Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = non-phototrophic bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2333 KiB  
Article
Abundance, Characterization and Diversity of Culturable Anoxygenic Phototrophic Bacteria in Manitoban Marshlands
by Katia Messner and Vladimir Yurkov
Microorganisms 2024, 12(5), 1007; https://doi.org/10.3390/microorganisms12051007 - 17 May 2024
Viewed by 1742
Abstract
Marshes are an important ecosystem, acting as a biodiversity hotspot, a carbon sink and a bioremediation site, breaking down anthropogenic waste such as antibiotics, metals and fertilizers. Due to their participation in these metabolic activities and their capability to contribute to primary productivity, [...] Read more.
Marshes are an important ecosystem, acting as a biodiversity hotspot, a carbon sink and a bioremediation site, breaking down anthropogenic waste such as antibiotics, metals and fertilizers. Due to their participation in these metabolic activities and their capability to contribute to primary productivity, the microorganisms in such habitats have become of interest to investigate. Since Proteobacteria were previously found to be abundant and the waters are well aerated and organic-rich, this study on the presence of anoxygenic phototrophic bacteria, purple non-sulfur bacteria and aerobic anoxygenic phototrophs in marshes was initiated. One sample was collected at each of the seven Manitoban sites, and anoxygenic phototrophs were cultivated and enumerated. A group of 14 strains, which represented the phylogenetic diversity of the isolates, was physiologically investigated further. Aerobic anoxygenic phototrophs and purple non-sulfur bacteria were present at each location, and they belonged to the α- and β-Proteobacteria subphyla. Some were closely related to known heavy metal reducers (Brevundimonas) and xenobiotic decomposers (Novosphingobium and Sphingomonas). All were able to synthesize the photosynthetic complexes aerobically. This research highlights the diversity of and the potential contributions that anoxygenic phototrophs make to the essential functions taking place in wetlands. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 2866 KiB  
Article
Distribution and Activity of Sulfur-Metabolizing Bacteria along the Temperature Gradient in Phototrophic Mats of the Chilean Hot Spring Porcelana
by Ricardo Konrad, Pablo Vergara-Barros, Jaime Alcorta, María E. Alcamán-Arias, Gloria Levicán, Christina Ridley and Beatriz Díez
Microorganisms 2023, 11(7), 1803; https://doi.org/10.3390/microorganisms11071803 - 14 Jul 2023
Cited by 8 | Viewed by 2747
Abstract
In terrestrial hot springs, some members of the microbial mat community utilize sulfur chemical species for reduction and oxidization metabolism. In this study, the diversity and activity of sulfur-metabolizing bacteria were evaluated along a temperature gradient (48–69 °C) in non-acidic phototrophic mats of [...] Read more.
In terrestrial hot springs, some members of the microbial mat community utilize sulfur chemical species for reduction and oxidization metabolism. In this study, the diversity and activity of sulfur-metabolizing bacteria were evaluated along a temperature gradient (48–69 °C) in non-acidic phototrophic mats of the Porcelana hot spring (Northern Patagonia, Chile) using complementary meta-omic methodologies and specific amplification of the aprA (APS reductase) and soxB (thiosulfohydrolase) genes. Overall, the key players in sulfur metabolism varied mostly in abundance along the temperature gradient, which is relevant for evaluating the possible implications of microorganisms associated with sulfur cycling under the current global climate change scenario. Our results strongly suggest that sulfate reduction occurs throughout the whole temperature gradient, being supported by different taxa depending on temperature. Assimilative sulfate reduction is the most relevant pathway in terms of taxonomic abundance and activity, whereas the sulfur-oxidizing system (Sox) is likely to be more diverse at low rather than at high temperatures. Members of the phylum Chloroflexota showed higher sulfur cycle-related transcriptional activity at 66 °C, with a potential contribution to sulfate reduction and oxidation to thiosulfate. In contrast, at the lowest temperature (48 °C), Burkholderiales and Acetobacterales (both Pseudomonadota, also known as Proteobacteria) showed a higher contribution to dissimilative sulfate reduction/oxidation as well as to thiosulfate metabolism. Cyanobacteriota and Planctomycetota were especially active in assimilatory sulfate reduction. Analysis of the aprA and soxB genes pointed to members of the order Burkholderiales (Gammaproteobacteria) as the most dominant and active along the temperature gradient for these genes. Changes in the diversity and activity of different sulfur-metabolizing bacteria in photoautotrophic microbial mats along a temperature gradient revealed their important role in hot spring environments, especially the main primary producers (Chloroflexota/Cyanobacteriota) and diazotrophs (Cyanobacteriota), showing that carbon, nitrogen, and sulfur cycles are highly linked in these extreme systems. Full article
(This article belongs to the Special Issue Diversity of Extremophiles in Time and Space)
Show Figures

