Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = non-structural protein-1β (NSP1β)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2600 KiB  
Article
SADS-CoV nsp5 Inhibits Interferon Production by Targeting Kinase IKKε
by Gaoli She, Chunhui Zhong, Yue Pan, Zexin Chen, Jingmin Li, Mingchong Li, Yufang Liu, Yongchang Cao, Xiaona Wei and Chunyi Xue
Microorganisms 2025, 13(7), 1494; https://doi.org/10.3390/microorganisms13071494 - 26 Jun 2025
Viewed by 387
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV), initially identified in China in February 2017, severely impacts the swine industry by causing lethal watery diarrhea in neonatal piglets. Understanding the molecular mechanism employed by SADS-CoV to evade the host’s immune defenses is of utmost importance. [...] Read more.
Swine acute diarrhea syndrome coronavirus (SADS-CoV), initially identified in China in February 2017, severely impacts the swine industry by causing lethal watery diarrhea in neonatal piglets. Understanding the molecular mechanism employed by SADS-CoV to evade the host’s immune defenses is of utmost importance. In this study, using the porcine ileum epithelial cell line IPI-FX as an in vitro model, we investigated the highly pathogenic SADS-CoV GDS04 strain and its nonstructural protein 5 (nsp5) for their roles in inhibiting interferon-beta (IFN-β) production. Our findings indicated that GDS04 inhibited poly(I:C)-induced IFN-β production by impeding the promoter activities of IRF3 and NF-κB. As a 3C-like protease, SADS-CoV nsp5 functioned as an interferon inhibitor by interacting with IKKε, reducing its protein abundance, and inhibiting its phosphorylation. This study enhances our understanding of the interaction between coronaviruses and their hosts, providing novel insights into the evasion of the immune system by coronaviruses. Full article
(This article belongs to the Special Issue Research on Swine Virus Infection and Immunity)
Show Figures

Figure 1

21 pages, 10277 KiB  
Article
Impact of SARS-CoV-2 Variant NSP6 on Pathogenicity: Genetic Analysis and Cell Biology
by Yangye Gao, Peng Ni, Yanqiao Hua, Shuaiyin Chen and Rongguang Zhang
Curr. Issues Mol. Biol. 2025, 47(5), 361; https://doi.org/10.3390/cimb47050361 - 14 May 2025
Viewed by 697
Abstract
SARS-CoV-2 nonstructural protein (NSP) 6 is one of the factors affecting viral pathogenicity. Mutations in NSP6 continuously emerge during viral transmission and are closely associated with alterations in viral pathogenicity. This study investigated the structural and functional impacts of NSP6 mutations by analyzing [...] Read more.
SARS-CoV-2 nonstructural protein (NSP) 6 is one of the factors affecting viral pathogenicity. Mutations in NSP6 continuously emerge during viral transmission and are closely associated with alterations in viral pathogenicity. This study investigated the structural and functional impacts of NSP6 mutations by analyzing NSP6 proteins from the Wuhan-Hu-1/B (WT) strain and predominant variants Alpha, XBB.1.16, BA.2.86, and JN.1 using bioinformatics, transcriptomics, and cellular experiments. The results demonstrate that the V3593F mutation decreased the β-sheet proportion and modified hydrogen bonding patterns, while the L3829F mutation enhanced structural stability by promoting random coils. The R3821K substitution exposed lysine residues, potentially enhancing molecular interactions. Combined transcriptomic profiling and functional assays revealed that WT-NSP6 significantly inhibited poly (I: C)-induced immune factor transcription and reduced the phosphorylation levels of p-IRF3 and p-STAT1, effects absent in the XBB.1.16 variant. Furthermore, WT-NSP6 markedly activated p-AKT and p-mTOR expression, with JN.1-NSP6 maintaining limited capacity to upregulate p-mTOR. However, p53 inhibitor treatment reversed Alpha-NSP6- and BA.2.86-NSP6-upregulated p-mTOR protein expression in cells. This study demonstrates that a high frequency of NSP6 mutations alters NSP6’s structure, impairing the type I interferon signaling pathway and affecting host antiviral responses through the p53-AKT-mTOR signaling pathway. These findings contribute to the understanding of evolution, immune evasion, and viral pathogenesis mechanisms, with potential implications for the development of antiviral therapies and preventive strategies for this viral infection. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 1528 KiB  
Article
The Identification of Host Proteins That Interact with Non-Structural Proteins-1α and -1β of Porcine Reproductive and Respiratory Syndrome Virus-1
by Sofia Riccio, Kay Childs, Ben Jackson, Simon P. Graham and Julian Seago
Viruses 2023, 15(12), 2445; https://doi.org/10.3390/v15122445 - 16 Dec 2023
Cited by 2 | Viewed by 2681
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSV-1 and -2) are the causative agents of one of the most important infectious diseases affecting the global pig industry. Previous studies, largely focused on PRRSV-2, have shown that non-structural protein-1α (NSP1α) and NSP1β modulate host cell [...] Read more.
Porcine reproductive and respiratory syndrome viruses (PRRSV-1 and -2) are the causative agents of one of the most important infectious diseases affecting the global pig industry. Previous studies, largely focused on PRRSV-2, have shown that non-structural protein-1α (NSP1α) and NSP1β modulate host cell responses; however, the underlying molecular mechanisms remain to be fully elucidated. Therefore, we aimed to identify novel PRRSV-1 NSP1–host protein interactions to improve our knowledge of NSP1-mediated immunomodulation. NSP1α and NSP1β from a representative western European PRRSV-1 subtype 1 field strain (215-06) were used to screen a cDNA library generated from porcine alveolar macrophages (PAMs), the primary target cell of PRRSV, using the yeast-2-hybrid system. This identified 60 putative binding partners for NSP1α and 115 putative binding partners for NSP1β. Of those taken forward for further investigation, 3 interactions with NSP1α and 27 with NSP1β were confirmed. These proteins are involved in the immune response, ubiquitination, nuclear transport, or protein expression. Increasing the stringency of the system revealed NSP1α interacts more strongly with PIAS1 than PIAS2, whereas NSP1β interacts more weakly with TAB3 and CPSF4. Our study has increased our knowledge of the PRRSV-1 NSP1α and NSP1β interactomes, further investigation of which could provide detailed insight into PRRSV immunomodulation and aid vaccine development. Full article
(This article belongs to the Special Issue Porcine Viruses 2023)
Show Figures

