Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = non-living biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1958 KiB  
Article
Comparison of Atmospheric O3 Dose–Response Effects Under N Addition on Gas Exchange, Growth, and Biomass of Raphanus sativus L.
by Li Li and Jinling Li
Atmosphere 2025, 16(7), 784; https://doi.org/10.3390/atmos16070784 - 26 Jun 2025
Viewed by 252
Abstract
Regional increases in atmospheric O3 are phytotoxic not only to major crops but also to root vegetables such as radish, and their effects can be further modulated by nitrogen (N) addition. To assess how cherry radish responds to elevated O3 (eO [...] Read more.
Regional increases in atmospheric O3 are phytotoxic not only to major crops but also to root vegetables such as radish, and their effects can be further modulated by nitrogen (N) addition. To assess how cherry radish responds to elevated O3 (eO3) under N addition and to compare the dose–response relationships, we established six open-top chambers with two O3 levels and two N treatments in Beijing, China, to examine gas exchange, growth, and biomass throughout the growing period. The results showed that: 1. eO3 had a “priming effect” on photosynthesis rates (Pn) at the beginning of the experiment. N addition alleviated the O3-induced Pn reduction at the end of the experiment by 6.76% but did not significantly influence the O3-dose response to Pn; 2. stomatal conductance (gs) did not have a dose response to all treatments while evaporation rates (E) showed strong negative regression with AOT40; 3. N addition reduced the hypocotyl biomass (−47.70%), leaf biomass (−32.22%), and the whole plant biomass reduction caused by O3 (−38.47%) at the end of the experiment, but N addition did not significantly influence O3-dose response to biomass. In conclusion, N addition can alleviate O3-induced reductions in Pn and biomass via non-stomatal mechanisms, but it is ineffective in altering long-term O3 dose–response relationships. Soil N addition offers a short-term strategy to mitigate O3 impacts on short-lived root vegetables such as cherry radish but does not influence key functional traits over the long term. This study highlights the potential of N addition to alleviate acute oxidative stress, while underscoring its limitations in mitigating the effects of prolonged O3 exposure in root vegetables. Full article
Show Figures

Figure 1

50 pages, 11097 KiB  
Article
Integrating 3D-Printed and Natural Staghorn Coral (Acropora cervicornis) Restoration Enhances Fish Assemblages and Their Ecological Functions
by Edwin A. Hernández-Delgado, Jaime S. Fonseca-Miranda, Alex E. Mercado-Molina and Samuel E. Suleimán-Ramos
Diversity 2025, 17(7), 445; https://doi.org/10.3390/d17070445 - 23 Jun 2025
Viewed by 1452
Abstract
Coral restoration is essential for recovering depleted populations and reef ecological functions. However, its effect on enhancing fish assemblages remains understudied. This study investigated the integration of 3D-printed and natural Staghorn coral (Acropora cervicornis) out-planting to assess their role in enhancing [...] Read more.
Coral restoration is essential for recovering depleted populations and reef ecological functions. However, its effect on enhancing fish assemblages remains understudied. This study investigated the integration of 3D-printed and natural Staghorn coral (Acropora cervicornis) out-planting to assess their role in enhancing benthic spatial complexity and attracting fish communities. Conducted between 2021 and 2023 at Culebra Island, Puerto Rico, we employed a before-after-control-impact (BACI) design to test four treatments: natural A. cervicornis, 3D-printed corals, mixed stands of 3D-printed and natural corals, and non-restored controls. Fish assemblages were monitored through stationary counts. Results showed that integrating 3D-printed and natural corals enhanced fish assemblages and their ecological functions. Significant temporal changes in fish community structure and biodiversity metrics were observed, influenced by treatment and location. Herbivore abundance and biomass increased over time, especially in live coral and 3D-printed plots. Reefs with higher rugosity exhibited greater Scarid abundance and biomass post-restoration. Piscivore abundance also rose significantly over time, notably at Tampico site. Fishery-targeted species density and biomass increased, particularly in areas with live and 3D-printed coral out-plants. Fish assemblages became more complex and diverse post-restoration, especially at Tampico, which supported greater habitat complexity. Before restoration, fish assemblages showed a disturbed status, with biomass k-dominance curves above abundance curves. Post-out-planting, this trend reversed. Control sites showed no significant changes. The study demonstrates that restoring fast-growing branching corals, alongside 3D-printed structures, leads to rapid increases in abundance and biomass of key fishery species, suggesting its potential role promoting faster ecosystem recovery and enhanced coral demographic performance. Full article
Show Figures

