Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = non-fullerene acceptor-based organic solar cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2914 KiB  
Article
The Numerical Simulation of a Non-Fullerene Thin-Film Organic Solar Cell with Cu2FeSnS4 (CFTS) Kesterite as a Hole Transport Layer Using SCAPS-1D
by Edson L. Meyer, Sindisiwe Jakalase, Azile Nqombolo, Nicholas Rono and Mojeed A. Agoro
Coatings 2025, 15(3), 266; https://doi.org/10.3390/coatings15030266 - 23 Feb 2025
Cited by 3 | Viewed by 1119
Abstract
Global warming and environmental pollution due to the overuse and exploitation of fossil fuels are the main issues affecting humans’ well-being. Solar energy is considered to be one of the most promising candidates for providing human society with a clean and sustainable energy [...] Read more.
Global warming and environmental pollution due to the overuse and exploitation of fossil fuels are the main issues affecting humans’ well-being. Solar energy is considered to be one of the most promising candidates for providing human society with a clean and sustainable energy supply. Thin-film organic solar cells (TFOSCs) use organic semiconductors as light-absorbing layer materials. TFOSCs have attracted wide research interest due to several advantages, such as easy fabrication, affordability, light weight, and environmental friendliness. Over the years, TFOSCs have been dominated by donor–acceptor blends based on polymer donors and fullerene acceptors. However, a new class of non-fullerene acceptors (NFAs) has gained prominence in TFOSCs owing to their significant improvement in the power conversion efficiency (PCE) of non-fullerene-based devices. In this study, the One-Dimensional Solar Cell Capacitance Simulator (SCAPS-1D) numerical simulator was used to study the performance of a device with a configuration of FTO/PDINO/PBDB-T/ITIC/CFTS/Al. Here, the PBDB-T/ITIC polymer blend represents poly[(2,6-(4,8-bis(5-(2 ethylhexyl)thiophen-2-yl)benzo [1,2-b:4,5-b]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo [1,2-c:4,5-c]dithiophene-4,8-dione)] (PBDB)/3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetraki(4-hexylphenyl)-dithieno[2,3-d:2,3-d]-s-indaceno [1,2-b:5,6-b]dithiophene) (ITIC) and the non-fullerene acceptor (NFA) and serves as the absorber layer. The electron transport layer (ETL) was 2,9-Bis[3-(dimethyloxidoamino)propyl]anthra[2,1,9-def:6,5,10-d’e’f’]diisoquinoline-1,3,8,10(2H,9H)-tetrone (PDINO), and Cu2FeSnS4 (CFTS) was used as a hole transport layer (HTL). This research article aims to address the global challenges of environmental pollution and global warming caused by the overuse of fossil fuels by exploring alternative energy solutions. Upon optimization, the device achieved a power conversion efficiency (PCE) of 16.86%, a fill factor (FF) of 79.12%, a short-circuit current density (JSC) of 33.19 mA cm−2, and an open-circuit voltage (VOC) of 0.64 V. The results obtained can guide the fabrication of NFA-based TFOSCs in the near future. Full article
Show Figures

Figure 1

11 pages, 4483 KiB  
Article
Achieving a Near-Infrared Absorption by A−DA’D−A Type Isoindigo-Based Small Molecular Acceptors for Organic Photovoltaics
by Hui Liu, Yu Wu, Dong-Nai Ye, Na Chen, Xu-Min Huang and Shi-Yong Liu
Molecules 2025, 30(2), 344; https://doi.org/10.3390/molecules30020344 - 16 Jan 2025
Viewed by 921
Abstract
Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A−DA’D−A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and [...] Read more.
Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A−DA’D−A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and IID core units, each functionalized with different alkyl chains (2-hexyldecyl and 2-octyldodecyl), through an atom- and step-efficient direct C–H arylation (DACH) method. Both URAs, despite the absence of non-covalent conformation locking between CPDT and IID, demonstrated favorable molecular planarity, broad absorption ranges, low band gaps, and high molar absorption coefficients. Notably, IDC6CP-IC exhibited stronger intermolecular charge transfer and J-aggregation. An organic solar cell (OSC) device based on IDC6CP-IC achieved a power conversion efficiency (PCE) of 3.10%, with a broad photoresponse range extending from 400 to 900 nm. This study highlights the significant impact of alkyl chain engineering on material synthesis, photoelectric properties, and corresponding device performance. Furthermore, DACH is shown to be a promising approach for synthesizing IID-based URAs with near-infrared (NIR) absorption, making it an excellent candidate for bulk heterojunction (BHJ) OSC applications. Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
Show Figures