Figure 1

14 pages, 7290 KiB  
Article
Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering
by Wolfgang Knecht, S. Zoë Fisher, Jiaqi Lou, Céleste Sele, Shumeng Ma, Anna Andersson Rasmussen, Nikos Pinotsis and Frank Kozielski
Int. J. Mol. Sci. 2023, 24(17), 13649; https://doi.org/10.3390/ijms241713649 - 4 Sep 2023
Cited by 1 | Viewed by 2763
Abstract
The β-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members [...] Read more.
The β-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members is necessary to improve knowledge and treatment. These viruses possess 16 non-structural proteins, many of which play crucial roles in viral replication and in other vital functions. One such vital protein is non-structural protein 10 (nsp10), acting as a pivotal stimulator of nsp14 and nsp16, thereby influencing RNA proofreading and viral RNA cap formation. Studying nsp10 of pathogenic coronaviruses is central to unraveling its multifunctional roles. Our study involves the biochemical and biophysical characterisation of full-length nsp10 from MERS, SARS and SARS-CoV-2. To elucidate their oligomeric state, we employed a combination of Multi-detection Size exclusion chromatography (Multi-detection SEC) with multi-angle static light scattering (MALS) and small angle X-ray scattering (SAXS) techniques. Our findings reveal that full-length nsp10s primarily exist as monomers in solution, while truncated versions tend to oligomerise. SAXS experiments reveal a globular shape for nsp10, a trait conserved in all three coronaviruses, although MERS nsp10, diverges most from SARS and SARS-CoV-2 nsp10s. In summary, unbound nsp10 proteins from SARS, MERS, and SARS-CoV-2 exhibit a globular and predominantly monomeric state in solution. Full article
Show Figures