Figure 1

15 pages, 2618 KiB  
Article
Pulsed Blue Light and Phage Therapy: A Novel Synergistic Bactericide
by Amit Rimon, Jonathan Belin, Ortal Yerushalmy, Yonatan Eavri, Anatoly Shapochnikov, Shunit Coppenhagen-Glazer, Ronen Hazan and Lilach Gavish
Antibiotics 2025, 14(5), 481; https://doi.org/10.3390/antibiotics14050481 - 9 May 2025
Viewed by 908
Abstract
Background: Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) strains are an increasing cause of morbidity and mortality. Pulsed blue light (PBL) enhances porphyrin-induced reactive oxygen species and has been clinically shown to be harmless to the skin at low doses. Bacteriophages, viruses that [...] Read more.
Background: Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) strains are an increasing cause of morbidity and mortality. Pulsed blue light (PBL) enhances porphyrin-induced reactive oxygen species and has been clinically shown to be harmless to the skin at low doses. Bacteriophages, viruses that infect bacteria, offer a promising non-antibiotic bactericidal approach. This study investigates the potential synergism between low-dose PBL and phage therapy against P. aeruginosa in planktonic cultures and preformed biofilms. Methods: We conducted a factorial dose–response in vitro study combining P. aeruginosa-specific phages with PBL (457 nm, 33 kHz) on both PA14 and multidrug-resistant PATZ2 strains. After excluding direct PBL effects on phage titer or activity, we assessed effectiveness on planktonic cultures using growth curve analysis (via growth_curve_outcomes, a newly developed, Python-based tool available on GitHub) , CFU, and PFU. Biofilm efficacy was evaluated using CFU post-sonication, crystal violet staining, and live/dead staining with confocal microscopy. Finally, we assessed reactive oxygen species (ROS) as a potential mechanism using the nitro blue tetrazolium reduction assay. ANOVA or Kruskal–Wallis tests with post hoc Tukey or Conover–Iman tests were used for comparisons (n = 5 biological replicates and technical triplicates). Results: The bacterial growth lag phase was significantly extended for phage alone or PBL alone, with a synergistic effect of up to 144% (p < 0.001 for all), achieving a 9 log CFU/mL reduction at 24 h (p < 0.001). In preformed biofilms, synergistic combinations significantly reduced biofilm biomass and bacterial viability (% Live, median (IQR): Control 80%; Phage 40%; PBL 25%; PBL&Phage 15%, p < 0.001). Mechanistically, PBL triggered transient ROS in planktonic cultures, amplified by phage co-treatment, while a biphasic ROS pattern in biofilms reflected time-dependent synergy. Conclusions: Phage therapy combined with PBL demonstrates a synergistic bactericidal effect against P. aeruginosa in both planktonic cultures and biofilms. Given the strong safety profile of PBL and phages, this approach may lead to a novel, antibiotic-complementary, safe treatment modality for patients suffering from difficult-to-treat antibiotic-resistant infections and biofilm-associated infections. Full article
(This article belongs to the Special Issue Antibiofilm Activity against Multidrug-Resistant Pathogens)
Show Figures