Figure 1

18 pages, 4117 KiB  
Article
Novel Long-Conjugated Backbone-Based Non-Fullerene Acceptors for Efficient and Eco-Friendly Ternary Organic Solar Cells
by Sung Jae Jeon, Nam Gyu Yang and Doo Kyung Moon
Sustainability 2025, 17(2), 512; https://doi.org/10.3390/su17020512 - 10 Jan 2025
Cited by 1 | Viewed by 1296
Abstract
Organic solar cells (OSCs) are made from carbon-rich organic compounds with low environmental impacts, unlike the silicon in traditional solar panels. Some of these organic materials can be broken down and reprocessed, enabling the recovery of valuable components. Specifically, the active-layer materials that [...] Read more.
Organic solar cells (OSCs) are made from carbon-rich organic compounds with low environmental impacts, unlike the silicon in traditional solar panels. Some of these organic materials can be broken down and reprocessed, enabling the recovery of valuable components. Specifically, the active-layer materials that make up OSCs can be designed with sustainability in mind. However, it is important to note that practical active materials that can be used for the commercialization of OSCs are still an area of research and development due to their low efficiency/stability and processability. Herein, we designed and synthesized three A-D-A’-D-A-type long-conjugated non-fullerene acceptors (NFAs) by incorporating various electron-withdrawing groups into the benzothiadiazole-diindacenodithiophene core. These NFAs, by changing their end-capping groups, exhibit not only distinct physical, optical, and electrochemical properties, but also differences in crystallinity and exciton dissociation. As a result, they exhibited significant differences in photovoltaic performance in PM6 donor-based binary devices. The introduction of small amounts of NFAs as a third component in the PM6:BTP-eC9 blend significantly enhanced its photon harvesting capabilities and influenced its charge transfer dynamics. Finally, we achieved a remarkable power conversion efficiency of nearly 17% by utilizing an eco-friendly solvent. This study provides valuable insights for the development of NFAs in efficient and eco-friendly OSCs. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

53 pages, 20673 KiB  
Review
The Double-Cross of Benzotriazole-Based Polymers as Donors and Acceptors in Non-Fullerene Organic Solar Cells
by Laura Crociani
Molecules 2024, 29(15), 3625; https://doi.org/10.3390/molecules29153625 - 31 Jul 2024
Cited by 2 | Viewed by 2290
Abstract
Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction [...] Read more.
Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction structure where a polymer donor is blended with an electron acceptor. Their performance is highly affected by the design of donor–acceptor conjugated polymers and the choice of suitable acceptor. In particular, benzotriazole, a typical electron-deficient penta-heterocycle, has been combined with various donors to provide wide bandgap donor polymers, which have received a great deal of attention with the development of non-fullerene acceptors (NFAs) because of their suitable matching to provide devices with relevant power conversion efficiency (PCE). Moreover, different benzotriazole-based polymers are gaining more and more interest because they are considered promising acceptors in OSCs. Since the development of a suitable method to choose generally a donor/acceptor material is a challenging issue, this review is meant to be useful especially for organic chemical scientists to understand all the progress achieved with benzotriazole-based polymers used as donors with NFAs and as acceptors with different donors in OSCs, in particular referring to the PCE. Full article
Show Figures

