Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,242)

Search Parameters:
Keywords = non-linear transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2835 KiB  
Article
Numerical Modeling of Gentamicin Transport in Agricultural Soils: Implications for Environmental Pollution
by Nami Morales-Durán, Sebastián Fuentes, Jesús García-Gallego, José Treviño-Reséndez, Josué D. García-Espinoza, Rubén Morones-Ramírez and Carlos Chávez
Antibiotics 2025, 14(8), 786; https://doi.org/10.3390/antibiotics14080786 (registering DOI) - 2 Aug 2025
Viewed by 131
Abstract
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of [...] Read more.
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of two types of gentamicin (pure gentamicin and gentamicin sulfate) was modeled at concentrations of 150 and 300 μL/L, respectively, in a soil with more than 60 years of agricultural use. Infiltration tests under constant head conditions and gentamicin transport experiments were conducted in acrylic columns measuring 14 cm in length and 12.7 cm in diameter. The scaling parameters for the Richards equation were obtained from experimental data, while those for the advection–dispersion equation were estimated using inverse methods through a nonlinear optimization algorithm. In addition, a fractal-based model for saturated hydraulic conductivity was employed. Results: It was found that the dispersivity of gentamicin sulfate is 3.1 times higher than that of pure gentamicin. Based on the estimated parameters, two simulation scenarios were conducted: continuous application of gentamicin and soil flushing after antibiotic discharge. The results show that the transport velocity of gentamicin sulfate in the soil may have short-term consequences for the emergence of resistant microorganisms due to the destination of wastewater containing antibiotic residues. Conclusions: Finally, further research is needed to evaluate the impact of antibiotics on soil physical properties, as well as their effects on irrigated crops, animals that consume such water, and the soil microbiota. Full article
(This article belongs to the Special Issue Impact of Antibiotic Residues in Wastewater)
Show Figures

Figure 1

24 pages, 1964 KiB  
Article
Data-Driven Symmetry and Asymmetry Investigation of Vehicle Emissions Using Machine Learning: A Case Study in Spain
by Fei Wu, Jinfu Zhu, Hufang Yang, Xiang He and Qiao Peng
Symmetry 2025, 17(8), 1223; https://doi.org/10.3390/sym17081223 - 2 Aug 2025
Viewed by 204
Abstract
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and [...] Read more.
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and explainable AI techniques can effectively capture both symmetric and asymmetric emission patterns across different vehicle types, thereby contributing to more sustainable transport planning. Addressing a key gap in the existing literature, the study poses the following question: how do structural and behavioral factors contribute to asymmetric emission responses in internal combustion engine vehicles compared to new energy vehicles? Utilizing a large-scale Spanish vehicle registration dataset, the analysis classifies vehicles by powertrain type and applies five supervised learning algorithms to predict CO2 emissions. SHapley Additive exPlanations (SHAPs) are employed to identify nonlinear and threshold-based relationships between emissions and vehicle characteristics such as fuel consumption, weight, and height. Among the models tested, the Random Forest algorithm achieves the highest predictive accuracy. The findings reveal critical asymmetries in emission behavior, particularly among hybrid vehicles, which challenge the assumption of uniform policy applicability. This study provides both methodological innovation and practical insights for symmetry-aware emission modeling, offering support for more targeted eco-design and policy decisions that align with long-term sustainability goals. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

44 pages, 2693 KiB  
Article
Managing Surcharge Risk in Strategic Fleet Deployment: A Partial Relaxed MIP Model Framework with a Case Study on China-Built Ships
by Yanmeng Tao, Ying Yang and Shuaian Wang
Appl. Sci. 2025, 15(15), 8582; https://doi.org/10.3390/app15158582 (registering DOI) - 1 Aug 2025
Viewed by 132
Abstract
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study [...] Read more.
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study addresses the heterogeneous ship routing and demand acceptance problem, aiming to maximize two conflicting objectives: weekly profit and total transport volume. We formulate the problem as a bi-objective mixed-integer programming model and prove that the ship chartering constraint matrix is totally unimodular, enabling the reformulation of the model into a partially relaxed MIP that preserves optimality while improving computational efficiency. We further analyze key mathematical properties showing that the Pareto frontier consists of a finite union of continuous, piecewise linear segments but is generally non-convex with discontinuities. A case study based on a realistic liner shipping network confirms the model’s effectiveness in capturing the trade-off between profit and transport volume. Sensitivity analyses show that increasing freight rates enables higher profits without large losses in volume. Notably, this paper provides a practical risk management framework for shipping companies to enhance their adaptability under shifting regulatory landscapes. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
Show Figures

Figure 1

18 pages, 5389 KiB  
Article
Novel Method of Estimating Iron Loss Equivalent Resistance of Laminated Core Winding at Various Frequencies
by Maxime Colin, Thierry Boileau, Noureddine Takorabet and Stéphane Charmoille
Energies 2025, 18(15), 4099; https://doi.org/10.3390/en18154099 - 1 Aug 2025
Viewed by 181
Abstract
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying [...] Read more.
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying model-specific parameters, which depend on frequency, is crucial. This article focuses on a specific frequency range where a circuit model with series resistance and inductance, along with a parallel resistance to account for iron losses (Riron), is applicable. While the determination of series elements is well documented, the determination of Riron remains complex and debated, with traditional methods neglecting operating conditions such as magnetic saturation. To address these limitations, an innovative experimental method is proposed, comprising two main steps: determining the complex impedance of the magnetic device and extracting Riron from the model. This method aims to provide a more precise and representative estimation of Riron, improving the reliability and accuracy of electromagnetic and magnetic device simulations and designs. The obtained values of the iron loss equivalent resistance are different by at least 300% than those obtained by an impedance analyzer. The proposed method is expected to advance the understanding and modeling of losses in electromagnetic and magnetic devices, offering more robust tools for engineers and researchers in optimizing device performance and efficiency. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

30 pages, 599 KiB  
Review
A Survey of Approximation Algorithms for the Power Cover Problem
by Jiaming Zhang, Zhikang Zhang and Weidong Li
Mathematics 2025, 13(15), 2479; https://doi.org/10.3390/math13152479 - 1 Aug 2025
Viewed by 90
Abstract
Wireless sensor networks (WSNs) have attracted significant attention due to their widespread applications in various fields such as environmental monitoring, agriculture, intelligent transportation, and healthcare. In these networks, the power cost of a sensor node is closely related to the radius of its [...] Read more.
Wireless sensor networks (WSNs) have attracted significant attention due to their widespread applications in various fields such as environmental monitoring, agriculture, intelligent transportation, and healthcare. In these networks, the power cost of a sensor node is closely related to the radius of its coverage area, following a nonlinear relationship where power increases as the coverage radius grows according to an attenuation factor. This means that increasing the coverage radius of a sensor leads to a corresponding increase in its power cost. Consequently, minimizing the total power cost of the network while all clients are served has become a crucial research topic. The power cover problem focuses on adjusting the power levels of sensors to serve all clients while minimizing the total power cost. This survey focuses on the power cover problem and its related variants in WSNs. Specifically, it introduces nonlinear integer programming formulations for the power cover problem and its related variants, all within the specified sensor setting. It also provides a comprehensive overview of the power cover problem and its variants under both specified and unspecified sensor settings, summarizes existing results and approximation algorithms, and outlines potential directions for future research. Full article
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
What Determines Carbon Emissions of Multimodal Travel? Insights from Interpretable Machine Learning on Mobility Trajectory Data
by Guo Wang, Shu Wang, Wenxiang Li and Hongtai Yang
Sustainability 2025, 17(15), 6983; https://doi.org/10.3390/su17156983 - 31 Jul 2025
Viewed by 184
Abstract
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data [...] Read more.
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data and interpretable analytical frameworks. This study proposes a novel integration of high-frequency, real-world mobility trajectory data with interpretable machine learning to systematically identify the key drivers of carbon emissions at the individual trip level. Firstly, multimodal travel chains are reconstructed using continuous GPS trajectory data collected in Beijing. Secondly, a model based on Calculate Emissions from Road Transport (COPERT) is developed to quantify trip-level CO2 emissions. Thirdly, four interpretable machine learning models based on gradient boosting—XGBoost, GBDT, LightGBM, and CatBoost—are trained using transportation and built environment features to model the relationship between CO2 emissions and a set of explanatory variables; finally, Shapley Additive exPlanations (SHAP) and partial dependence plots (PDPs) are used to interpret the model outputs, revealing key determinants and their non-linear interaction effects. The results show that transportation-related features account for 75.1% of the explained variance in emissions, with bus usage being the most influential single factor (contributing 22.6%). Built environment features explain the remaining 24.9%. The PDP analysis reveals that substantial emission reductions occur only when the shares of bus, metro, and cycling surpass threshold levels of approximately 40%, 40%, and 30%, respectively. Additionally, travel carbon emissions are minimized when trip origins and destinations are located within a 10 to 11 km radius of the central business district (CBD). This study advances the field by establishing a scalable, interpretable, and behaviorally grounded framework to assess carbon emissions from multimodal travel, providing actionable insights for low-carbon transport planning and policy design. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

