Assessment of Soil Organic Matter and Its Microbial Role in Selected Locations in the South Bohemia Region (Czech Republic)
Abstract
:1. Introduction
2. Materials and Methods
- Soil pH (ISO 10390:2005 [46])— was determined using a 1 M KCl solution. In 250 mL plastic bottles, 10 g of soil was weighed and 50 mL of KCl was added. Subsequently, the samples were shaken for 60 min on a shaker. The pH was then measured using the SI Analytics Lab 875P (Xylem Analytics, Weilhem, Germany). The measurements were carried out in two repetitions each time.
- SOC—the basis of the analysis was the method of Tyurin [47], where the process of determination was as follows: 0.1 g of soil (<0.25 mm) was weighed in triplicate for each location. Subsequently, 0.3 M K2Cr2O7 and concentrated H2SO4 were mixed to form a chromosulfur mixture. The titration cups with the weighed soil were added to 12.5 mL of the chromo sulphur mixture and then the samples were burned in an oven at 135° for 30 min. Then, titration was performed using 0.2 M Mohr’s salt ((NH4)2Fe(SO4)2·6H2O + H2SO4) on the Mettler Toledo DL55 titrator (Mettler Toledo, Schwerzenbach, Switzerland).
- MBR—the analysis was based on the ISO standard 16072:2002 [48], but some modifications were made in the determination (soil moistening). The procedure was as follows: 150 g of soil moistened to 50% retention capacity was pre-incubated for 3 days and then 25 g of soil was weighed into breathable bags (in three replications). The breathable bags were hung in a 750 mL sealed glass bottle with 20 mL of 0.05 M NaOH at the bottom for 3 days. Before titration, 2 mL of 0.5 M BaCl2 and phenolphthalein were added. Subsequently, titration was performed on the Mettler Toledo DL55 titrator (Mettler Toledo, Schwerzenbach, Switzerland) using 0.1 M HCl.
- MBC—the analysis was performed according to the ISO standard 14240-2:1997 [49] with some modifications (the weighing and moistening of the soil): 250 g of soil moistened to 50% retention capacity was pre-incubated for 3 days and then 25 g of soil was weighed (in six replications). Three samples were fumigated in a desiccator using boiling chloroform and left in the dark for 24 h. To the remaining samples, 200 mL of 0.5 M K2SO4 was added, and the samples were shaken for 30 min. The same process was carried out for the fumigated samples after 24 h. MBC was determined by dichromate oxidation. All samples were filtered and 8 mL was taken. Subsequently, 2 mL 0.07 M K2Cr2O7 and 15 mL acid mixture (H2SO4, H3PO4) were added. After refluxing for 30 min, titration was carried out using 0.04 M Mohr’s salt ((NH4)2Fe(SO4)2·6H2O + H2SO4) on the Mettler Toledo DL55 titrator (Mettler Toledo, Schwerzenbach, Switzerland).
- Microbial metabolic quotient (MMQ)—this was the ratio between the MBR and the MBC, where the MBR was divided by the MBC.
3. Results
3.1. Soil Reaction (pH) in Experimental Locations
3.2. Relationship Between pH and SOC
3.3. Microbial Activity (MBR, MBC) as a Function of SOC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality–A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Karlen, D.L.; Cambardella, C.A. Conservation strategies for improving soil quality and organic matter storage. In Structure and Organic Matter Storage in Agricultural Soils; Carter, M.R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 395–420. [Google Scholar]
- Kozak, C.; Leithold, J.; do Prado, L.L.; Knapik, H.G.; de Rodrigues Azevedo, J.C.; Braga, S.M.; Fernandes, C.V.S. Adaptive monitoring approach to assess dissolved organic matter dynamics during rainfall events. Environ. Monit. Assess. 2021, 193, 423. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.; Minggang, X.; Shah, S.A.A.; Abrar, M.M.; Nan, S.; Baoren, W.; Zejiang, C.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef] [PubMed]
- Gerke, J. The central role of soil organic matter in soil fertility and carbon storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Chowaniak, M.; Głąb, T.; Klima, K.; Niemiec, M.; Zaleski, T.; Zuzek, D. Effect of tillage and crop management on runoff, soil erosion and organic carbon loss. Soil Use Manag. 2020, 36, 581–593. [Google Scholar] [CrossRef]
- Du, X.; Jian, J.; Du, C.; Stewart, R.D. Conservation management decreases surface runoff and soil erosion. Int. Soil Water Conserv. Res. 2022, 10, 188–196. [Google Scholar] [CrossRef]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar]
- Wang, H.; Xu, J.; Liu, X.; Zhang, D.; Li, L.; Li, W.; Sheng, L. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Obalum, S.E.; Chibuike, G.U.; Peth, S.; Ouyang, Y. Soil organic matter as sole indicator of soil degradation. Environ. Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef] [PubMed]
- Kolář, L.; Kužel, S.; Horáček, J.; Čechová, V.; Borová-Batt, J.; Peterka, J. Labile fractions of soil organic matter, their quantity and 540 quality. Plant Soil Environ. 2009, 55, 245–251. [Google Scholar] [CrossRef]
- Ochs, M. Influence of humified and non-humified natural organic compounds on mineral dissolution. Chem. Geol. 1996, 132, 119–124. [Google Scholar] [CrossRef]
- Bani, A.; Pioli, S.; Ventura, M.; Panzacchi, P.; Borruso, L.; Tognetti, R.; Tonon, G.; Brusetti, L. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil Ecol. 2019, 126, 75–84. [Google Scholar] [CrossRef]
- Osman, K.T.; Osman, K.T. Soil organic matter. In Soils: Principles, Properties and Management; Springer: Dordrecht, The Netherlands, 2013; pp. 89–96. [Google Scholar]
- Zavarzina, A.G.; Danchenko, N.N.; Demin, V.V.; Artemyeva, Z.S.; Kogut, B.M. Humic substances: Hypotheses and reality (a review). Eurasian Soil Sci. 2021, 54, 1826–1854. [Google Scholar] [CrossRef]
- Prashar, P.; Shah, S. Impact of fertilizers and pesticides on soil microflora in agriculture. Sustain. Agric. Rev. 2016, 19, 331–361. [Google Scholar]
- Coleman, D.C.; Geisen, S.; Wall, D.H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In Soil Microbiology, Ecology and Biochemistry, 5th ed.; Paul, E.A., Frey, S.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 131–159. [Google Scholar]
- Moreira, F.M.; Huising, E.J.; Bignell, D.E. A Handbook of Tropical Soil Biology: Sampling and Characterization of Below-Ground Biodiversity; Taylor & Francis: London, UK, 2012; pp. 1–256. [Google Scholar]
- van Vliet, P.C.J.; Hendrix, P.F. Role of fauna in soil physical processes. In Soil Biological Fertility: A Key to Sustainable Land Use in Agriculture; Abbott, L.K., Murphy, D.V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 61–80. [Google Scholar]
- Bottinelli, N.; Jouquet, P.; Capowiez, Y.; Podwojewski, P.; Grimaldi, M.; Peng, X. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Tillage Res. 2015, 146, 118–124. [Google Scholar] [CrossRef]
- Jeffery, S.; Gardi, C.; Jones, A.; Montanarella, L.; Marmo, L.; Miko, L.; Ritz, K.; Peres, G.; Römbke, J.; van der Putten, H.W. European Atlas of Soil Biodiversity; European Commission, Publications Office of the European Union: Luxembourg, 2010; pp. 1–122. [Google Scholar]
- Fierer, N.; Lennon, J.T. The generation and maintenance of diversity in microbial communities. Am. J. Bot. 2011, 98, 439–448. [Google Scholar] [CrossRef]
- Potapov, A.M.; Beaulieu, F.; Birkhofer, K.; Bluhm, S.L.; Degtyarev, M.I.; Devetter, M.; Goncharov, A.A.; Gongalsky, K.B.; Klarner, B.; Korobushkin, D.I.; et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 2022, 97, 1057–1117. [Google Scholar] [CrossRef]
- Geisen, S.; Mitchell, E.A.; Adl, S.; Bonkowski, M.; Dunthorn, M.; Ekelund, F.; Fernández, L.D.; Jousset, A.; Krashevska, V.; Singer, D.; et al. Soil protists: A fertile frontier in soil biology research. FEMS Microbiol. Rev. 2018, 42, 293–323. [Google Scholar] [CrossRef]
- Bouguerra, S.; Gavina, A.; Natal-da-Luz, T.; Sousa, J.P.; Ksibi, M.; Pereira, R. The use of soil enzymes activity, microbial biomass, and basal respiration to assess the effects of cobalt oxide nanomaterial in soil microbiota. Appl. Soil Ecol. 2022, 169, 104246. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, S.; Fang, H.; Guo, Y.; Li, Y.; Zhou, Y. Interactions between soil organic matter chemical structure and microbial communities determine the spatial variation of soil basal respiration in boreal forests. Appl. Soil Ecol. 2023, 183, 104743. [Google Scholar] [CrossRef]
- Das, S.; Deb, S.; Sahoo, S.S.; Sahoo, U.K. Soil microbial biomass carbon stock and its relation with climatic and other environmental factors in forest ecosystems: A review. Acta Ecol. Sin. 2023, 43, 933–945. [Google Scholar] [CrossRef]
- Cao, H.; Chen, R.; Wang, L.; Jiang, L.; Yang, F.; Zheng, S.; Wang, G.; Lin, X. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Sci. Rep. 2016, 6, 25815. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.; Abraham, J.S.; Somasundaram, S.; Toteja, R.; Gupta, R.; Makhija, S. Indicators for assessment of soil quality: A mini-review. Environ. Monit. Assess. 2020, 192, 1–22. [Google Scholar] [CrossRef]
- Curiel Yuste, J.; Baldocchi, D.D.; Gershenson, A.; Goldstein, A.; Misson, L.; Wong, S. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob. Chang. Biol. 2007, 13, 2018–2035. [Google Scholar] [CrossRef]
- García-Palacios, P.; Crowther, T.W.; Dacal, M.; Hartley, I.P.; Reinsch, S.; Rinnan, R.; Rousk, J.; van den Hoogen, J.; Ye, J.S.; Bradford, M.A. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2021, 2, 507–517. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ. 2016, 62, 250–255. [Google Scholar] [CrossRef]
- Singh, S.; Mayes, M.A.; Shekoofa, A.; Kivlin, S.N.; Bansal, S.; Jagadamma, S. Soil organic carbon cycling in response to simulated soil moisture variation under field conditions. Sci. Rep. 2021, 11, 10841. [Google Scholar] [CrossRef]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef]
- Stark, S.; Männistö, M.K.; Eskelinen, A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 2014, 383, 373–385. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Mattila, T.J. Redox potential as a soil health indicator–how does it compare to microbial activity and soil structure? Plant Soil 2024, 494, 617–625. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Nierop, K.G.; Simpson, M.J. Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 2021, 156, 108189. [Google Scholar] [CrossRef]
- Moghimian, N.; Hosseini, S.M.; Kooch, Y.; Darki, B.Z. Impacts of changes in land use/cover on soil microbial and enzyme activities. Catena 2017, 157, 407–414. [Google Scholar] [CrossRef]
- Lepcha, N.T.; Devi, N.B. Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecol. Process. 2020, 9, 65. [Google Scholar] [CrossRef]
- Van Leeuwen, J.P.; Djukic, I.; Bloem, J.; Lehtinen, T.; Hemerik, L.; De Ruiter, P.C.; Lair, G.J. Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. Eur. J. Soil Biol. 2017, 79, 14–20. [Google Scholar] [CrossRef]
- Valboa, G.; Lagomarsino, A.; Brandi, G.; Agnelli, A.E.; Simoncini, S.; Papini, R.; Vignozzi, N.; Pellegrini, S. Long-term variations in soil organic matter under different tillage intensities. Soil Tillage Res. 2015, 154, 126–135. [Google Scholar] [CrossRef]
- Soil Science Division Staff. Soil Survey Manual; Agriculture Handbook No. 18; United States Department of Agriculture: Washington, DC, USA, 2017; pp. 1–603.
- ISO 10390-2005; Soil Quality—Determination of pH. International Standard: Geneva, Switzerland, 2005.
- Tyurin, I.V. A new modification of the volumetric method of determining soil organic matter by means of chromic acid. Pochvovedenie 1931, 26, 36–47. [Google Scholar]
- ISO 16072-2002; Soil Quality—Laboratory Methods for Determination of Microbial Soil Respiration. International Standard: Geneva, Switzerland, 2002.
- ISO 14240-2-1997; Soil Quality—Determination of Soil Microbial Biomass. Part 2: Fumigation-Extraction Method. International Standard: Geneva, Switzerland, 1997.
- Tkaczyk, P.; Mocek-Płóciniak, A.; Skowrońska, M.; Bednarek, W.; Kuśmierz, S.; Zawierucha, E. The mineral fertilizer-dependent chemical parameters of soil acidification under field conditions. Sustainability 2020, 12, 7165. [Google Scholar] [CrossRef]
- Shetty, R.; Prakash, N.B. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci. Rep. 2020, 10, 12249. [Google Scholar] [CrossRef] [PubMed]
- Hartemink, A.E.; Barrow, N.J. Soil pH-nutrient relationships: The diagram. Plant Soil 2023, 486, 209–215. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 1, 5794869. [Google Scholar] [CrossRef]
- Junior, E.C.; Gonçalves, A.C., Jr.; Seidel, E.P.; Ziemer, G.L.; Zimmermann, J.; Oliveira, V.H.D.; Schwantes, D.; Zeni, C.D. Effects of liming on soil physical attributes: A review. J. Agric. Sci. 2020, 12, 278. [Google Scholar] [CrossRef]
- Bending, G.D.; Turner, M.K.; Jones, J.E. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol. Biochem. 2002, 34, 1073–1082. [Google Scholar] [CrossRef]
- Tang, C.; Yu, Q. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation. Plant Soil 1999, 215, 29–38. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. Nutr. Manag. Modul. 2009, 8, 1–12. [Google Scholar]
- South, D.B. Optimum pH for growing pine seedlings. Tree Plant. Notes 2017, 60, 49–62. [Google Scholar]
- Yang, L.; Jia, W.; Shi, Y.; Zhang, Z.; Xiong, H.; Zhu, G. Spatiotemporal differentiation of soil organic carbon of grassland and its relationship with soil physicochemical properties on the northern slope of Qilian mountains, China. Sustainability 2020, 12, 9396. [Google Scholar] [CrossRef]
- Ohno, T.; Fernandez, I.J.; Hiradate, S.; Sherman, J.F. Effects of soil acidification and forest type on water soluble soil organic matter properties. Geoderma 2007, 140, 176–187. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 2003, 64, 205–229. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Kleber, M.; Xing, B.; Astatkie, T. Macronutrient in soils and wheat from long-term agroexperiments reflects variations in residue and fertilizer inputs. Sci. Rep. 2020, 10, 3263. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cui, S.; Chang, S.X.; Zhang, Q. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. J. Soils Sediments 2019, 19, 1393–1406. [Google Scholar] [CrossRef]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610, 316–332. [Google Scholar] [CrossRef]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry–a review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef]
- Busari, M.A.; Salako, F.K. Effect of tillage, poultry manure and NPK fertilizer on soil chemical properties and maize yield on an Alfisol at Abeokuta, south-western Nigeria. Niger. J. Soil Sci. 2013, 23, 206–218. [Google Scholar]
- Gajda, A.M.; Czyż, E.A.; Klimkowicz-Pawlas, A. Effects of different tillage intensities on physicochemical and microbial properties of a Eutric Fluvisol Soil. Agronomy 2021, 11, 1497. [Google Scholar] [CrossRef]
- Šimon, T.; Javůrek, M.; Mikanova, O.; Vach, M. The influence of tillage systems on soil organic matter and soil hydrophobicity. Soil Tillage Res. 2009, 105, 44–48. [Google Scholar] [CrossRef]
- Plante, A.F.; Conant, R.T.; Stewart, C.E.; Paustian, K.; Six, J. Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions. Soil Sci. Soc. Am. J. 2006, 70, 287–296. [Google Scholar] [CrossRef]
- Semenov, V.M.; Kravchenko, I.K.; Ivannikova, L.A.; Kuznetsova, T.V.; Semenova, N.A.; Gispert, M.; Pardini, J. Experimental determination of the active organic matter content in some soils of natural and agricultural ecosystems. Eurasian Soil Sci. 2006, 39, 251–260. [Google Scholar] [CrossRef]
- Lu, X.; Vitousek, P.M.; Mao, Q.; Gilliam, F.S.; Luo, Y.; Turner, B.L.; Zhou, G.; Mo, J. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl. Acad. Sci. USA 2021, 118, e2020790118. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Li, Q.; Jia, H.; Li, G.; Zheng, W.; Shen, X.; Diabate, B.; Zhou, D. Effect of cultivation on dynamics of organic and inorganic carbon stocks in Songnen plain. Agron. J. 2014, 106, 1574–1582. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; Shi, Y.; Jin, C.; Yang, Y.; Wei, X.; Mu, C.; Wang, J. A slight increase in soil pH benefits soil organic carbon and nitrogen storage in a semi-arid grassland. Ecol. Indic. 2021, 130, 108037. [Google Scholar] [CrossRef]
- Pietri, J.A.; Brookes, P.C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 2008, 40, 1856–1861. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. Microbial biomass measurements in forest soils: The use of chloroform fumigation–incubations methods for strongly acid soils. Soil Biol. Biochem. 1987, 19, 697–702. [Google Scholar] [CrossRef]
- Mahia, J.; Perez Ventura, L.; Cabaneiro, A.; DiazRavina, M. Soil microbial biomass under pine forest in the northwestern Spain: Influence of stand age, site index and parent material. Investig. Agrar. Sist. Recur. For. 2006, 15, 152–159. [Google Scholar]
- Tian, Y.; Haibara, K.; Toda, H.; Ding, F.; Liu, Y.; Choi, D. Microbial biomass and activity along a natural pH gradient in forest soils in a karst region of the upper Yangtze River, China. J. For. Res. 2008, 13, 205–214. [Google Scholar] [CrossRef]
- Bolat, İ.; Ömer, K.A.R.A.; Tunay, M. Effects of seasonal changes on microbial biomass and respiration of forest floor and topsoil under Bornmullerian fir stand. Eurasian J. For. Sci. 2015, 3, 1–13. [Google Scholar] [CrossRef]
- Bauhus, J.; Khanna, P.K. The significance of microbial biomass in forest soils. In Going Underground—Ecological Studies in Forest Soils; Rastin, N., Bauhus, J., Eds.; Research Signpost: Trivandrum, India, 1999; pp. 77–110. [Google Scholar]
- Zhang, R.; Bai, Y.; Zhang, T.; Henkin, Z.; Degen, A.A.; Jia, T.; Guo, C.; Long, R.; Shang, Z. Driving factors that reduce soil carbon, sugar, and microbial biomass in degraded alpine grasslands. Rangel. Ecol. Manag. 2019, 72, 396–404. [Google Scholar] [CrossRef]
- Melendez Gonzalez, M.; Crofts, A.L.; McLaren, J.R. Plant biomass, rather than species composition, determines ecosystem properties: Results from a long-term graminoid removal experiment in a northern Canadian grassland. J. Ecol. 2019, 107, 2211–2225. [Google Scholar] [CrossRef]
- Cui, J.; Holden, N.M. The relationship between soil microbial activity and microbial biomass, soil structure and grassland management. Soil Tillage Res. 2015, 146, 32–38. [Google Scholar] [CrossRef]
- Lovell, R.D.; Jarvis, S.C.; Bardgett, R.D. Soil microbial biomass and activity in long-term grassland: Effects of management changes. Soil Biol. Biochem. 1995, 27, 969–975. [Google Scholar] [CrossRef]
- Dang, N.; Wu, H.; Liu, H.; Ma, R.; Wang, C.; Xu, L.; Wang, Z.; Jiang, Y.; Li, H. Ecological strategies of soil microbes along climatic gradients: Contrasting patterns in grassland and forest ecosystems. Plant Soil 2024, 505, 645–665. [Google Scholar] [CrossRef]
- Wang, W.J.; Dalal, R.C.; Moody, P.W.; Smith, C.J. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem. 2003, 35, 273–284. [Google Scholar] [CrossRef]
- Dube, F.; Zagal, E.; Stolpe, N.; Espinosa, M. The influence of land-use change on the organic carbon distribution and microbial respiration in a volcanic soil of the Chilean Patagonia. For. Ecol. Manag. 2009, 257, 1695–1704. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Turner, W.G. Grasslands and croplands have different microbial biomass carbon levels per unit of soil organic carbon. Agriculture 2017, 7, 57. [Google Scholar] [CrossRef]
- Richter, A.; Huallacháin, D.Ó.; Doyle, E.; Clipson, N.; Van Leeuwen, J.P.; Heuvelink, G.B.; Creamer, R.E. Linking diagnostic features to soil microbial biomass and respiration in agricultural grassland soil: A large-scale study in Ireland. Eur. J. Soil Sci. 2018, 69, 414–428. [Google Scholar] [CrossRef]
- Bastida, F.; Eldridge, D.J.; García, C.; Kenny Png, G.; Bardgett, R.D.; Delgado-Baquerizo, M. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021, 15, 2081–2091. [Google Scholar] [CrossRef]
- Makova, J.; Javorekova, S.; Medo, J.; Majerčíková, K. Characteristics of microbial biomass carbon and respiration activities in arable soil and pasture grassland soil. J. Cent. Eur. Agric. 2011, 12, 745–758. [Google Scholar] [CrossRef]
- Rovira, P.; Sauras-Yera, T.; Poch, R.M. Constraints on Organic Matter Stability in Pyrenean Subalpine Grassland Soils: Physical Protection, Biochemical Quality, and the Role of Free Iron Forms. Environments 2024, 11, 126. [Google Scholar] [CrossRef]
- Cheng, F.; Peng, X.; Zhao, P.; Yuan, J.; Zhong, C.; Cheng, Y.; Cui, C.; Zhang, S. Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PLoS ONE 2013, 8, e67353. [Google Scholar] [CrossRef]
- Ashraf, M.N.; Waqas, M.A.; Rahman, S. Microbial metabolic quotient is a dynamic indicator of soil health: Trends, implications and perspectives. Eurasian Soil Sci. 2022, 55, 1794–1803. [Google Scholar] [CrossRef]
- Wardle, D.A.; Ghani, A.A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol. Biochem. 1995, 27, 1601–1610. [Google Scholar] [CrossRef]
- Dilly, O. Microbial energetics in soils. In Microorganisms in Soils: Roles in Genesis and Functions; Varma, A., Buscot, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 123–138. [Google Scholar]
- Braman, S.; Tenuta, M.; Entz, M.H. Selected soil biological parameters measured in the 19th year of a long term organic-conventional comparison study in Canada. Agric. Ecosyst. Environ. 2016, 233, 343–351. [Google Scholar] [CrossRef]
Locations | Type of Location | Soil Texture (USDA *) |
---|---|---|
G1 | Grassland | Sandy Loam |
G2 | Grassland | Sandy Loam |
G3 | Grassland | Sandy Loam |
G4 | Grassland | Loam |
F2 | Forest (coniferous) | Sandy Loam |
F1 | Forest (coniferous) | Sandy Loam |
Locations | pH | SOC | MBR | MBC | MMQ—qCO3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
(KCl) | SD | (%) | SD | (µg CO2·g−1·h−1) | SD | (µg·g−1) | SD | (×10−4 MBR:MBC) | SD | |
G1 | 4.90 | 0.19 | 3.93 | 0.18 | 0.3034 | 0.0203 | 756 | 65 | 4.1 | 0.6 |
G2 | 4.77 | 0.28 | 2.52 | 0.25 | 0.1621 | 0.0112 | 354 | 38 | 4.6 | 0.6 |
G3 | 4.66 | 0.12 | 2.36 | 0.23 | 0.1589 | 0.0160 | 301 | 23 | 5.3 | 0.5 |
G4 | 4.70 | 0.09 | 3.44 | 0.35 | 0.2271 | 0.0243 | 577 | 37 | 4.0 | 0.7 |
F1 | 3.22 | 0.05 | 7.37 | 1.10 | 0.1021 | 0.0284 | 141 | 18 | 7.4 | 2.2 |
F2 | 3.32 | 0.09 | 7.28 | 1.74 | 0.1333 | 0.0143 | 181 | 42 | 7.9 | 2.7 |
Parameters | Locations | G1 | G2 | G3 | G4 | F1 | F2 |
---|---|---|---|---|---|---|---|
pH | G1 | x | 6.08 × 10−1 | 7.14 × 10−2 | 1.64 × 10−1 | 1.27 × 10−11 | 1.27 × 10−11 |
G2 | x | x | 8.14 × 10−1 | 9.56 × 10−1 | 1.27 × 10−11 | 1.27 × 10−11 | |
G3 | x | x | x | 9.99 × 10−1 | 1.27 × 10−11 | 1.27 × 10−11 | |
G4 | x | x | x | x | 1.27 × 10−11 | 1.27 × 10−11 | |
F1 | x | x | x | x | x | 8.19 × 10−1 | |
F2 | x | x | x | x | x | x | |
SOC | G1 | x | 3.75 × 10−3 | 9.14 × 10−4 | 7.58 × 10−1 | 2.50 × 10−11 | 2.81 × 10−11 |
G2 | x | x | 9.98 × 10−1 | 1.44 × 10−1 | 2.29 × 10−11 | 2.29 × 10−11 | |
G3 | x | x | x | 5.33 × 10−2 | 2.29 × 10−11 | 2.29 × 10−11 | |
G4 | x | x | x | x | 2.30 × 10−11 | 2.30 × 10−11 | |
F1 | x | x | x | x | x | 1.00 × 10−0 | |
F2 | x | x | x | x | x | x | |
MBR | G1 | x | 3.22 × 10−11 | 3.22 × 10−11 | 5.85 × 10−11 | 3.22 × 10−11 | 3.22 × 10−11 |
G2 | x | x | 9.99 × 10−1 | 2.56 × 10−9 | 2.71 × 10−8 | 1.55 × 10−2 | |
G3 | x | x | x | 5.70 × 10−10 | 1.25 × 10−7 | 4.37 × 10−2 | |
G4 | x | x | x | x | 3.22 × 10−11 | 3.23 × 10−11 | |
F1 | x | x | x | x | x | 7.31 × 10−3 | |
F2 | x | x | x | x | x | x | |
MBC | G1 | x | 2.29 × 10−11 | 2.29 × 10−11 | 2.30 × 10−11 | 2.29 × 10−11 | 2.29 × 10−11 |
G2 | x | x | 3.26 × 10−2 | 2.29 × 10−11 | 2.29 × 10−11 | 2.31 × 10−11 | |
G3 | x | x | x | 2.29 × 10−11 | 2.45 × 10−11 | 2.16 × 10−8 | |
G4 | x | x | x | x | 2.29 × 10−11 | 2.29 × 10−11 | |
F1 | x | x | x | x | x | 1.96 × 10−1 | |
F2 | x | x | x | x | x | x | |
MMQ | G1 | x | 9.45 × 10−1 | 3.90 × 10−1 | 1.00 × 10−0 | 2.83 × 10−5 | 9.86 × 10−7 |
G2 | x | x | 9.05 × 10−1 | 9.00 × 10−1 | 7.48 × 10−4 | 3.29 × 10−5 | |
G3 | x | x | x | 3.11 × 10−1 | 1.96 × 10−2 | 1.34 × 10−3 | |
G4 | x | x | x | x | 1.64 × 10−5 | 5.55 × 10−7 | |
F1 | x | x | x | x | x | 9.54 × 10−1 | |
F2 | x | x | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabelka, D.; Konvalina, P.; Kopecký, M.; Klenotová, E.; Šíma, J. Assessment of Soil Organic Matter and Its Microbial Role in Selected Locations in the South Bohemia Region (Czech Republic). Land 2025, 14, 183. https://doi.org/10.3390/land14010183
Kabelka D, Konvalina P, Kopecký M, Klenotová E, Šíma J. Assessment of Soil Organic Matter and Its Microbial Role in Selected Locations in the South Bohemia Region (Czech Republic). Land. 2025; 14(1):183. https://doi.org/10.3390/land14010183
Chicago/Turabian StyleKabelka, David, Petr Konvalina, Marek Kopecký, Eva Klenotová, and Jaroslav Šíma. 2025. "Assessment of Soil Organic Matter and Its Microbial Role in Selected Locations in the South Bohemia Region (Czech Republic)" Land 14, no. 1: 183. https://doi.org/10.3390/land14010183
APA StyleKabelka, D., Konvalina, P., Kopecký, M., Klenotová, E., & Šíma, J. (2025). Assessment of Soil Organic Matter and Its Microbial Role in Selected Locations in the South Bohemia Region (Czech Republic). Land, 14(1), 183. https://doi.org/10.3390/land14010183