Figure 1

22 pages, 8463 KiB  
Article
New Multidrug Efflux Systems in a Microcystin-Degrading Bacterium Blastomonas fulva and Its Genomic Feature
by Long Jin, Chengda Cui, Chengxiao Zhang, So-Ra Ko, Taihua Li, Feng-Jie Jin, Chi-Yong Ahn, Hee-Mock Oh and Hyung-Gwan Lee
Int. J. Mol. Sci. 2022, 23(18), 10856; https://doi.org/10.3390/ijms231810856 - 17 Sep 2022
Cited by 3 | Viewed by 2391
Abstract
A microcystin-degrading bacterial strain, Blastomonas fulva T2, was isolated from the culture of a microalgae Microcystis. The strain B. fulva T2 is Gram-stain-negative, non-motile, aerobic, non-spore-forming and phototrophic. The cells of B. fulva T2 are able to grow in ranges of [...] Read more.
A microcystin-degrading bacterial strain, Blastomonas fulva T2, was isolated from the culture of a microalgae Microcystis. The strain B. fulva T2 is Gram-stain-negative, non-motile, aerobic, non-spore-forming and phototrophic. The cells of B. fulva T2 are able to grow in ranges of temperature from 15 to 37 °C, with a pH of 6 to 8 and a salinity of 0 to 1% NaCl. Here, we sequenced the complete genome of B. fulva T2, aiming to better understand the evolutionary biology and the function of the genus Blastomonas at the molecular level. The complete genome of B. fulva T2 contained a circular chromosome (3,977,381 bp) with 64.3% GC content and a sizable plasmid (145.829 bp) with 60.7% GC content which comprises about 3.5% of the total genetic content. A total of 3842 coding genes, including 46 tRNAs and 6 rRNAs, were predicted in the genome. The genome contains genes for glycolysis, citric acid cycle, Entner–Doudoroff pathways, photoreaction center and bacteriochlorophylla synthesis. A 7.9 K gene cluster containing mlrA, mlrB, mlrC and mlrD1,2,3,4 of microcystin-degrading enzymes was identified. Notably, eight different efflux pumps categorized into RND, ABC and MFS types have been identified in the genome of strain T2. Our findings should provide new insights of the alternative reaction pathway as well as the enzymes which mediated the degradation of microcystin by bacteria, as well as the evolution, architectures, chemical mechanisms and physiological roles of the new bacterial multidrug efflux system. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 1157 KiB  
Article
Lab-Scale Cultivation of Cupriavidus necator on Explosive Gas Mixtures: Carbon Dioxide Fixation into Polyhydroxybutyrate
by Vera Lambauer and Regina Kratzer
Bioengineering 2022, 9(5), 204; https://doi.org/10.3390/bioengineering9050204 - 10 May 2022
Cited by 37 | Viewed by 7654
Abstract
Aerobic, hydrogen oxidizing bacteria are capable of efficient, non-phototrophic CO2 assimilation, using H2 as a reducing agent. The presence of explosive gas mixtures requires strict safety measures for bioreactor and process design. Here, we report a simplified, reproducible, and safe cultivation [...] Read more.
Aerobic, hydrogen oxidizing bacteria are capable of efficient, non-phototrophic CO2 assimilation, using H2 as a reducing agent. The presence of explosive gas mixtures requires strict safety measures for bioreactor and process design. Here, we report a simplified, reproducible, and safe cultivation method to produce Cupriavidus necator H16 on a gram scale. Conditions for long-term strain maintenance and mineral media composition were optimized. Cultivations on the gaseous substrates H2, O2, and CO2 were accomplished in an explosion-proof bioreactor situated in a strong, grounded fume hood. Cells grew under O2 control and H2 and CO2 excess. The starting gas mixture was H2:CO2:O2 in a ratio of 85:10:2 (partial pressure of O2 0.02 atm). Dissolved oxygen was measured online and was kept below 1.6 mg/L by a stepwise increase of the O2 supply. Use of gas compositions within the explosion limits of oxyhydrogen facilitated production of 13.1 ± 0.4 g/L total biomass (gram cell dry mass) with a content of 79 ± 2% poly-(R)-3-hydroxybutyrate in a simple cultivation set-up with dissolved oxygen as the single controlled parameter. Approximately 98% of the obtained PHB was formed from CO2. Full article
(This article belongs to the Special Issue Advances in Polyhydroxyalkanoate (PHA) Production, Volume 3)
Show Figures