Graphical abstract

28 pages, 4148 KiB  
Article
Energy Potential of Zea mays Grown in Cadmium-Contaminated Soil
by Agata Borowik, Jadwiga Wyszkowska, Magdalena Zaborowska and Jan Kucharski
Energies 2025, 18(9), 2402; https://doi.org/10.3390/en18092402 - 7 May 2025
Viewed by 450
Abstract
Cadmium is a non-essential element for proper plant growth and development and is highly toxic to humans and animals, in part because it inters with calcium-dependent processes in living organisms. For this reason, a study was conducted to assess the potential for producing [...] Read more.
Cadmium is a non-essential element for proper plant growth and development and is highly toxic to humans and animals, in part because it inters with calcium-dependent processes in living organisms. For this reason, a study was conducted to assess the potential for producing maize (Zea mays) biomass in cadmium-contaminated soil for energy purposes. The energy potential of Zea mays was evaluated by determining the heat of combustion (Q), heating value (Hv), and the amount of energy produced from the biomass. Starch, compost, fermented bark, humic acids, molecular sieve, zeolite, sepiolite, expanded clay, and calcium carbonate were assessed as substances supporting biomass production from Zea mays. The accumulation and redistribution of cadmium in the plant were also investigated. The study was conducted in a vegetation hall as part of a pot experiment. Zea mays was grown in uncontaminated soil and in soil contaminated with 15 mg Cd2+ kg−1. A strong toxic effect of cadmium on the cultivated plants was observed, causing a 62% reduction in the biomass of aerial parts and 61% in the roots. However, it did not alter the heat of combustion and heating value of the aerial part biomass, which were 18.55 and 14.98 MJ kg−1 d.m., respectively. Of the nine substances tested to support biomass production, only four (molecular sieve, compost, HumiAgra, and expanded clay) increased the yield of Zea mays grown in cadmium-contaminated soil. The molecular sieve increased aerial part biomass production by 74%, compost by 67%, expanded clay by 19%, and HumiAgra by 15%, but none of these substances completely eliminated the toxic effects of cadmium on the plant. At the same time, the bioaccumulation factor (BAF) of cadmium was higher in the roots (0.21–0.23) than in the aerial parts (0.04–0.03), with the roots showing greater bioaccumulation. Full article
Show Figures

Figure 1

24 pages, 2893 KiB  
Article
Adsorption of Methylene Blue Dye onto Various Marine Sediments and Seagrass Biomass of Posidonia oceanica Species: Kinetics and Equilibrium Studies
by Maria C. Vagi, Andreas S. Petsas, Dionysia Dimitropoulou, Melpomeni Leventelli and Anastasia D. Nikolaou
Organics 2025, 6(2), 21; https://doi.org/10.3390/org6020021 - 6 May 2025
Viewed by 698
Abstract
This study concerns the investigation of the sorption and desorption phenomena of the organic dye methylene blue (MB) on three different marine sediments and non-living biomass of the seagrass species Posidonia oceanica. All tested adsorbents were of natural origin and were collected [...] Read more.
This study concerns the investigation of the sorption and desorption phenomena of the organic dye methylene blue (MB) on three different marine sediments and non-living biomass of the seagrass species Posidonia oceanica. All tested adsorbents were of natural origin and were collected from unpolluted coasts of the North Aegean Sea (Greece). The batch equilibrium technique was applied and MB concentrations were determined by spectrophotochemical analysis (λ = 665 nm). The experimental results showed that all four isotherm models, Freundlich, Langmuir, Henry, and Temkin, could describe the process. The normalized to organic matter content adsorption coefficients (KOM) ranged between 33.0765 and 34.5279 for the studied sediments. The maximum adsorption capacity (qmax) of sediments was in the range of 0.98 mg g−1 and 6.80 mg g−1, indicating a positive correlation with the adsorbents’ organic matter content, textural analysis of fine fraction (<63 μm), and specific surface area. The bioadsorption of MB on P. oceanica biomass resulted in 13.25 mg g−1 up to 17.86 mg g−1 adsorption efficiency. Desorption studies revealed that the studied dye in most cases was very strongly adsorbed on studied matrices with extremely low quantities of seawater extractable amounts (≤1.62%). According to the experimental findings, phycoremediation by using P. oceanica can be characterized as an efficient method for the bioremediation of dye-polluted wastewater. Full article
Show Figures

Figure 1

16 pages, 11641 KiB  
Article
Using Drones to Estimate and Reduce the Risk of Wildfire Propagation in Wildland–Urban Interfaces
by Osvaldo Santos and Natércia Santos
Appl. Syst. Innov. 2025, 8(3), 62; https://doi.org/10.3390/asi8030062 - 30 Apr 2025
Viewed by 1431
Abstract
Forest fires have become one of the most destructive natural disasters worldwide, causing catastrophic losses, sometimes with the loss of lives. Therefore, some countries have created legislation to enforce mandatory fuel management within buffer zones in the vicinity of buildings and roads. The [...] Read more.
Forest fires have become one of the most destructive natural disasters worldwide, causing catastrophic losses, sometimes with the loss of lives. Therefore, some countries have created legislation to enforce mandatory fuel management within buffer zones in the vicinity of buildings and roads. The purpose of this study is to investigate whether inexpensive off-the-shelf drones equipped with standard RGB cameras could be used to detect the excess of trees and vegetation within those buffer zones. The methodology used in this study was the development and evaluation of a complete system, which uses AI to detect the contours of buildings and the services provided by the CHAMELEON bundles to detect trees and vegetation within buffer zones. The developed AI model is effective at detecting the building contours, with a mAP50 of 0.888. The article analyses the results obtained from two use cases: a road surrounded by dense forest and an isolated building with dense vegetation nearby. The main conclusion of this study is that off-the-shelf drones equipped with standard RGB cameras can be effective at detecting non-compliant vegetation and trees within buffer zones. This can be used to manage biomass within buffer zones, thus helping to reduce the risk of wildfire propagation in wildland–urban interfaces. Full article
Show Figures

Figure 1

15 pages, 1415 KiB  
Article
Assessment of Soil Organic Matter and Its Microbial Role in Selected Locations in the South Bohemia Region (Czech Republic)
by David Kabelka, Petr Konvalina, Marek Kopecký, Eva Klenotová and Jaroslav Šíma
Land 2025, 14(1), 183; https://doi.org/10.3390/land14010183 - 17 Jan 2025
Viewed by 1283
Abstract
Organic matter has a very important function in soil, without which, soil formation processes cannot take place properly. It can be divided and classified based on several aspects; the most general division is between the living and non-living parts of organic matter. The [...] Read more.
Organic matter has a very important function in soil, without which, soil formation processes cannot take place properly. It can be divided and classified based on several aspects; the most general division is between the living and non-living parts of organic matter. The results presented in this paper specifically refer to the living microbial part of organic matter. This research was carried out in the years 2021–2024 in the South Bohemia region located in the Czech Republic. Two types of land use (four permanent grassland areas, two forest areas) were evaluated. Based on laboratory soil analyses, some significant dependencies were found. For example, in grasslands with statistically identical pH, there was a dependence (p-value 0.05) between soil organic carbon (SOC), carbon of microbial biomass (MBC) and microbial basal respiration (MBR). Additionally, coniferous forest experimental locations had a lower pH, which, in turn, slowed the activity of microorganisms and promoted the accumulation of SOC in the soil. The results from this experiment support the current knowledge of organic matter and are important for a better understanding of the soil organic matter cycle. Full article
(This article belongs to the Special Issue Soil Ecological Risk Assessment Based on LULC)
Show Figures

Figure 1

30 pages, 2183 KiB  
Review
Biobased Strategies for E-Waste Metal Recovery: A Critical Overview of Recent Advances
by Diogo A. Ferreira-Filipe, Armando C. Duarte, Andrew S. Hursthouse, Teresa Rocha-Santos and Ana L. Patrício Silva
Environments 2025, 12(1), 26; https://doi.org/10.3390/environments12010026 - 16 Jan 2025
Cited by 2 | Viewed by 3131
Abstract
The increasing e-waste volumes represent a great challenge in the current waste management landscape, primarily due to the massive production and turnover of electronic devices and the complexity of their components and constituents. Traditional strategies for e-waste treatment focus on metal recovery through [...] Read more.
The increasing e-waste volumes represent a great challenge in the current waste management landscape, primarily due to the massive production and turnover of electronic devices and the complexity of their components and constituents. Traditional strategies for e-waste treatment focus on metal recovery through costly, energetically intensive, and environmentally hazardous processes, such as pyrometallurgical and hydrometallurgical approaches, often neglecting other e-waste constituents. As efforts are directed towards creating a more sustainable and circular economic model, biobased alternative approaches to these traditional techniques have been increasingly investigated. This critical review focuses on recent advances towards sustainable e-waste treatment, exclusively considering studies using e-waste sources. It addresses, from a critical perspective, approaches using inactive biomass, live biomass, and biogenic compounds, showcasing the diversity of strategies and discussing reaction parameters, advantages and disadvantages, challenges, and potential for valorization of generated by-products. While ongoing research focuses on optimizing operational times and metal recovery efficiencies, bioprocessing approaches still offer significant potential for metal recovery from e-waste. These approaches include lower environmental impact by reducing energy consumption and effluent treatments and the ability to recover metals from complex e-waste streams, paving the way for a more circular economy in the electronics industry. Full article
(This article belongs to the Special Issue Deployment of Green Technologies for Sustainable Environment III)
Show Figures

Figure 1

24 pages, 4679 KiB  
Article
The Coral Reefs and Fishes of St. Brandon, Indian Ocean Archipelago: Implications for Sustainable Fisheries
by Melanie Ricot, Sruti Jeetun, Shakeel Yavan Jogee, Deepeeka Kaullysing, Nawsheen Taleb-Hossenkhan, Maina Joseph Mbui, Beatriz Estela Casareto, Yoshimi Suzuki, Diah Permata Wijayanti and Ranjeet Bhagooli
Diversity 2024, 16(12), 710; https://doi.org/10.3390/d16120710 - 21 Nov 2024
Viewed by 1135
Abstract
Understanding the factors influencing the variability in the composition of fish assemblages is essential for bolstering the resilience of coral reef ecosystems, effective coral reef management and maintaining sustainable fisheries. The benthic composition and reef fish assemblages at eight sites at the poorly [...] Read more.
Understanding the factors influencing the variability in the composition of fish assemblages is essential for bolstering the resilience of coral reef ecosystems, effective coral reef management and maintaining sustainable fisheries. The benthic composition and reef fish assemblages at eight sites at the poorly studied St. Brandon, also known as a bank fisheries area in the Indian Ocean, were assessed to discern distribution patterns, including differences between channel (Passe Grand Capitaine, Passe Ile Longue-Canal Coco and Passe La Cayane) and non-channel (Chaloupe, Anchor Points 1 and 2, Bain des Dames, Pearl Island) sites and fisheries sustainability. The benthic composition exhibited clusters, revealing the distinct separation of Chaloupe which predominantly featured sand (75.26%) interspersed with sporadic coral patches characterized by live and dead corals and rubble. The three channel sites composed a cluster. Coral species across eight families were identified, with significant variability (p < 0.05) observed in their benthic cover, particularly live coral cover (LCC). Fish density and diversity analyses unveiled 58 fish species from 12 families, with no statistically significant disparity in density among sites. Total fish biomass (TFB) and target fish biomass (TB) ranged from 138.02 ± 65.04 to 4110.16 ± 3048.70 kg/ha and from 28.31 ± 24.52 to 3851.27 ± 2753.18 kg/ha, respectively. TFB and TB differed significantly (p < 0.05) among sites irrespective of channel and non-channel sites, with Pearl Island recording the highest biomass. TFB and TB recorded at five out of the eight surveyed sites exceeded the mean biomass benchmark (B0) for the Western Indian Ocean, set at 1150.00 and 560.00 kg/ha for TFB and TB, respectively. Functional group analysis unveiled six discrete groups influencing TFB, with scrapers being the most dominant. This study presents the first report on fish biomass surveys in St. Brandon, highlighting a case for sustainable fisheries in the waters of the Republic of Mauritius. Full article
(This article belongs to the Special Issue Biodiversity and Conservation of Coral Reefs)
Show Figures

Figure 1

14 pages, 1550 KiB  
Article
Non-Invasive Detection of Nitrogen Deficiency in Cannabis sativa Using Hand-Held Raman Spectroscopy
by Graham Antoszewski, James F. Guenther, John K. Roberts, Mickal Adler, Michael Dalle Molle, Nicholas S. Kaczmar, William B. Miller, Neil S. Mattson and Heather Grab
Agronomy 2024, 14(10), 2390; https://doi.org/10.3390/agronomy14102390 - 16 Oct 2024
Cited by 2 | Viewed by 1450
Abstract
Proper crop management requires rapid detection methods for abiotic and biotic stresses to ensure plant health and yield. Hemp (Cannabis sativa L.) is an emerging economically and environmentally sustainable crop capable of yielding high biomass. Nitrogen deficiency significantly reduces hemp plant growth, [...] Read more.
Proper crop management requires rapid detection methods for abiotic and biotic stresses to ensure plant health and yield. Hemp (Cannabis sativa L.) is an emerging economically and environmentally sustainable crop capable of yielding high biomass. Nitrogen deficiency significantly reduces hemp plant growth, affecting photosynthetic capacity and ultimately decreasing yield. When symptoms of nitrogen deficiency are visible to humans, there is often already lost yield. A real-time, non-destructive detection method, such as Raman spectroscopy, is therefore critical to identify nitrogen deficiency in living hemp plant tissue for fast, precise crop remediation. A two-part experiment was conducted to investigate portable Raman spectroscopy as a viable hemp nitrogen deficiency detection method and to compare the technique’s predictive ability against a handheld SPAD (chlorophyll index) meter. Raman spectra and SPAD readings were used to train separate nitrogen deficiency discrimination models. Raman scans displayed characteristic spectral markers indicative of nitrogen deficiency corresponding to vibrational modes of carotenoids, essential pigments for photosynthesis. The Raman-based model consistently predicted nitrogen deficiency in hemp prior to the onset of visible stress symptoms across both experiments, while SPAD only differentiated nitrogen deficiency in the second experiment when the stress was more pronounced. Our findings add to the repertoire of plant stresses that hand-held Raman spectroscopy can detect by demonstrating the ability to provide assessments of nitrogen deficiency. This method can be implemented at the point of cultivation, allowing for timely interventions and efficient resource use. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 9732 KiB  
Article
Hyperpolarized 13C NMR Reveals Pathway Regulation in Lactococcus lactis and Metabolic Similarities and Differences Across the Tree of Life
by Sebastian Meier, Alexandra L. N. Zahid, Lucas Rebien Jørgensen, Ke-Chuan Wang, Peter Ruhdal Jensen and Pernille Rose Jensen
Molecules 2024, 29(17), 4133; https://doi.org/10.3390/molecules29174133 - 30 Aug 2024
Cited by 2 | Viewed by 1557
Abstract
The control of metabolic networks is incompletely understood, even for glycolysis in highly studied model organisms. Direct real-time observations of metabolic pathways can be achieved in cellular systems with 13C NMR using dissolution Dynamic Nuclear Polarization (dDNP NMR). The method relies on [...] Read more.
The control of metabolic networks is incompletely understood, even for glycolysis in highly studied model organisms. Direct real-time observations of metabolic pathways can be achieved in cellular systems with 13C NMR using dissolution Dynamic Nuclear Polarization (dDNP NMR). The method relies on a short-lived boost of NMR sensitivity using a redistribution of nuclear spin states to increase the alignment of the magnetic moments by more than four orders of magnitude. This temporary boost in sensitivity allows detection of metabolism with sub-second time resolution. Here, we hypothesized that dDNP NMR would be able to investigate molecular phenotypes that are not easily accessible with more conventional methods. The use of dDNP NMR allows real-time insight into carbohydrate metabolism in a Gram-positive bacterium (Lactoccocus lactis), and comparison to other bacterial, yeast and mammalian cells shows differences in the kinetic barriers of glycolysis across the kingdoms of life. Nevertheless, the accumulation of non-toxic precursors for biomass at kinetic barriers is found to be shared across the kingdoms of life. We further find that the visualization of glycolysis using dDNP NMR reveals kinetic characteristics in transgenic strains that are not evident when monitoring the overall glycolytic rate only. Finally, dDNP NMR reveals that resting Lactococcus lactis cells use the influx of carbohydrate substrate to produce acetoin rather than lactate during the start of glycolysis. This metabolic regime can be emulated using suitably designed substrate mixtures to enhance the formation of the C4 product acetoin more than 400-fold. Overall, we find that dDNP NMR provides analytical capabilities that may help to clarify the intertwined mechanistic determinants of metabolism and the optimal usage of biotechnologically important bacteria. Full article
Show Figures

Graphical abstract

18 pages, 9708 KiB  
Article
S. mutans Antisense vicK RNA Over-Expression Plus Antibacterial Dimethylaminohexadecyl Methacrylate Suppresses Oral Biofilms and Protects Enamel Hardness in Extracted Human Teeth
by Shuang Yu, Mengmeng Xu, Zheng Wang, Yang Deng, Hockin H. K. Xu, Michael D. Weir, Negar Homayounfar, Guadalupe Garcia Fay, Hong Chen and Deqin Yang
Pathogens 2024, 13(8), 707; https://doi.org/10.3390/pathogens13080707 - 21 Aug 2024
Cited by 2 | Viewed by 1243
Abstract
Streptococcus mutans (S. mutans) antisense vicK RNA (ASvicK) is a non-coding RNA that regulates cariogenic virulence and metabolic activity. Dimethylaminohexadecyl methacrylate (DMAHDM), a quaternary ammonium methacrylate used in dental materials, has strong antibacterial activity. This study examined the effects [...] Read more.
Streptococcus mutans (S. mutans) antisense vicK RNA (ASvicK) is a non-coding RNA that regulates cariogenic virulence and metabolic activity. Dimethylaminohexadecyl methacrylate (DMAHDM), a quaternary ammonium methacrylate used in dental materials, has strong antibacterial activity. This study examined the effects of S. mutans ASvicK on DMAHDM susceptibility and their combined impact on inhibiting S. mutans biofilm formation and protecting enamel hardness. The parent S. mutans UA159 and ASvicK overexpressing S. mutans (ASvicK) were tested. The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations for planktonic bacteria (MBC-P) and biofilms (MBC-B) were measured. As the ASvicK MBC-B was 175 μg/mL, live/dead staining, metabolic activity (MTT), colony-forming units (CFUs), biofilm biomass, polysaccharide, and lactic acid production were investigated at 175 μg/mL and 87.5 μg/mL. The MIC, MBC-P, and MBC-B values for DMAHDM for the ASvicK strain were half those of the UA159 strain. In addition, combining S. mutans ASvicK with DMAHDM resulted in a significant 4-log CFU reduction (p < 0.05), with notable decreases in polysaccharide levels and lactic acid production. In the in vitro cariogenic model, the combination achieved the highest enamel hardness at 67.1% of sound enamel, while UA159 without DMAHDM had the lowest at 16.4% (p < 0.05). Thus, S. mutans ASvicK enhanced DMAHDM susceptibility, and their combination effectively inhibited biofilm formation and minimized enamel demineralization. The S. mutans ASvicK + DMAHDM combination shows great potential for anti-caries dental applications. Full article
Show Figures

Graphical abstract

18 pages, 6791 KiB  
Review
Origin and Evolution of the Azolla Superorganism
by Jonathan Bujak and Alexandra Bujak
Plants 2024, 13(15), 2106; https://doi.org/10.3390/plants13152106 - 29 Jul 2024
Cited by 1 | Viewed by 3885
Abstract
Azolla is the only plant with a co-evolving nitrogen-fixing (diazotrophic) cyanobacterial symbiont (cyanobiont), Nostoc azollae, resulting from whole-genome duplication (WGD) 80 million years ago in Azolla’s ancestor. Additional genes from the WGD resulted in genetic, biochemical, and morphological changes in the [...] Read more.
Azolla is the only plant with a co-evolving nitrogen-fixing (diazotrophic) cyanobacterial symbiont (cyanobiont), Nostoc azollae, resulting from whole-genome duplication (WGD) 80 million years ago in Azolla’s ancestor. Additional genes from the WGD resulted in genetic, biochemical, and morphological changes in the plant that enabled the transmission of the cyanobiont to successive generations via its megaspores. The resulting permanent symbiosis and co-evolution led to the loss, downregulation, or conversion of non-essential genes to pseudogenes in the cyanobiont, changing it from a free-living organism to an obligate symbiont. The upregulation of other genes in the cyanobiont increased its atmospheric dinitrogen fixation and the provision of nitrogen-based products to the plant. As a result, Azolla can double its biomass in less than two days free-floating on fresh water and sequester large amounts of atmospheric CO2, giving it the potential to mitigate anthropogenic climate change through carbon capture and storage. Azolla’s biomass can also provide local, low-cost food, biofertiliser, feed, and biofuel that are urgently needed as our population increases by a billion every twelve years. This paper integrates data from biology, genetics, geology, and palaeontology to identify the location, timing and mechanism for the acquisition of a co-evolving diazotrophic cyanobiont by Azolla’s ancestor in the Late Cretaceous (Campanian) of North America. Full article
(This article belongs to the Special Issue Plant–Cyanobacteria Symbiosis: From Morphology to Practical Uses)
Show Figures

Figure 1

26 pages, 1068 KiB  
Review
Getting Grip on Phosphorus: Potential of Microalgae as a Vehicle for Sustainable Usage of This Macronutrient
by Alexei Solovchenko, Maxence Plouviez and Inna Khozin-Goldberg
Plants 2024, 13(13), 1834; https://doi.org/10.3390/plants13131834 - 3 Jul 2024
Cited by 4 | Viewed by 2357
Abstract
Phosphorus (P) is an important and irreplaceable macronutrient. It is central to energy and information storage and exchange in living cells. P is an element with a “broken geochemical cycle” since it lacks abundant volatile compounds capable of closing the P cycle. P [...] Read more.
Phosphorus (P) is an important and irreplaceable macronutrient. It is central to energy and information storage and exchange in living cells. P is an element with a “broken geochemical cycle” since it lacks abundant volatile compounds capable of closing the P cycle. P fertilizers are critical for global food security, but the reserves of minable P are scarce and non-evenly distributed between countries of the world. Accordingly, the risks of global crisis due to limited access to P reserves are expected to be graver than those entailed by competition for fossil hydrocarbons. Paradoxically, despite the scarcity and value of P reserves, its usage is extremely inefficient: the current waste rate reaches 80% giving rise to a plethora of unwanted consequences such as eutrophication leading to harmful algal blooms. Microalgal biotechnology is a promising solution to tackle this challenge. The proposed review briefly presents the relevant aspects of microalgal P metabolism such as cell P reserve composition and turnover, and the regulation of P uptake kinetics for maximization of P uptake efficiency with a focus on novel knowledge. The multifaceted role of polyPhosphates, the largest cell depot for P, is discussed with emphasis on the P toxicity mediated by short-chain polyPhosphates. Opportunities and hurdles of P bioremoval via P uptake from waste streams with microalgal cultures, either suspended or immobilized, are discussed. Possible avenues of P-rich microalgal biomass such as biofertilizer production or extraction of valuable polyPhosphates and other bioproducts are considered. The review concludes with a comprehensive assessment of the current potential of microalgal biotechnology for ensuring the sustainable usage of phosphorus. Full article
(This article belongs to the Special Issue Microalgae Photobiology, Biotechnology, and Bioproduction)
Show Figures

Figure 1

17 pages, 3442 KiB  
Article
Adsorption of Ni(II) from Aqueous Media on Biodegradable Natural Polymers—Sarkanda Grass Lignin
by Elena Ungureanu, Costel Samuil, Denis C. Țopa, Ovidiu C. Ungureanu, Bogdan-Marian Tofanica, Maria E. Fortună and Carmen O. Brezuleanu
Crystals 2024, 14(4), 381; https://doi.org/10.3390/cryst14040381 - 18 Apr 2024
Cited by 5 | Viewed by 1670
Abstract
Heavy metals are pollutants that pose a risk to living systems due to their high toxicity and ability to accumulate and contaminate. This study proposes an alternative approach to the static adsorption of Ni(II) from aqueous media using Sarkanda grass lignin crystals, the [...] Read more.
Heavy metals are pollutants that pose a risk to living systems due to their high toxicity and ability to accumulate and contaminate. This study proposes an alternative approach to the static adsorption of Ni(II) from aqueous media using Sarkanda grass lignin crystals, the non-cellulosic aromatic component of biomass, as an adsorbent substrate. To determine the best experimental conditions, we conducted tests on several parameters, including the initial and adsorbent solution pH, the concentration of Ni(II) in the aqueous solution, the amount of adsorbent used, and the contact time at the interface. The lignin’s adsorption capacity was evaluated using the Freundlich and Langmuir models to establish equilibrium conditions. The Lagergren I and Ho–McKay II kinetic models were used to determine the adsorption mechanism based on surface analyses and biological parameters such as the number of germinated seeds, energy, and germination capacity in wheat caryopses (variety Glosa) incorporated in the contaminated lignin and in the filtrates resulting from phase separation. The results suggest that Sarkanda grass lignin is effective in adsorbing Ni(II) from aqueous media, particularly in terms of adsorbent/adsorbate dosage and interfacial contact time. Full article
Show Figures

Figure 1

Back to TopTop