Figure 1

28 pages, 14704 KiB  
Review
Targeting SARS-CoV-2 Non-Structural Proteins
by Donald Tam, Ana C. Lorenzo-Leal, Luis Ricardo Hernández and Horacio Bach
Int. J. Mol. Sci. 2023, 24(16), 13002; https://doi.org/10.3390/ijms241613002 - 20 Aug 2023
Cited by 20 | Viewed by 3994
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped respiratory β coronavirus that causes coronavirus disease (COVID-19), leading to a deadly pandemic that has claimed millions of lives worldwide. Like other coronaviruses, the SARS-CoV-2 genome also codes for non-structural proteins (NSPs). These [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped respiratory β coronavirus that causes coronavirus disease (COVID-19), leading to a deadly pandemic that has claimed millions of lives worldwide. Like other coronaviruses, the SARS-CoV-2 genome also codes for non-structural proteins (NSPs). These NSPs are found within open reading frame 1a (ORF1a) and open reading frame 1ab (ORF1ab) of the SARS-CoV-2 genome and encode NSP1 to NSP11 and NSP12 to NSP16, respectively. This study aimed to collect the available literature regarding NSP inhibitors. In addition, we searched the natural product database looking for similar structures. The results showed that similar structures could be tested as potential inhibitors of the NSPs. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

17 pages, 2468 KiB  
Article
SARS-CoV-2 Nsp2 Contributes to Inflammation by Activating NF-κB
by Émile Lacasse, Leslie Gudimard, Isabelle Dubuc, Annie Gravel, Isabelle Allaeys, Éric Boilard and Louis Flamand
Viruses 2023, 15(2), 334; https://doi.org/10.3390/v15020334 - 24 Jan 2023
Cited by 17 | Viewed by 3624
Abstract
COVID-19 is associated with robust inflammation and partially impaired antiviral responses. The modulation of inflammatory gene expression by SARS-CoV-2 is not completely understood. In this study, we characterized the inflammatory and antiviral responses mounted during SARS-CoV-2 infection. K18-hACE2 mice were infected with a [...] Read more.
COVID-19 is associated with robust inflammation and partially impaired antiviral responses. The modulation of inflammatory gene expression by SARS-CoV-2 is not completely understood. In this study, we characterized the inflammatory and antiviral responses mounted during SARS-CoV-2 infection. K18-hACE2 mice were infected with a Wuhan-like strain of SARS-CoV-2, and the transcriptional and translational expression interferons (IFNs), cytokines, and chemokines were analyzed in mouse lung homogenates. Our results show that the infection of mice with SARS-CoV-2 induces the expression of several pro-inflammatory CC and CXC chemokines activated through NF-κB but weakly IL1β and IL18 whose expression are more characteristic of inflammasome formation. We also observed the downregulation of several inflammasome effectors. The modulation of innate response, following expressions of non-structural protein 2 (Nsp2) and SARS-CoV-2 infection, was assessed by measuring IFNβ expression and NF-κB modulation in human pulmonary cells. A robust activation of the NF-κB p65 subunit was induced following the infection of human cells with the corresponding NF-κB-driven inflammatory signature. We identified that Nsp2 expression induced the activation of the IFNβ promoter through its NF-κB regulatory domain as well as activation of p65 subunit phosphorylation. The present studies suggest that SARS-CoV-2 skews the antiviral response in favor of an NF-κB-driven inflammatory response, a hallmark of acute COVID-19 and for which Nsp2 should be considered an important contributor. Full article
(This article belongs to the Special Issue State-of-the-Art Virology Research in Canada)
Show Figures

Figure 1

12 pages, 2897 KiB  
Article
HSP27 Interacts with Nonstructural Proteins of Porcine Reproductive and Respiratory Syndrome Virus and Promotes Viral Replication
by Chunhui Song, Hanze Liu, Zhi Cao, Hu Shan and Qiaoya Zhang
Pathogens 2023, 12(1), 91; https://doi.org/10.3390/pathogens12010091 - 5 Jan 2023
Cited by 4 | Viewed by 2060
Abstract
Heat shock protein 27 (HSP27) is a multifunctional protein and belongs to the small HSP family. It has been shown that HSP27 is involved in viral replication as a cellular chaperone, but the function of HSP27 during porcine reproductive and respiratory syndrome virus [...] Read more.
Heat shock protein 27 (HSP27) is a multifunctional protein and belongs to the small HSP family. It has been shown that HSP27 is involved in viral replication as a cellular chaperone, but the function of HSP27 during porcine reproductive and respiratory syndrome virus (PRRSV) infections remains unexplored. Here, we found that PRRSV replication can induce HSP27 expression and phosphorylation in vitro. HSP27 overexpression promoted PRRSV replication, whereas its knockdown reduced PRRSV proliferation. Additionally, suppressing HSP27 phosphorylation reduced PRRSV replication and the level of viral double-stranded RNA (dsRNA), a marker of the viral replication and transcription complexes (RTCs). Furthermore, HSP27 can interact with multiple viral nonstructural proteins (nsps), including nsp1α, nsp1β, nsp5, nsp9, nsp11 and nsp12. Suppressing the phosphorylation of HSP27 almost completely disrupted its interaction with nsp1β and nsp12. Altogether, our study revealed that HSP27 plays an important role in PRRSV replication. Full article
Show Figures