Graphical abstract

18 pages, 3080 KiB  
Article
A Complex Network of Sigma Factors and sRNA StsR Regulates Stress Responses in R. sphaeroides
by Katrin M. H. Eisenhardt, Bernhardt Remes, Julian Grützner, Daniel-Timon Spanka, Andreas Jäger and Gabriele Klug
Int. J. Mol. Sci. 2021, 22(14), 7557; https://doi.org/10.3390/ijms22147557 - 14 Jul 2021
Cited by 6 | Viewed by 2649
Abstract
Adaptation of bacteria to a changing environment is often accompanied by remodeling of the transcriptome. In the facultative phototroph Rhodobacter sphaeroides the alternative sigma factors RpoE, RpoHI and RpoHII play an important role in a variety of stress responses, including heat, oxidative stress [...] Read more.
Adaptation of bacteria to a changing environment is often accompanied by remodeling of the transcriptome. In the facultative phototroph Rhodobacter sphaeroides the alternative sigma factors RpoE, RpoHI and RpoHII play an important role in a variety of stress responses, including heat, oxidative stress and nutrient limitation. Photooxidative stress caused by the simultaneous presence of chlorophylls, light and oxygen is a special challenge for phototrophic organisms. Like alternative sigma factors, several non-coding sRNAs have important roles in the defense against photooxidative stress. RNAseq-based transcriptome data pointed to an influence of the stationary phase-induced StsR sRNA on levels of mRNAs and sRNAs with a role in the photooxidative stress response. Furthermore, StsR also affects expression of photosynthesis genes and of genes for regulators of photosynthesis genes. In vivo and in vitro interaction studies revealed that StsR, that is under control of the RpoHI and RpoHII sigma factors, targets rpoE mRNA and affects its abundance by altering its stability. RpoE regulates expression of the rpoHII gene and, consequently, expression of stsR. These data provide new insights into a complex regulatory network of protein regulators and sRNAs involved in defense against photooxidative stress and the regulation of photosynthesis genes. Full article
(This article belongs to the Special Issue Molecular Biology of Phototrophic Bacterial)
Show Figures

Graphical abstract

19 pages, 18914 KiB  
Review
Molecular Physiology of Anaerobic Phototrophic Purple and Green Sulfur Bacteria
by Ivan Kushkevych, Jiří Procházka, Márió Gajdács, Simon K.-M. R. Rittmann and Monika Vítězová
Int. J. Mol. Sci. 2021, 22(12), 6398; https://doi.org/10.3390/ijms22126398 - 15 Jun 2021
Cited by 21 | Viewed by 9796
Abstract
There are two main types of bacterial photosynthesis: oxygenic (cyanobacteria) and anoxygenic (sulfur and non-sulfur phototrophs). Molecular mechanisms of photosynthesis in the phototrophic microorganisms can differ and depend on their location and pigments in the cells. This paper describes bacteria capable of molecular [...] Read more.
There are two main types of bacterial photosynthesis: oxygenic (cyanobacteria) and anoxygenic (sulfur and non-sulfur phototrophs). Molecular mechanisms of photosynthesis in the phototrophic microorganisms can differ and depend on their location and pigments in the cells. This paper describes bacteria capable of molecular oxidizing hydrogen sulfide, specifically the families Chromatiaceae and Chlorobiaceae, also known as purple and green sulfur bacteria in the process of anoxygenic photosynthesis. Further, it analyzes certain important physiological processes, especially those which are characteristic for these bacterial families. Primarily, the molecular metabolism of sulfur, which oxidizes hydrogen sulfide to elementary molecular sulfur, as well as photosynthetic processes taking place inside of cells are presented. Particular attention is paid to the description of the molecular structure of the photosynthetic apparatus in these two families of phototrophs. Moreover, some of their molecular biotechnological perspectives are discussed. Full article
(This article belongs to the Special Issue Anaerobic Bacteria and Their Resistance Mechanisms)
Show Figures

Figure 1

21 pages, 2826 KiB  
Article
Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal
by Agnia Dmitrievna Galachyants, Andrey Yurjevich Krasnopeev, Galina Vladimirovna Podlesnaya, Sergey Anatoljevich Potapov, Elena Viktorovna Sukhanova, Irina Vasiljevna Tikhonova, Ekaterina Andreevna Zimens, Marsel Rasimovich Kabilov, Natalia Albertovna Zhuchenko, Anna Sergeevna Gorshkova, Maria Yurjevna Suslova and Olga Ivanovna Belykh
Microorganisms 2021, 9(4), 842; https://doi.org/10.3390/microorganisms9040842 - 14 Apr 2021
Cited by 11 | Viewed by 3626
Abstract
The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing [...] Read more.
The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes. The diversity of rhodopsin-containing bacteria in neuston and plankton of Lake Baikal was comparable to other studied water bodies. Bacteroidetes along with Proteobacteria were the prevailing phyla, and Verrucomicrobia and Planctomycetes were also detected. The number of rhodopsin sequences unclassified to the phylum level was rather high: 29% in the water microbiomes and 22% in the epilithon. Diversity of rhodopsin-containing bacteria in epilithic biofilms was comparable with that in neuston and plankton at the phyla level. Unweighted pair group method with arithmetic mean (UPGMA) and non-metric multidimensional scaling (NMDS) analysis indicated a distinct discrepancy between epilithon and microbial communities of water (including neuston and plankton) in the 16S rRNA, pufM and rhodopsin genes. Full article
Show Figures

Figure 1

24 pages, 1497 KiB  
Review
Light and Microbial Lifestyle: The Impact of Light Quality on Plant–Microbe Interactions in Horticultural Production Systems—A Review
by Beatrix W. Alsanius, Maria Karlsson, Anna Karin Rosberg, Martine Dorais, Most Tahera Naznin, Sammar Khalil and Karl-Johan Bergstrand
Horticulturae 2019, 5(2), 41; https://doi.org/10.3390/horticulturae5020041 - 28 May 2019
Cited by 42 | Viewed by 10170
Abstract
Horticultural greenhouse production in circumpolar regions (>60° N latitude), but also at lower latitudes, is dependent on artificial assimilation lighting to improve plant performance and the profitability of ornamental crops, and to secure production of greenhouse vegetables and berries all year round. In [...] Read more.
Horticultural greenhouse production in circumpolar regions (>60° N latitude), but also at lower latitudes, is dependent on artificial assimilation lighting to improve plant performance and the profitability of ornamental crops, and to secure production of greenhouse vegetables and berries all year round. In order to reduce energy consumption and energy costs, alternative technologies for lighting have been introduced, including light-emitting diodes (LED). This technology is also well-established within urban farming, especially plant factories. Different light technologies influence biotic and abiotic conditions in the plant environment. This review focuses on the impact of light quality on plant–microbe interactions, especially non-phototrophic organisms. Bacterial and fungal pathogens, biocontrol agents, and the phyllobiome are considered. Relevant molecular mechanisms regulating light-quality-related processes in bacteria are described and knowledge gaps are discussed with reference to ecological theories. Full article
Show Figures

Figure 1

19 pages, 1575 KiB  
Article
A Rapid Method for the Extraction and Analysis of Carotenoids and Other Hydrophobic Substances Suitable for Systems Biology Studies with Photosynthetic Bacteria
by Judit Bóna-Lovász, Aron Bóna, Michael Ederer, Oliver Sawodny and Robin Ghosh
Metabolites 2013, 3(4), 912-930; https://doi.org/10.3390/metabo3040912 - 11 Oct 2013
Cited by 18 | Viewed by 11564
Abstract
A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of [...] Read more.
A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for subsequent analysis using HPLC and mass spectroscopy. The procedure is particularly suitable for carotenoids and other terpenoids, including quinones, bacteriochlorophyll a and bacteriopheophytin a, and is also useful for the analysis of polar phospholipids. The extraction procedure requires only a single step extraction with a hexane/methanol/water mixture, followed by HPLC using a Spherisorb C18 column, with a mobile phase consisting of acetone-water and a non-linear gradient of 50%–100% acetone. The method was employed for examining the carotenoid composition observed during microaerophilic growth of R. rubrum strains, and was able to determine 18 carotenoids, 4 isoprenoid-quinones, bacteriochlorophyll a and bacteriopheophytin a as well as four different phosphatidylglycerol species of different acyl chain compositions. The analytical procedure was used to examine the dynamics of carotenoid biosynthesis in the major and minor pathways operating simultaneously in a carotenoid biosynthesis mutant of R. rubrum. Full article
Show Figures

Figure 1

Back to TopTop