Before first session T1: After final session |
Cha et al. (2017) [17] | Mirror therapy + rTMS | NR | NR | TUG: 30.40 ± 4.29 6 MWT: 120.67 ± 25.67 | TUG: 24.47 ± 4.55 6 MWT: 181.47 ± 34.52 | NR | NR | T0: Before first session T1: After 4 weeks of training. |
Mirror therapy + Sham | NR | NR | TUG: 31.60 ± 3.56 6 MWT: 118.24 ± 30.84 | TUG: 28.93 ± 3.13 6 MWT: 165.72 ± 35.63 | NR | NR | ||
Cheng et al. (2023) [18] | Non-immersive VR+ rTMS | 41.7 ± 11.5 | 43.6 ± 10.9 | TUG: 39.3 ± 32.2 | TUG: 29.8 ± 17.2 | 25.1 ± 9.2 | 25.6 ± 8.9 | T0: 1 day before first session T1: 1 day after final session |
Non-immersive VR + Sham | 34.7 ± 13.8 | 37.5 ± 14.9 | TUG: 51.4 ± 40.2 | TUG: 49.1 ± 40.2 | 19.7 ± 8.7 | 20.6 ± 8.9 | ||
Conventional training + Sham | 40.3 ± 18.2 | 41.4 ± 18.5 | TUG: 30.8 ± 23.9 | TUG: 30.5 ± 39.4 | 24.9 ± 7.1 | 25.0 ± 7.0 | ||
Qurat-ul-ain et al. (2022) [19] | Non-immersive VR + Cerebellar tDCS | 41.63 ± 8.2 | 47.91 ± 7.7 | TUG: 17.54 ± 7.6 6 MWT: 0.12 ± 0.03 | TUG: 12.51 ± 6.3 6 MWT: 0.18 ± 0.04 | NR | NR | T0: Before first session T1: After 3 sessions |
Non-immersive VR + M1 tDCS | 40.27 ± 8.4 | 49.36 ± 3.6 | TUG: 13.85 ± 4.9 6 MWT: 0.13 ± 0.03 | TUG: 10.58 ± 4.6 6 MWT: 0.17 ± 0.05 | NR | NR | ||
Non-immersive VR + Sham | 50.27 ± 3.1 | 52.36 ± 3.0 | TUG: 9.69 ± 2.6 6 MWT: 0.17 ± 0.8 | TUG: 7.99 ± 2.4 6 MWT: 0.23 ± 0.09 | NR | NR | ||
Salameh et al. (2022) [20] | VR training + tDCS | NR | NR | TUG: 14.40 ± 7.49 | TUG: 12.06 ± 6.74 | 21.2 ± 4.5 | 25.40 ± 3.21 | T0: Before first session T1: 3-week follow up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Cosmo, L.; Cuervo, S.N.; Pellicanò, F.; Centini, F.R.; El Choueiri, J.; Learmonth, C.; Colella, F.E.; De Rossi, L.; Cannizzaro, D.; Baricich, A. Combining Visual Feedback and Noninvasive Brain Stimulation for Lower Limb Motor Rehabilitation in Stroke: A Systematic Review of the Current Evidence. J. Clin. Med. 2025, 14, 5027. https://doi.org/10.3390/jcm14145027
Di Cosmo L, Cuervo SN, Pellicanò F, Centini FR, El Choueiri J, Learmonth C, Colella FE, De Rossi L, Cannizzaro D, Baricich A. Combining Visual Feedback and Noninvasive Brain Stimulation for Lower Limb Motor Rehabilitation in Stroke: A Systematic Review of the Current Evidence. Journal of Clinical Medicine. 2025; 14(14):5027. https://doi.org/10.3390/jcm14145027
Chicago/Turabian StyleDi Cosmo, Leonardo, Santiago Nieto Cuervo, Francesca Pellicanò, Francesca Romana Centini, Jad El Choueiri, Chiara Learmonth, Filippo Emanuele Colella, Lorenzo De Rossi, Delia Cannizzaro, and Alessio Baricich. 2025. "Combining Visual Feedback and Noninvasive Brain Stimulation for Lower Limb Motor Rehabilitation in Stroke: A Systematic Review of the Current Evidence" Journal of Clinical Medicine 14, no. 14: 5027. https://doi.org/10.3390/jcm14145027
APA StyleDi Cosmo, L., Cuervo, S. N., Pellicanò, F., Centini, F. R., El Choueiri, J., Learmonth, C., Colella, F. E., De Rossi, L., Cannizzaro, D., & Baricich, A. (2025). Combining Visual Feedback and Noninvasive Brain Stimulation for Lower Limb Motor Rehabilitation in Stroke: A Systematic Review of the Current Evidence. Journal of Clinical Medicine, 14(14), 5027. https://doi.org/10.3390/jcm14145027