Graphical abstract

16 pages, 2682 KiB  
Article
Providing a Photovoltaic Performance Enhancement Relationship from Binary to Ternary Polymer Solar Cells via Machine Learning
by Jingyue Cao and Zheng Xu
Polymers 2024, 16(11), 1496; https://doi.org/10.3390/polym16111496 - 24 May 2024
Cited by 3 | Viewed by 1408
Abstract
Ternary polymer solar cells (PSCs) are currently the simplest and most efficient way to further improve the device performance in PSCs. To find high-performance organic photovoltaic materials, the established connection between the material structure and device performance before fabrication is of great significance. [...] Read more.
Ternary polymer solar cells (PSCs) are currently the simplest and most efficient way to further improve the device performance in PSCs. To find high-performance organic photovoltaic materials, the established connection between the material structure and device performance before fabrication is of great significance. Herein, firstly, a database of the photovoltaic performance in 874 experimental PSCs reported in the literature is established, and three different fingerprint expressions of a molecular structure are explored as input features; the results show that long fingerprints of 2D atom pairs can contain more effective information and improve the accuracy of the models. Through supervised learning, five machine learning (ML) models were trained to build a mapping of the photovoltaic performance improvement relationship from binary to ternary PSCs. The GBDT model had the best predictive ability and generalization. Eighteen key structural features from a non-fullerene acceptor and the third components that affect the device’s PCE were screened based on this model, including a nitrile group with lone-pair electron, a halogen atom, an oxygen atom, etc. Interestingly, the structural features for the enhanced device’s PCE were essentially increased by the Jsc or FF. More importantly, the reliability of the ML model was further verified by preparing the highly efficient PSCs. Taking the PM6:BTP-eC9:PY-IT ternary PSC as an example, the PCE prediction (18.03%) by the model was in good agreement with the experimental results (17.78%), the relative prediction error was 1.41%, and the relative error between all experimental results and predicted results was less than 5%. These results indicate that ML is a useful tool for exploring the photovoltaic performance improvement of PSCs and accelerating the design and application with highly efficient non-fullerene materials. Full article
(This article belongs to the Special Issue Polymers for Electronics and Energy Devices)
Show Figures

Figure 1

12 pages, 5255 KiB  
Article
Optimizing Alkyl Side Chains in Difluorobenzene–Rhodanine Small-Molecule Acceptors for Organic Solar Cells
by Jongchan Choi, Chang Eun Song and Eunhee Lim
Materials 2024, 17(8), 1875; https://doi.org/10.3390/ma17081875 - 18 Apr 2024
Cited by 2 | Viewed by 1706
Abstract
A series of small molecules, T-2FB-T-ORH, T-2FB-T-BORH, and T-2FB-T-HDRH, were synthesized to have a thiophene-flanked difluorobenzene (T-2FB-T) core and alkyl-substituted rhodanine (RH) end groups for their use as nonfullerene acceptors (NFAs) in organic solar cells (OSCs). Octyl, 2-butyloctyl (BO), and [...] Read more.
A series of small molecules, T-2FB-T-ORH, T-2FB-T-BORH, and T-2FB-T-HDRH, were synthesized to have a thiophene-flanked difluorobenzene (T-2FB-T) core and alkyl-substituted rhodanine (RH) end groups for their use as nonfullerene acceptors (NFAs) in organic solar cells (OSCs). Octyl, 2-butyloctyl (BO), and 2-hexyldecyl (HD) alkyl side chains were introduced into RHs to control the material’s physical properties based on the length and size of the alkyl chains. The optical properties of the three NFAs were found to be almost the same, irrespective of the alkyl chain length, whereas the molecular crystallinity and material solubility significantly differed depending on the alkyl side chains. Owing to the sufficient solubility of T-2FB-T-HDRH, OSCs based on PTB7-Th and T-2FB-T-HDRH were fabricated. A power conversion efficiency of up to 4.49% was obtained by solvent vapor annealing (SVA). The AFM study revealed that improved charge mobility and a smooth and homogeneous film morphology without excessive aggregation could be obtained in the SVA-treated film. Full article
Show Figures

Figure 1

11 pages, 3509 KiB  
Article
Improved Short-Circuit Current and Fill Factor in PM6:Y6 Organic Solar Cells through D18-Cl Doping
by Jianjun Yang, Xiansheng Wang, Xiaobao Yu, Jiaxuan Liu, Zhi Zhang, Jian Zhong and Junsheng Yu
Nanomaterials 2023, 13(21), 2899; https://doi.org/10.3390/nano13212899 - 3 Nov 2023
Cited by 5 | Viewed by 3684
Abstract
Based on the PM6:Y6 binary system, a novel non-fullerene acceptor material, D18-Cl, was doped into the PM6:Y6 blend to fabricate the active layer. The effects of different doping ratios of D18-Cl on organic solar cells were investigated. The best-performing organic solar cell was [...] Read more.
Based on the PM6:Y6 binary system, a novel non-fullerene acceptor material, D18-Cl, was doped into the PM6:Y6 blend to fabricate the active layer. The effects of different doping ratios of D18-Cl on organic solar cells were investigated. The best-performing organic solar cell was achieved when the doping ratio of D18-Cl reached 20 wt%. It exhibited a short-circuit current of 28.13 mA/cm2, a fill factor of 70.25%, an open-circuit voltage (Voc) of 0.81 V, and a power conversion efficiency of 16.08%. The introduction of an appropriate amount of D18-Cl expanded the absorption spectrum of the active layer, improved the morphology of the active layer, reduced large molecular aggregation and defects, minimized bimolecular recombination, and optimized the collection efficiency of charge carriers. These results indicate the critical importance of selecting an appropriate third component in binary systems and optimizing the doping ratio to enhance the performance of ternary organic solar cells. Full article
Show Figures