17 pages, 3995 KiB  
Article
Nonlinear Vibration and Post-Buckling Behaviors of Metal and FGM Pipes Transporting Heavy Crude Oil
by Kamran Foroutan, Farshid Torabi and Arth Pradeep Patel
Appl. Sci. 2025, 15(15), 8515; https://doi.org/10.3390/app15158515 (registering DOI) - 31 Jul 2025
Viewed by 84
Abstract
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing [...] Read more.
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing the mechanical and thermal performance of FGM-based pipes under various operating conditions, this study investigates the possibility of using them as a more reliable substitute. In the current study, the post-buckling and nonlinear vibration behaviors of pipes composed of FGMs transporting heavy crude oil were examined using a Timoshenko beam framework. The material properties of the FGM pipe were observed to change gradually across the thickness, following a power-law distribution, and were influenced by temperature variations. In this regard, two types of FGM pipes are considered: one with a metal-rich inner surface and ceramic-rich outer surface, and the other with a reverse configuration featuring metal on the outside and ceramic on the inside. The nonlinear governing equations (NGEs) describing the system’s nonlinear dynamic response were formulated by considering nonlinear strain terms through the von Kármán assumptions and employing Hamilton’s principle. These equations were then discretized using Galerkin’s method to facilitate the analytical investigation. The Runge–Kutta method was employed to address the nonlinear vibration problem. It is concluded that, compared with pipelines made from conventional materials, those constructed with FGMs exhibit enhanced thermal resistance and improved mechanical strength. Full article
Show Figures

Figure 1

35 pages, 3218 KiB  
Article
Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers
by Merve Akbas
Appl. Sci. 2025, 15(15), 8516; https://doi.org/10.3390/app15158516 (registering DOI) - 31 Jul 2025
Viewed by 139
Abstract
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing [...] Read more.
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing transport distance, processing energy intensity, initial moisture content, gradation adjustments, and regional electricity emission factors. Four advanced tree-based ensemble regression algorithms—Random Forest Regressor (RFR), Extremely Randomized Trees (ERTs), Gradient Boosted Regressor (GBR), and Extreme Gradient Boosting Regressor (XGBR)—were rigorously evaluated. Among these, GBR demonstrated superior predictive performance (R2 > 0.95, RMSE < 7.5), effectively capturing complex nonlinear interactions inherent in slag processing and logistics operations. Feature importance analysis via SHapley Additive exPlanations (SHAP) provided interpretative insights, highlighting transport distance and energy intensity as dominant factors affecting unit cost, while moisture content and grid emission factor predominantly influenced CO2 emissions. Subsequently, the Gradient Boosted Regressor model was integrated into a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) framework to explore optimal trade-offs between cost and emissions. The resulting Pareto front revealed a diverse solution space, with significant nonlinear trade-offs between economic efficiency and environmental performance, clearly identifying strategic inflection points. To facilitate actionable decision-making, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was applied, identifying an optimal balanced solution characterized by a transport distance of 47 km, energy intensity of 1.21 kWh/ton, moisture content of 6.2%, moderate gradation adjustment, and a grid CO2 factor of 0.47 kg CO2/kWh. This scenario offered a substantial reduction (45%) in CO2 emissions relative to cost-minimized solutions, with a moderate increase (33%) in total cost, presenting a realistic and balanced pathway for sustainable infrastructure practices. Overall, this study introduces a robust, scalable, and interpretable optimization framework, providing valuable methodological advancements for sustainable decision making in infrastructure planning and circular economy initiatives. Full article
Show Figures

Figure 1

14 pages, 6012 KiB  
Article
Decoding the Primacy of Transportation Emissions of Formaldehyde Pollution in an Urban Atmosphere
by Shi-Qi Liu, Hao-Nan Ma, Meng-Xue Tang, Yu-Ming Shao, Ting-Ting Yao, Ling-Yan He and Xiao-Feng Huang
Toxics 2025, 13(8), 643; https://doi.org/10.3390/toxics13080643 - 30 Jul 2025
Viewed by 234
Abstract
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed [...] Read more.
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed year-long VOC measurements across three urban zones in Shenzhen, China. Photochemical age correction methods were implemented to develop the initial concentrations of VOCs before source apportionment; then Positive Matrix Factorization (PMF) modeling resolved six primary sources: solvent usage (28.6–47.9%), vehicle exhaust (24.2–31.2%), biogenic emission (13.8–18.1%), natural gas (8.5–16.3%), gasoline evaporation (3.2–8.9%), and biomass burning (0.3–2.4%). A machine learning (ML) framework incorporating Shapley Additive Explanations (SHAP) was subsequently applied to evaluate the influence of six emission sources on HCHO concentrations while accounting for reaction time adjustments. This machine learning-driven nonlinear analysis demonstrated that vehicle exhaust nearly always emerged as the primary anthropogenic contributor in diverse functional zones and different seasons, with gasoline evaporation as another key contributor, while the traditional reactivity metric method, ozone formation potential (OFP), tended to underestimate the role of the two sources. This study highlights the primacy of strengthening emission reduction of transportation sectors to mitigate HCHO pollution in megacities. Full article
Show Figures

Graphical abstract

16 pages, 4154 KiB  
Article
Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea
by Lifeng Wu, Chunquan Chen, Xiaoyu Zhou, Kailun Zheng, Xiaohan Liang and Jing Wei
Molecules 2025, 30(15), 3176; https://doi.org/10.3390/molecules30153176 - 29 Jul 2025
Viewed by 219
Abstract
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth [...] Read more.
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth patterns at different nitrogen levels have yet to be elucidated. In this research, in addition to conventional growth monitoring and quality evaluation, a comparative proteomics method was applied to investigate the molecular mechanisms of mung bean in response to 0, 0.025, 0.05, 0.075, and 0.1% urea concentrations. Our results indicated that mung bean sprout height and yield increased with rising urea concentrations but were suppressed beyond the L3 level (0.075% urea). Nitrate nitrogen and free amino acid content rose steadily with urea levels, whereas protein content, nitrate reductase activity, and nitrite levels followed a peak-then-decline trend, peaking at intermediate concentrations. Differential expression protein analysis was conducted on mung bean sprouts treated with different concentrations of urea, and more differentially expressed proteins participated in the L3 urea concentration. Analysis of common differential proteins among comparison groups showed that the mung bean sprouts enhanced their adaptability to urea stress environments by upregulating chlorophyll a-b binding protein and cationic amino acid transporter and downregulating the levels of glycosyltransferase, L-ascorbic acid, and cytochrome P450. The proteomic analysis uncovered the regulatory mechanisms governing these metabolic pathways, identifying 47 differentially expressed proteins (DEPs) involved in the biosynthesis of proteins, free amino acids, and nitrogen-related metabolites. Full article
Show Figures

Figure 1

17 pages, 661 KiB  
Article
Adaptive Learning Control for Vehicle Systems with an Asymmetric Control Gain Matrix and Non-Uniform Trial Lengths
by Yangbo Tang, Zetao Chen and Hongjun Wu
Symmetry 2025, 17(8), 1203; https://doi.org/10.3390/sym17081203 - 29 Jul 2025
Viewed by 105
Abstract
Intelligent driving is a key technology in the field of automotive manufacturing due to its advantages in environmental protection, energy efficiency, and economy. However, since the intelligent driving model is an uncertain multi-input multi-output dynamic system, especially in an interactive environment, it faces [...] Read more.
Intelligent driving is a key technology in the field of automotive manufacturing due to its advantages in environmental protection, energy efficiency, and economy. However, since the intelligent driving model is an uncertain multi-input multi-output dynamic system, especially in an interactive environment, it faces uncertainties such as non-uniform trial lengths, unknown nonlinear parameters, and unknown control direction. In this paper, an adaptive iterative learning control method is proposed for vehicle systems with non-uniform trial lengths and asymmetric control gain matrices. Unlike the existing research on adaptive iterative learning for non-uniform test lengths, this paper assumes that the elements of the system’s control gain matrix are asymmetric. Therefore, the assumption made in traditional adaptive iterative learning methods that the control gain matrix of the system is known or real, symmetric, and positive definite (or negative definite) is relaxed. Finally, to prove the convergence of the system, a composite energy function is designed, and the effectiveness of the adaptive iterative learning method is verified using vehicle systems. This paper aims to address the challenges in intelligent driving control and decision-making caused by environmental and system uncertainties and provides a theoretical basis and technical support for intelligent driving, promoting the high-quality development of intelligent transportation. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Intelligent Control and Computing)
Show Figures

Figure 1

22 pages, 5960 KiB  
Article
Application of Integrated Geospatial Analysis and Machine Learning in Identifying Factors Affecting Ride-Sharing Before/After the COVID-19 Pandemic
by Afshin Allahyari and Farideddin Peiravian
ISPRS Int. J. Geo-Inf. 2025, 14(8), 291; https://doi.org/10.3390/ijgi14080291 - 28 Jul 2025
Viewed by 267
Abstract
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after [...] Read more.
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after a significant delay following the lockdown. This raises the question of what determinants shape ride-pooling in the post-pandemic era and how they spatially influence shared ride-hailing compared to the pre-pandemic period. To address this gap, this study employs geospatial analysis and machine learning to examine the factors affecting ride-pooling trips in pre- and post-pandemic periods. Using over 66 million trip records from 2019 and 43 million from 2023, we observe a significant decline in shared trip adoption, from 16% to 2.91%. The results of an extreme gradient boosting (XGBoost) model indicate a robust capture of non-linear relationships. The SHAP analysis reveals that the percentage of the non-white population is the dominant predictor in both years, although its influence weakened post-pandemic, with a breakpoint shift from 78% to 90%, suggesting reduced sharing in mid-range minority areas. Crime density and lower car ownership consistently correlate with higher sharing rates, while dense, transit-rich areas exhibit diminished reliance on shared trips. Our findings underscore the critical need to enhance transportation integration in underserved communities. Concurrently, they highlight the importance of encouraging shared ride adoption in well-served, high-demand areas where solo ride-hailing is prevalent. We believe these results can directly inform policies that foster more equitable, cost-effective, and sustainable shared mobility systems in the post-pandemic landscape. Full article
Show Figures

Figure 1

14 pages, 3283 KiB  
Review
Impact of Internal Solitary Waves on Marine Suspended Particulate Matter: A Review
by Zhengrong Zhang, Xuezhi Feng, Xiuyao Fan, Yuchen Lin and Chaoqi Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1433; https://doi.org/10.3390/jmse13081433 - 27 Jul 2025
Viewed by 187
Abstract
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of [...] Read more.
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of suspended particles, enhance lateral transport above the pycnocline, and generate nepheloid layers nearshore. Meanwhile, intense turbulent mixing induced by ISWs accumulates large quantities of SPM at both the leading surface and trailing bottom of the waves, thereby altering the structure and dynamics of the intermediate nepheloid layers. This review synthesizes recent advances in the in situ observational techniques for SPM under the influence of ISWs and highlights the key mechanisms governing their interactions. Particular attention is given to representative field cases in the SCS, where topographic complexity and strong stratification amplify ISWs–sediment coupling. Finally, current limitations in observational and modeling approaches are discussed, with suggestions for future interdisciplinary research directions that better integrate hydrodynamic and sediment transport processes. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

16 pages, 2523 KiB  
Article
Application of Machine Learning Algorithms for Predicting the Dynamic Stiffness of Rail Pads Based on Static Stiffness and Operating Conditions
by Isaac Rivas, Jose A. Sainz-Aja, Diego Ferreño, Víctor Calzada, Isidro Carrascal, Jose Casado and Soraya Diego
Appl. Sci. 2025, 15(15), 8310; https://doi.org/10.3390/app15158310 - 25 Jul 2025
Viewed by 193
Abstract
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material [...] Read more.
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material and geometry of the rail pad but also on the testing conditions, due to the non-linear material response. To address this issue, a methodology is proposed in this paper to estimate dynamic stiffness using static stiffness measurements. This approach enables the prediction of dynamic stiffness for different situations from a single laboratory test. This study further examines whether this correlation remains valid for different types of rail pads, even when their mechanical behavior has been degraded by temperature, wear, or chemical agents. Experiments were conducted under varying temperatures and on rail pads that underwent mechanical and chemical degradation. The analysis assesses the validity of the static-to-dynamic stiffness correlation under degraded conditions and investigates the influence of each testing condition on the ability to estimate dynamic stiffness from static stiffness and operational parameters. The findings provide insights into the reliability of this predictive model and highlight the impact of degradation mechanisms on the dynamic behavior of rail pads. This research enhances the understanding of rail pad performance and offers a practical approach for evaluating dynamic stiffness. By considering all of the variables used in the analysis, the approach achieves R2 values of up to 0.99, which carries significant implications for track design and maintenance. Full article
Show Figures

Figure 1

12 pages, 620 KiB  
Review
Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review
by Linda Poggiarelli, Caterina Bernetti, Luca Pugliese, Federico Greco, Bruno Beomonte Zobel and Carlo A. Mallio
Clin. Pract. 2025, 15(8), 137; https://doi.org/10.3390/clinpract15080137 - 25 Jul 2025
Viewed by 289
Abstract
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast [...] Read more.
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast agents. Manganese-based contrast agents offer a promising substitute, owing to manganese’s favorable magnetic properties, natural biological role, and strong T1 relaxivity. This review aims to critically assess the structure, mechanisms, applications, and challenges of manganese-based contrast agents in MRI. Methods: This review synthesizes findings from preclinical and clinical studies involving various types of manganese-based contrast agents, including small-molecule chelates, nanoparticles, theranostic platforms, responsive agents, and controlled-release systems. Special attention is given to pharmacokinetics, biodistribution, and safety evaluations. Results: Mn-based agents demonstrate promising imaging capabilities, with some achieving relaxivity values comparable to gadolinium compounds. Targeted uptake mechanisms, such as hepatocyte-specific transport via organic anion-transporting polypeptides, allow for enhanced tissue contrast. However, concerns remain regarding the in vivo release of free Mn2+ ions, which could lead to toxicity. Preliminary toxicity assessments report low cytotoxicity, but further comprehensive long-term safety studies should be carried out. Conclusions: Manganese-based contrast agents present a potential alternative to gadolinium-based MRI agents pending further validation. Despite promising imaging performance and biocompatibility, further investigation into stability and safety is essential. Additional research is needed to facilitate the clinical translation of these agents. Full article
Show Figures

Figure 1

Back to TopTop