Figure 1

16 pages, 1802 KiB  
Article
DEAD-Box RNA Helicase 21 (DDX21) Positively Regulates the Replication of Porcine Reproductive and Respiratory Syndrome Virus via Multiple Mechanisms
by Jia Li, Dang Wang, Puxian Fang, Yu Pang, Yanrong Zhou, Liurong Fang and Shaobo Xiao
Viruses 2022, 14(3), 467; https://doi.org/10.3390/v14030467 - 24 Feb 2022
Cited by 15 | Viewed by 3172
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) remains a persistent hazard in the global pig industry. DEAD (Glu-Asp-Ala-Glu) box helicase 21 (DDX21) is a member of the DDX family. In addition to its function of regulating cellular RNA metabolism, DDX21 also regulates [...] Read more.
The porcine reproductive and respiratory syndrome virus (PRRSV) remains a persistent hazard in the global pig industry. DEAD (Glu-Asp-Ala-Glu) box helicase 21 (DDX21) is a member of the DDX family. In addition to its function of regulating cellular RNA metabolism, DDX21 also regulates innate immunity and is involved in the replication cycle of some viruses. However, the relationship between DDX21 and PRRSV has not yet been explored. Here, we found that a DDX21 overexpression promoted PRRSV replication, whereas knockdown of DDX21 reduced PRRSV proliferation. Mechanistically, DDX21 promoted PRRSV replication independently of its ATPase, RNA helicase, and foldase activities. Furthermore, overexpression of DDX21 stabilized the expressions of PRRSV nsp1α, nsp1β, and nucleocapsid proteins, three known antagonists of interferon β (IFN-β). Knockdown of DDX21 activated the IFN-β signaling pathway in PRRSV-infected cells, suggesting that the effect of DDX21 on PRRSV-encoded IFN-β antagonists may be a driving factor for its contribution to viral proliferation. We also found that PRRSV infection enhanced DDX21 expression and promoted its nucleus-to-cytoplasm translocation. Screening PRRSV-encoded proteins showed that nsp1β interacted with the C-terminus of DDX21 and enhanced the expression of DDX21. Taken together, these findings reveal that DDX21 plays an important role in regulating PRRSV proliferation through multiple mechanisms. Full article
(This article belongs to the Special Issue State-of-the-Art Veterinary Virology Research in China)
Show Figures