Figure 1

14 pages, 2780 KiB  
Article
Investigation of Hole-Transfer Dynamics through Simple EL De-Convolution in Non-Fullerene Organic Solar Cells
by Dongchan Lee, Do Hui Kim, Chang-Mok Oh, Sujung Park, Narra Vamsi Krishna, Febrian Tri Adhi Wibowo, In-Wook Hwang, Sung-Yeon Jang and Shinuk Cho
Polymers 2023, 15(20), 4042; https://doi.org/10.3390/polym15204042 - 10 Oct 2023
Viewed by 1832
Abstract
In conventional fullerene-based organic photovoltaics (OPVs), in which the excited electrons from the donor are transferred to the acceptor, the electron charge transfer state (eECT) that electrons pass through has a great influence on the device’s performance. In a [...] Read more.
In conventional fullerene-based organic photovoltaics (OPVs), in which the excited electrons from the donor are transferred to the acceptor, the electron charge transfer state (eECT) that electrons pass through has a great influence on the device’s performance. In a bulk-heterojunction (BHJ) system based on a low bandgap non-fullerene acceptor (NFA), however, a hole charge transfer state (hECT) from the acceptor to the donor has a greater influence on the device’s performance. The accurate determination of hECT is essential for achieving further enhancement in the performance of non-fullerene organic solar cells. However, the discovery of a method to determine the exact hECT remains an open challenge. Here, we suggest a simple method to determine the exact hECT level via deconvolution of the EL spectrum of the BHJ blend (ELB). To generalize, we have applied our ELB deconvolution method to nine different BHJ systems consisting of the combination of three donor polymers (PM6, PBDTTPD-HT, PTB7-Th) and three NFAs (Y6, IDIC, IEICO-4F). Under the conditions that (i) absorption of the donor and acceptor are separated sufficiently, and (ii) the onset part of the external quantum efficiency (EQE) is formed solely by the contribution of the acceptor only, ELB can be deconvoluted into the contribution of the singlet recombination of the acceptor and the radiative recombination via hECT. Through the deconvolution of ELB, we have clearly decided which part of the broad ELB spectrum should be used to apply the Marcus theory. Accurate determination of hECT is expected to be of great help in fine-tuning the energy level of donor polymers and NFAs by understanding the charge transfer mechanism clearly. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

11 pages, 2130 KiB  
Article
A Theoretical Study on the Underlying Factors of the Difference in Performance of Organic Solar Cells Based on ITIC and Its Isomers
by Si-Qi Huang, Li-Li Wang, Qing-Qing Pan, Zhi-Wen Zhao, Ying Gao and Zhong-Min Su
Molecules 2023, 28(19), 6968; https://doi.org/10.3390/molecules28196968 - 7 Oct 2023
Cited by 2 | Viewed by 1985
Abstract
Recently, non-fullerene-based organic solar cells (OSCs) have made great breakthroughs, and small structural differences can have dramatic impacts on the power conversion efficiency (PCE). We take ITIC and its isomers as examples to study their effects on the performance of OSCs. ITIC and [...] Read more.
Recently, non-fullerene-based organic solar cells (OSCs) have made great breakthroughs, and small structural differences can have dramatic impacts on the power conversion efficiency (PCE). We take ITIC and its isomers as examples to study their effects on the performance of OSCs. ITIC and NFBDT only differed in the side chain position, and they were used as models with the same donor molecule, PBDB-T, to investigate the main reasons for the difference in their performance in terms of theoretical methods. In this work, a detailed comparative analysis of the electronic structure, absorption spectra, open circuit voltage and interfacial parameters of the ITIC and NFBDT systems was performed mainly by combining the density functional theory/time-dependent density functional theory and molecular dynamics simulations. The results showed that the lowest excited state of the ITIC molecule possessed a larger ∆q and more hybrid FE/CT states, and PBDB-T/ITIC had more charge separation paths as well as a larger kCS and smaller kCR. The reason for the performance difference between PBDB-T/ITIC and PBDB-T/NFBDT was elucidated, suggesting that ITIC is a superior acceptor based on a slight modulation of the side chain and providing a guiding direction for the design of superior-performing small molecule acceptor materials. Full article
(This article belongs to the Topic Theoretical, Quantum and Computational Chemistry)
Show Figures

Graphical abstract

13 pages, 2448 KiB  
Article
Study of Tunable Dielectric Permittivity of PBDB-T-2CL Polymer in Ternary Organic Blend Thin Films Using Spectroscopic Ellipsometry
by Laura Hrostea, Georgiana-Andreea Bulai, Vasile Tiron and Liviu Leontie
Polymers 2023, 15(18), 3771; https://doi.org/10.3390/polym15183771 - 14 Sep 2023
Cited by 3 | Viewed by 1576
Abstract
The ellipsometric analyses reported in this paper present a novelty by bringing an in-depth optical investigation of some ternary organic blends. This study focuses on the tunability and control of the relative permittivity of active layers by varying the weight ratio of blended [...] Read more.
The ellipsometric analyses reported in this paper present a novelty by bringing an in-depth optical investigation of some ternary organic blends. This study focuses on the tunability and control of the relative permittivity of active layers by varying the weight ratio of blended materials spin-coated as thin films. To investigate this, an extensive approach based on spectroscopic ellipsometry was conducted on ternary blend (D:A1:A2) thin films, involving a donor [D = chlorinated conjugated polymer (PBDB-T-2Cl)] and two acceptor materials [A1 = a non-fullerene (ITIC-F) and A2 = a fullerene (PCBM)]. The refractive index constitutes a key parameter that exposes insights into the feasibility of photovoltaic cells by predicting the trajectory of light as it transits the device. In this term, higher obtained refractive indexes support higher absorption coefficients. Notably, the dielectric constant can be rigorously tuned and finely calibrated by modest variations in the quantity of the third element, resulting in considerable modifications. Moreover, the inclusion of fullerene in blends, as the third element, results in a smooth topographical profile, further refining the surface of the film. From an electrical point of view, the ternary blends outperform the polymer thin films. The synergistic interaction of constituents emphasizes their potential to enhance solar conversion devices. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

10 pages, 2924 KiB  
Communication
Charge Carrier Dynamics in Non-Fullerene Acceptor-Based Organic Solar Cells: Investigating the Influence of Processing Additives Using Transient Absorption Spectroscopy
by Gayoung Ham, Damin Lee, Changwoo Park and Hyojung Cha
Materials 2023, 16(16), 5712; https://doi.org/10.3390/ma16165712 - 21 Aug 2023
Cited by 5 | Viewed by 2803
Abstract
In this study, we present a comprehensive investigation into the charge generation mechanism in bulk-heterojunction organic solar cells employing non-fullerene acceptors (NFAs) both with and without the presence of processing additives. While photovoltaic devices based on Y6 or BTP-eC9 have shown remarkable power [...] Read more.
In this study, we present a comprehensive investigation into the charge generation mechanism in bulk-heterojunction organic solar cells employing non-fullerene acceptors (NFAs) both with and without the presence of processing additives. While photovoltaic devices based on Y6 or BTP-eC9 have shown remarkable power conversion efficiencies, the underlying charge generation mechanism in polymer:NFA blends remains poorly understood. To shed light on this, we employ transient absorption (TA) spectroscopy to elucidate the charge transfer pathway within a blend of the donor polymer PM6 and NFAs. Interestingly, the charge carrier lifetimes of neat Y6 and BTP-eC9 are comparable, both reaching up to 20 ns. However, the PM6:BTP-eC9 blend exhibits substantially higher charge carrier generation and a longer carrier lifetime compared to PM6:Y6 blend films, leading to superior performance. By comparing TA data obtained from PM6:Y6 or PM6:BTP-eC9 blend films with and without processing additives, we observe significantly enhanced charge carrier generation and prolonged charge carrier lifetimes in the presence of these additives. These findings underscore the potential of manipulating excited species as a promising avenue for further enhancing the performance of organic solar cells. Moreover, this understanding contributes to the advancement of NFA-based systems and the optimization of charge transfer processes in polymer:NFA blends. Full article
Show Figures

Figure 1

16 pages, 6080 KiB  
Article
Increasing Charge Carrier Mobility through Modifications of Terminal Groups of Y6: A Theoretical Study
by Yunjie Xiang, Chunlin Xu and Shaohui Zheng
Int. J. Mol. Sci. 2023, 24(10), 8610; https://doi.org/10.3390/ijms24108610 - 11 May 2023
Cited by 9 | Viewed by 2609
Abstract
The applications of non-fullerene acceptor Y6 with a new type of A1-DA2D-A1 framework and its derivatives have increased the power conversion efficiency (PCE) of organic solar cells (OSCs) up to 19%. Researchers have made various modifications of the [...] Read more.
The applications of non-fullerene acceptor Y6 with a new type of A1-DA2D-A1 framework and its derivatives have increased the power conversion efficiency (PCE) of organic solar cells (OSCs) up to 19%. Researchers have made various modifications of the donor unit, central/terminal acceptor unit, and side alkyl chains of Y6 to study the influences on the photovoltaic properties of OSCs based on them. However, up to now, the effect of changes of terminal acceptor parts of Y6 on the photovoltaic properties is not very clear. In the present work, we have designed four new acceptors—Y6-NO2, Y6-IN, Y6-ERHD, and Y6-CAO—with different terminal groups, which possess diverse electron-withdrawing ability. Computed results show that with the enhanced electron-withdrawing ability of the terminal group, the fundamental gaps become lower; thus, the wavelengths of the main absorption peaks of UV-Vis spectra red-shifts and total oscillator strength increase. Simultaneously, the electron mobility of Y6-NO2, Y6-IN, and Y6-CAO is about six, four, and four times faster than that of Y6, respectively. Overall, Y6-NO2 could be a potential NFA because of its longer intramolecular charge-transfer distance, stronger dipole moment, higher averaged ESP, enhanced spectrum, and faster electron mobility. This work provides a guideline for the future research on modification of Y6. Full article
(This article belongs to the Collection State-of-the-Art Materials Science in China)
Show Figures

Figure 1

12 pages, 3492 KiB  
Review
Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency
by Boudia Mohamed El Amine, Yi Zhou, Hongying Li, Qiuwang Wang, Jun Xi and Cunlu Zhao
Energies 2023, 16(9), 3895; https://doi.org/10.3390/en16093895 - 4 May 2023
Cited by 29 | Viewed by 6852
Abstract
Single-junction organic solar cells have reached a power conversion efficiency of 20% with narrow bandgap non-fullerene electron acceptor materials such as Y6, as well as with large band gap electron donor materials and their derivatives. The power conversion efficiency improvement of single-junction organic [...] Read more.
Single-junction organic solar cells have reached a power conversion efficiency of 20% with narrow bandgap non-fullerene electron acceptor materials such as Y6, as well as with large band gap electron donor materials and their derivatives. The power conversion efficiency improvement of single-junction organic solar cells is a result of highly efficient light harvesting in the near-infrared light range and reduced energy losses with the most promising active layer layout currently available, Bulk-Heterojunction. Ternary blending is known to be the most advanced strategy to construct Bulk-Heterojunction structures in organic solar cells at present. In this review, we examine different devices based on Bulk-Heterojunction structures with efficient electron donors and acceptors. Then, we review the performance of binary and ternary organic solar cells with high power conversion efficiency, in conjunction with different anode and cathode interfaces used in recent studies of high-power conversion efficiency. Finally, we present perspectives on the future development of single-junction organic solar cells. Full article
(This article belongs to the Special Issue Advances in Solar Photovoltaic Power Generation)
Show Figures

Figure 1

11 pages, 2036 KiB  
Article
Enhancement of Power Conversion Efficiency of Non-Fullerene Organic Solar Cells Using Green Synthesized Au–Ag Nanoparticles
by Victor Okai, Habibat Faith Chahul and Rafi Shikler
Polymers 2023, 15(6), 1482; https://doi.org/10.3390/polym15061482 - 16 Mar 2023
Cited by 3 | Viewed by 2445
Abstract
Organic-based photovoltaics are excellent candidates for renewable energy alternatives to fossil fuels due to their low weight, low manufacturing cost, and, in recent years, high efficiency, which is now above 18%. However, one cannot ignore the environmental price of the fabrication procedure due [...] Read more.
Organic-based photovoltaics are excellent candidates for renewable energy alternatives to fossil fuels due to their low weight, low manufacturing cost, and, in recent years, high efficiency, which is now above 18%. However, one cannot ignore the environmental price of the fabrication procedure due to the usage of toxic solvents and high-energy input equipment. In this work, we report on the enhancement of the power conversion efficiency non-fullerene organic solar cells by incorporating green synthesised Au–Ag nanoparticles, using onion bulb extract, into the hole transport layer poly (3,4-ethylene dioxythiophene)-poly (styrene sulfonate) (PEDOT: PSS) of Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3 fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]: 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (PTB7-Th: ITIC) bulk-heterojunction organic solar cells. Red onion has been reported to contain quercetin, which serves as a capping agent that covers bare metal nanoparticles, thus reducing exciton quenching. We found that the optimized volume ratio of NPs to PEDOT: PSS is 0.06:1. At this ratio, a 24.7% enhancement in power conversion efficiency of the cell is observed, corresponding to a 9.11% power conversion efficiency (PCE). This enhancement is due to an increase in the generated photocurrent and a decrease in the serial resistance and recombination, as extracted from the fitting of the experimental data to a non-ideal single diode solar cell model. It is expected that the same procedure can be applied to other non-fullerene acceptor-based organic solar cells, leading to an even higher efficiency with minimal effect on the environment. Full article
(This article belongs to the Special Issue Organic Polymers and Their Applications)
Show Figures

Figure 1

60 pages, 9499 KiB  
Review
A Review on Fullerene Derivatives with Reduced Electron Affinity as Acceptor Materials for Organic Solar Cells
by Alexander V. Mumyatov and Pavel A. Troshin
Energies 2023, 16(4), 1924; https://doi.org/10.3390/en16041924 - 15 Feb 2023
Cited by 27 | Viewed by 5729
Abstract
Organic solar cells (OSCs) represent a promising emerging photovoltaic technology offering such benefits as light weight, mechanical flexibility, semitransparency, environmental friendliness and aesthetic design of solar panels. Furthermore, organic solar cells can be produced using scalable and high-throughput solution-based printing and coating technologies, [...] Read more.
Organic solar cells (OSCs) represent a promising emerging photovoltaic technology offering such benefits as light weight, mechanical flexibility, semitransparency, environmental friendliness and aesthetic design of solar panels. Furthermore, organic solar cells can be produced using scalable and high-throughput solution-based printing and coating technologies, which are expected to lead to very low product costs. Fullerene derivatives have been used as acceptor materials in virtually all efficient organic solar cells for more than two decades, following the demonstration of the first proof-of-concept devices in the middle of 1990s. Still, the power conversion efficiencies of fullerene-based organic solar cells became stuck at around 12% due to the suboptimal optoelectronic properties of conventional fullerene acceptors. Therefore, the latest efficiency records (>18%) for organic solar cells were set using different types of non-fullerene acceptor (NFA) materials with tailorable properties. However, NFA materials appeared to be very sensitive to light, thus impairing the operational stability of OSCs. On the contrary, there is growing evidence that rationally designed fullerene-based acceptors enhance the photostability of conjugated polymers and also NFAs, when used in ternary blends. Hence, a renaissance of fullerene-based materials is currently expected in the context of their use in multicomponent organic solar cells (e.g., as stabilizers) and also lead halide perovskite solar cells, where they play an important role of electron transport materials. The success in both of these applications requires the tunability of optoelectronic characteristics of fullerene derivatives. In particular, electron affinity of the fullerene cage has to be reduced in many cases to match the energy levels of other absorber material(s). Herein, we present a systematic review of different strategies implemented to reduce the acceptor strength of the fullerene derivatives and the results of their performance evaluation in OSCs with model conjugated polymers. Particular attention is paid to correlations between the chemical structure of organic addends and their influence on the electronic properties of the fullerene core. We believe this review would be valuable to researchers working on the rational design of new fullerene-based materials with tailored properties for photovoltaic and other electronic applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop