Comparison of Atmospheric O3 Dose–Response Effects Under N Addition on Gas Exchange, Growth, and Biomass of Raphanus sativus L.
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Experimental Design and Samplings
2.3. Open-Top Chambers (OTCs)
2.4. Measurements
2.5. Statistical Analyses
3. Results
3.1. Gas Exchange
3.2. Leaf Number and Leaf Mass per Area (LMA)
3.3. Biomass
3.4. Dose–Response Relationships
3.4.1. Gas Exchange and AOT40 Value
3.4.2. Leaf Number and LMA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ainsworth, E.A.; Lemonnier, P.; Wedow, J.M. The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biol. 2020, 22, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J.; Wang, X.K.; Ullah, S.; Lin, S. Responses of morphological and biochemical traits of bamboo trees under elevated atmospheric O3 enrichment. Environ. Res. 2024, 252, 119069. [Google Scholar] [CrossRef]
- Li, L.; Wu, R.Q.; Li, J.L.; Wang, X.K.; Liu, X.; Wang, C. Effects of elevated O3 concentration and nitrogen deposition on photosynthesis, accumulation and allocation of biomass and nonstructural carbohydrates in soybean. Acta Ecol. Sin. 2022, 42, 7198–7209. [Google Scholar]
- Sicard, P.; Khaniabadi, Y.O.; Leca, S.; De Marco, A. Relationships between ozone and particles during air pollution episodes in arid continental climate. Atmos. Pollut. Res. 2023, 14, 101838. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Duan, F.; Zhu, L.; Ma, T.; Yang, S.; He, K. Stronger secondary pollution processes despite a decrease in gaseous precursors: A comparative analysis of summer 2020 and 2019 in Beijing. Environ. Pollut. 2021, 279, 116923. [Google Scholar] [CrossRef] [PubMed]
- Ramya, A.; Dhevagi, P.; Poornima, R.; Avudainayagam, S.; Watanabe, M.; Agathokleous, E. Effect of ozone stress on crop productivity: A threat to food security. Environ. Res. 2023, 236, 116816. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.; Zhang, Y.; Li, T. Evaluating the effects of surface O3 on three main food crops across China during 2015–2018. Environ. Pollut. 2020, 258, 113794. [Google Scholar] [CrossRef]
- Li, S.; Montes, C.M.; Aspray, E.K.; Ainsworth, E.A. How do drought and heat affect the response of soybean seed yield to elevated O3? An analysis of 15 seasons of free-air O3 concentration enrichment studies. Glob. Change Biol. 2024, 30, e17500. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Zheng, F.; Zheng, Q.; Yao, F.; Chen, Z.; Lu, F. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China. Environ. Pollut. 2012, 171, 118–125. [Google Scholar] [CrossRef]
- Montes, C.M.; Demler, H.J.; Li, S.; Martin, D.G.; Ainsworth, E.A. Approaches to investigate crop responses to ozone pollution: From O3-FACE to satellite-enabled modeling. Plant J. 2022, 109, 432–446. [Google Scholar] [CrossRef]
- Vandermeiren, K.; De Bock, M.; Horemans, N.; Guisez, Y.; Ceulemans, R.; De Temmerman, L. Ozone effects on yield quality of spring oilseed rape and broccoli. Atmos. Environ. 2012, 47, 76–83. [Google Scholar] [CrossRef]
- Scheelbeek, P.F.D.; Bird, F.A.; Tuomisto, H.L.; Green, R.; Harris, F.B.; Joy, E.J.; Dangour, A.D. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl. Acad. Sci. USA 2018, 115, 6804–6809. [Google Scholar] [CrossRef]
- Hassan, I.A.; Bell, N.B.; Ashmore, M.R.; Cotrozzi, L.; Haiba, N.S.; Basahi, J.M.; Ismail, I.M. Radish (Raphanus sativus L.) cultivar-specific response to O3: Patterns of biochemical and plant growth characteristics. Clean-Soil Air Water. 2018, 46, 1800124. [Google Scholar] [CrossRef]
- Li, L.; Yang, B.; Li, J.; Wang, X.K.; Ullah, S. Effects of elevated atmospheric ozone concentration on biomass and non-structural carbohydrates allocation of cherry radish. Front. Plant Sci. 2025, 16, 1547359. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, W.; Lu, X.; Zhong, B.; Guo, Y.; Lu, X.; Vitousek, P. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl. Acad. Sci. USA 2022, 119, e2121998119. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.; Bermejo, V.; Gimeno, B.S.; Elvira, S.; Alonso, R. Ozone sensitivity of the Mediterranean terophyte Trifolium striatum is modulated by soil nitrogen content. Atmos. Environ. 2007, 41, 8952–8962. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Sharma, S.; Mishra, A.K.; Kannojiya, S.; Kumar, V.; Bandyopadhyay, S.K.; Bhatia, A. Application of an additional dose of N could sustain rice yield and maintain plant nitrogen under elevated ozone (O3) and carbon dioxide (CO2) conditions. Front. Sustain. Food Syst. 2024, 8, 1477210. [Google Scholar] [CrossRef]
- Podda, A.; Pisuttu, C.; Hoshika, Y.; Pellegrini, E.; Carrari, E.; Lorenzini, G.; Paoletti, E. Can nutrient fertilization mitigate the effects of ozone exposure on an ozone-sensitive poplar clone? Sci. Total Environ. 2019, 657, 340–350. [Google Scholar] [CrossRef]
- Feng, Z.; Shang, B.; Li, Z.; Calatayud, V.; Agathokleous, E. Ozone will remain a threat for plants independently of nitrogen load. Funct. Ecol. 2019, 33, 1854–1870. [Google Scholar] [CrossRef]
- Li, P.; Yin, R.; Zhou, H.; Xu, S.; Feng, Z. Functional traits of poplar leaves and fine roots responses to ozone pollution under soil nitrogen addition. J. Environ. Sci. 2022, 113, 118–131. [Google Scholar] [CrossRef]
- Watanabe, M.; Li, J.; Matsumoto, M.; Aoki, T.; Ariura, R.; Fuse, T.; Izuta, T. Growth and photosynthetic responses to ozone of Siebold’s beech seedlings grown under elevated CO2 and soil nitrogen supply. Environ. Pollut. 2022, 304, 119233. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Air Quality Criteria for Ozone and Related Photochemical Oxidants; Report No. EPA/600/P-93/004bF; U.S. Environmental Protection Agency: Washington, DC, USA, 1996.
- Li, L.; Manning, W.J.; Tong, L.; Wang., X.K. Chronic drought stress reduced but did not protect Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China. Environ. Pollut. 2015, 201, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Hu, T.; Wang, Y.; Li, Y.; Wang, W.; Hu, H.; Wang, J. Construction of SNP fingerprints and genetic diversity analysis of radish (Raphanus sativus L.). Front. Plant Sci. 2024, 15, 1329890. [Google Scholar] [CrossRef] [PubMed]
- Kou, B.; Hui, K.; Miao, F.; He, Y.; Qu, C.; Yuan, Y.; Tan, W. Differential responses of the properties of soil humic acid and fulvic acid to nitrogen addition in the North China Plain. Environ. Res. 2022, 214, 113980. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Oxygen processing in photosynthesis: Regulation and signaling. New Phytol. 2000, 146, 359–388. [Google Scholar] [CrossRef]
- Mishra, S.; Kumari, M. Priming of plants with moderate stress: Enhanced stress tolerance as a preparatory defense mechanism. Environ. Exp. Bot. 2021, 183, 104362. [Google Scholar]
- Mason, R.E.; Craine, J.M.; Lany, N.K.; Jonard, M.; Ollinger, S.V.; Groffman, P.M.; Elmore, A.J. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 2022, 376, eabh3767. [Google Scholar] [CrossRef]
- Matyssek, R.; Le Thiec, D.; Löw, M.; Dizengremel, P.; Nunn, A.J.; Häberle, K.H. Interactions between drought and O3 stress in forest trees. Plant Biol. 2006, 8, 11–17. [Google Scholar] [CrossRef]
- Morales, L.O.; Shapiguzov, A.; Safronov, O.; Leppälä, J.; Vaahtera, L.; Yarmolinsky, D.; Brosché, M. Ozone responses in Arabidopsis: Beyond stomatal conductance. Plant Physiol. 2021, 186, 180–192. [Google Scholar] [CrossRef]
- Pantin, F.; Simonneau, T.; Muller, B. Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol. 2012, 196, 349–366. [Google Scholar] [CrossRef]
- Pornon, A.; Marty, C.; Winterton, P.; Lamaze, T. The intriguing paradox of leaf lifespan responses to nitrogen availability. Funct. Ecol. 2011, 25, 796–801. [Google Scholar] [CrossRef]
- Marty, C.; Lamaze, T.; Pornon, A. Endogenous sink-source interactions and soil nitrogen regulate leaf life-span in an evergreen shrub. New Phytol. 2009, 183, 1114–1123. [Google Scholar] [CrossRef]
- Mills, G.; Hayes, F.; Simpson, D.; Emberson, L.; Norris, D.; Harmens, H.; Büker, P. Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe (1990–2006) about AOT40- and flux-based risk maps. Glob. Change Biol. 2013, 19, 592–613. [Google Scholar]
- Hoshika, Y.; Haworth, M.; Watanabe, M.; Koike, T. Interactive effect of leaf age and ozone on mesophyll conductance in Siebold’s beech. Physiol. Plant. 2020, 170, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.J.; Drake, P.L.; Froend, R.H. Anisohydric but is hydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ. 2007, 30, 19–30. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Manning, W.J. Effects of Elevated CO2 on leaf senescence, leaf nitrogen resorption, and late-season photosynthesis in Tilia americana L. Front. Plant Sci. 2019, 10, 1217. [Google Scholar]
- Gupta, G.S.; Tiwari, S. Role of antioxidant pool in management of ozone stress through soil nitrogen amendments in two cultivars of a tropical legume. Funct. Plant Biol. 2020, 48, 371–385. [Google Scholar] [CrossRef]
- Keutgen, N.; Keutgen, A.J.; Janssens, M.J.J. Sweet potato [Ipomoea batatas (L.) Lam.] cultivated as tuber or leafy vegetable supplier as affected by elevated tropospheric ozone. J. Agr. Food Chem. 2008, 56, 6686–6690. [Google Scholar] [CrossRef]
- Mrak, T.; Eler, K.; Badea, O.; Hoshika, Y.; Carrari, E.; Paoletti, E.; Kraigher, H. Elevated ozone prevents acquisition of available nitrogen due to smaller root surface area in poplar. Plant Soil. 2020, 450, 585–599. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Li, J. Comparison of Atmospheric O3 Dose–Response Effects Under N Addition on Gas Exchange, Growth, and Biomass of Raphanus sativus L. Atmosphere 2025, 16, 784. https://doi.org/10.3390/atmos16070784
Li L, Li J. Comparison of Atmospheric O3 Dose–Response Effects Under N Addition on Gas Exchange, Growth, and Biomass of Raphanus sativus L. Atmosphere. 2025; 16(7):784. https://doi.org/10.3390/atmos16070784
Chicago/Turabian StyleLi, Li, and Jinling Li. 2025. "Comparison of Atmospheric O3 Dose–Response Effects Under N Addition on Gas Exchange, Growth, and Biomass of Raphanus sativus L." Atmosphere 16, no. 7: 784. https://doi.org/10.3390/atmos16070784
APA StyleLi, L., & Li, J. (2025). Comparison of Atmospheric O3 Dose–Response Effects Under N Addition on Gas Exchange, Growth, and Biomass of Raphanus sativus L. Atmosphere, 16(7), 784. https://doi.org/10.3390/atmos16070784