Figure 1

15 pages, 5745 KiB  
Article
Identifying the Most Potent Dual-Targeting Compound(s) against 3CLprotease and NSP15exonuclease of SARS-CoV-2 from Nigella sativa: Virtual Screening via Physicochemical Properties, Docking and Dynamic Simulation Analysis
by Syed Mohd Danish Rizvi, Talib Hussain, Afrasim Moin, Sheshagiri R. Dixit, Subhankar P. Mandal, Mohd Adnan, Qazi Mohammad Sajid Jamal, Dinesh C. Sharma, Abulrahman Sattam Alanazi and Rahamat Unissa
Processes 2021, 9(10), 1814; https://doi.org/10.3390/pr9101814 - 13 Oct 2021
Cited by 12 | Viewed by 6080
Abstract
Background: The outbreak of the coronavirus (SARS-CoV-2) has drastically affected the human population and caused enormous economic deprivation. It belongs to the β-coronavirus family and causes various problems such as acute respiratory distress syndrome and has resulted in a global pandemic. Though various [...] Read more.
Background: The outbreak of the coronavirus (SARS-CoV-2) has drastically affected the human population and caused enormous economic deprivation. It belongs to the β-coronavirus family and causes various problems such as acute respiratory distress syndrome and has resulted in a global pandemic. Though various medications have been under trial for combating COVID-19, specific medicine for treating COVID-19 is unavailable. Thus, the current situation urgently requires effective treatment modalities. Nigella sativa, a natural herb with reported antiviral activity and various pharmacological properties, has been selected in the present study to identify a therapeutic possibility for treating COVID-19. Methods: The present work aimed to virtually screen the bioactive compounds of N. sativa based on the physicochemical properties and docking approach against two SARS-CoV-2 enzymes responsible for crucial functions: 3CLpro (Main protease) and NSP15 (Nonstructural protein 15 or exonuclease). However, simulation trajectory analyses for 100 ns were accomplished by using the YASARA STRUCTURE tool based on the AMBER14 force field with 400 snapshots every 250 ps. RMSD and RMSF plots were successfully obtained for each target. Results: The results of molecular docking have shown higher binding energy of dithymoquinone (DTQ), a compound of N. sativa against 3CLpro and Nsp15, i.e., −8.56 kcal/mol and −8.31 kcal/mol, respectively. Further, the dynamic simulation has shown good stability of DTQ against both the targeted enzymes. In addition, physicochemical evaluation and toxicity assessment also revealed that DTQ obeyed the Lipinski rule and did not have any toxic side effects. Importantly, DTQ was much better in every aspect among the 13 N. sativa compounds and 2 control compounds tested. Conclusions: The results predicted that DTQ is a potent therapeutic molecule that could dual-target both 3CLpro and NSP15 for anti-COVID therapy. Full article
(This article belongs to the Special Issue Frontiers in Computer-Aided Drug Discovery)
Show Figures

Figure 1

12 pages, 2075 KiB  
Article
SARS-CoV-2 Nonstructural Proteins 1 and 13 Suppress Caspase-1 and the NLRP3 Inflammasome Activation
by Na-Eun Kim, Dae-Kyum Kim and Yoon-Jae Song
Microorganisms 2021, 9(3), 494; https://doi.org/10.3390/microorganisms9030494 - 26 Feb 2021
Cited by 45 | Viewed by 4117
Abstract
Viral infection-induced activation of inflammasome complexes has both positive and negative effects on the host. Proper activation of inflammasome complexes induces down-stream effector mechanisms that inhibit viral replication and promote viral clearance, whereas dysregulated activation has detrimental effects on the host. Coronaviruses, including [...] Read more.
Viral infection-induced activation of inflammasome complexes has both positive and negative effects on the host. Proper activation of inflammasome complexes induces down-stream effector mechanisms that inhibit viral replication and promote viral clearance, whereas dysregulated activation has detrimental effects on the host. Coronaviruses, including SARS-CoV and MERS-CoV, encode viroporins that activate the NLRP3 inflammasome, and the severity of coronavirus disease is associated with the inflammasome activation. Although the NLRP3 inflammasome activation is implicated in the pathogenesis of coronaviruses, these viruses must evade inflammasome-mediated antiviral immune responses to establish primary replication. Screening of a complementary DNA (cDNA) library encoding 28 SARS-CoV-2 open reading frames (ORFs) showed that two nonstructural proteins (NSPs), NSP1 and NSP13, inhibited caspase-1-mediated IL-1β activation. NSP1 amino acid residues involved in host translation shutoff and NSP13 domains responsible for helicase activity were associated with caspase-1 inhibition. In THP-1 cells, both NSP1 and NSP13 significantly reduced NLRP3-inflammasome-induced caspase-1 activity and IL-1β secretion. These findings indicate that SARS-CoV-2 NSP1 and NSP13 are potent antagonists of the NLRP3 inflammasome. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

13 pages, 2780 KiB  
Article
The RNA Architecture of the SARS-CoV-2 3′-Untranslated Region
by Junxing Zhao, Jianming Qiu, Sadikshya Aryal, Jennifer L. Hackett and Jingxin Wang
Viruses 2020, 12(12), 1473; https://doi.org/10.3390/v12121473 - 21 Dec 2020
Cited by 40 | Viewed by 6064
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. The 3′ untranslated region (UTR) of this β-CoV contains essential cis-acting RNA elements for the viral genome transcription and replication. These elements include an equilibrium between an extended [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. The 3′ untranslated region (UTR) of this β-CoV contains essential cis-acting RNA elements for the viral genome transcription and replication. These elements include an equilibrium between an extended bulged stem-loop (BSL) and a pseudoknot. The existence of such an equilibrium is supported by reverse genetic studies and phylogenetic covariation analysis and is further proposed as a molecular switch essential for the control of the viral RNA polymerase binding. Here, we report the SARS-CoV-2 3′ UTR structures in cells that transcribe the viral UTRs harbored in a minigene plasmid and isolated infectious virions using a chemical probing technique, namely dimethyl sulfate (DMS)-mutational profiling with sequencing (MaPseq). Interestingly, the putative pseudoknotted conformation was not observed, indicating that its abundance in our systems is low in the absence of the viral nonstructural proteins (nsps). Similarly, our results also suggest that another functional cis-acting element, the three-helix junction, cannot stably form. The overall architectures of the viral 3′ UTRs in the infectious virions and the minigene-transfected cells are almost identical. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

20 pages, 4502 KiB  
Article
Structural and Biological Basis of Alphacoronavirus nsp1 Associated with Host Proliferation and Immune Evasion
by Zhou Shen, Yiling Yang, Siqi Yang, Guangxu Zhang, Shaobo Xiao, Zhen F. Fu and Guiqing Peng
Viruses 2020, 12(8), 812; https://doi.org/10.3390/v12080812 - 28 Jul 2020
Cited by 29 | Viewed by 4261
Abstract
Non-structural protein 1 (nsp1) is only characterized in alphacoronaviruses (α-CoVs) and betacoronaviruses (β-CoVs). There have been extensive researches on how the β-CoVs nsp1 regulates viral virulence by inhibiting host protein synthesis, but the regulatory mechanism of the α-CoVs nsp1 is still unclear. Here, [...] Read more.
Non-structural protein 1 (nsp1) is only characterized in alphacoronaviruses (α-CoVs) and betacoronaviruses (β-CoVs). There have been extensive researches on how the β-CoVs nsp1 regulates viral virulence by inhibiting host protein synthesis, but the regulatory mechanism of the α-CoVs nsp1 is still unclear. Here, we report the 2.1-Å full-length crystal structure of nsp1 in emerging porcine SADS-CoV and the 1.8-Å full-length crystal structure of nsp1 in the highly lethal cat FIPV. Although they belong to different subtypes of α-CoVs, these viruses all have a bucket-shaped fold composed of six β-sheets, similar to the crystal structure of PEDV and TGEV nsp1. Comparing the above four structures, we found that the structure of α-CoVs nsp1 in the same subtype was more conserved. We then selected mammalian cells that were treated with SADS-CoV and FIPV nsp1 for RNA sequencing analysis and found that nsp1 had a specific inhibitory effect on interferon (IFN) and cell cycle genes. Using the Renilla luciferase (Rluc) assay and Western blotting, we confirmed that seven representative α-CoVs nsp1s could significantly inhibit the phosphorylation of STAT1-S727 and interfere with the effect of IFN-I. Moreover, the cell cycle experiment confirmed that α-CoVs nsp1 could encourage host cells to stay in the G0/G1 phase. Based on these findings, we not only greatly improved the crystal structure data on α-CoVs nsp1, but we also speculated that α-CoVs nsp1 regulated host proliferation and immune evasion-related biological functions by inhibiting the synthesis of host proteins, thus creating an environment conducive to the virus. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

18 pages, 2953 KiB  
Article
Helicase of Type 2 Porcine Reproductive and Respiratory Syndrome Virus Strain HV Reveals a Unique Structure
by Chenjun Tang, Zengqin Deng, Xiaorong Li, Meiting Yang, Zizi Tian, Zhenhang Chen, Guoguo Wang, Wei Wu, Wen-hai Feng, Gongyi Zhang and Zhongzhou Chen
Viruses 2020, 12(2), 215; https://doi.org/10.3390/v12020215 - 14 Feb 2020
Cited by 20 | Viewed by 4180
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent throughout the world and has caused great economic losses to the swine industry. Nonstructural protein 10 (nsp10) is a superfamily 1 helicase participating in multiple processes of virus replication and one of the three [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent throughout the world and has caused great economic losses to the swine industry. Nonstructural protein 10 (nsp10) is a superfamily 1 helicase participating in multiple processes of virus replication and one of the three most conserved proteins in nidoviruses. Here we report three high resolution crystal structures of highly pathogenic PRRSV nsp10. PRRSV nsp10 has multiple domains, including an N-terminal zinc-binding domain (ZBD), a β-barrel domain, a helicase core with two RecA-like domains, and a C-terminal domain (CTD). The CTD adopts a novel fold and is required for the overall structure and enzymatic activities. Although each domain except the CTD aligns well with its homologs, PRRSV nsp10 adopts an unexpected extended overall structure in crystals and solution. Moreover, structural and functional analyses of PRRSV nsp10 versus its closest homolog, equine arteritis virus nsp10, suggest that DNA binding might induce a profound conformational change of PRRSV nsp10 to exert functions, thus shedding light on the mechanisms of activity regulation of this helicase. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

15 pages, 3188 KiB  
Article
Feline Infectious Peritonitis Virus Nsp5 Inhibits Type I Interferon Production by Cleaving NEMO at Multiple Sites
by Si Chen, Jin Tian, Zhijie Li, Hongtao Kang, Jikai Zhang, Jiapei Huang, Hang Yin, Xiaoliang Hu and Liandong Qu
Viruses 2020, 12(1), 43; https://doi.org/10.3390/v12010043 - 30 Dec 2019
Cited by 41 | Viewed by 6315
Abstract
Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in cats. The type I interferon (type I IFN)-mediated immune responses provide host protection from infectious diseases. Several coronaviruses have been reported to evolve diverse strategies to [...] Read more.
Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in cats. The type I interferon (type I IFN)-mediated immune responses provide host protection from infectious diseases. Several coronaviruses have been reported to evolve diverse strategies to evade host IFN response. However, whether feline infectious peritonitis virus (FIPV) antagonizes the type I IFN signaling remains unclear. In this study, we demonstrated that FIPV strain DF2 infection not only failed to induce interferon-β (IFN-β) and interferon-stimulated gene (ISG) production, but also inhibited Sendai virus (SEV) or polyinosinic-polycytidylic acid (poly(I:C))-induced IFN-β production. Subsequently, we found that one of the non-structural proteins encoded by the FIPV genome, nsp5, interrupted type I IFN signaling in a protease-dependent manner by cleaving the nuclear factor κB (NF-κB) essential modulator (NEMO) at three sites—glutamine132 (Q132), Q205, and Q231. Further investigation revealed that the cleavage products of NEMO lost the ability to activate the IFN-β promoter. Mechanistically, the nsp5-mediated NEMO cleavage disrupted the recruitment of the TRAF family member-associated NF-κB activator (TANK) to NEMO, which reduced the phosphorylation of interferon regulatory factor 3 (IRF3), leading to the inhibition of type I IFN production. Our research provides new insights into the mechanism for FIPV to counteract host innate immune response. Full article
(This article belongs to the Special Issue Innate Immune Sensing of Viruses and Viral Evasion)
Show Figures

Figure 1

14 pages, 541 KiB  
Review
Immunological Features of the Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus
by Edgar Rascón-Castelo, Alexel Burgara-Estrella, Enric Mateu and Jesús Hernández
Viruses 2015, 7(3), 873-886; https://doi.org/10.3390/v7030873 - 24 Feb 2015
Cited by 45 | Viewed by 8280
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is currently one of the most important viruses affecting the swine industry worldwide. Despite the large number of papers published each year, the participation of non-structural proteins (nsps) in the immune response is not completely clear. [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is currently one of the most important viruses affecting the swine industry worldwide. Despite the large number of papers published each year, the participation of non-structural proteins (nsps) in the immune response is not completely clear. nsps have been involved in the host innate immune response, specifically, nsp1α/β, nsp2, nsp4 and nsp11 have been associated with the immunomodulation capability of the virus. To date, only participation by nsp1, nsp2, nsp4 and nsp7 in the humoral immune response has been reported, with the role of other nsps being overlooked. Furthermore, nsp1, nsp2, nsp5, nsp7 nsp9, nsp10, nsp11 have been implicated in the induction of IFN-γ and probably in the development of the cell-mediated immune response. This review discusses recent reports involving the participation of nsps in the modulation of the innate immune response and their role in the induction of both the humoral and cellular immune responses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop