Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (412)

Search Parameters:
Keywords = non-directional motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 16756 KiB  
Article
Research on the Influence of Hydrofoil Propulsive Parameters on Propulsion Efficiency
by Meng Cui, Zhihao Liu, Fei Lu, Jiaye Gong and Zheng Fu
J. Mar. Sci. Eng. 2025, 13(8), 1431; https://doi.org/10.3390/jmse13081431 - 27 Jul 2025
Viewed by 104
Abstract
Oscillating hydrofoils can be used to simplify the study of the swinging caudal fin propulsive mode of fish, where the motion parameters have a direct impact on the hydrodynamic performance and propulsive efficiency. In this study, numerical calculations were carried out on two-dimensional [...] Read more.
Oscillating hydrofoils can be used to simplify the study of the swinging caudal fin propulsive mode of fish, where the motion parameters have a direct impact on the hydrodynamic performance and propulsive efficiency. In this study, numerical calculations were carried out on two-dimensional hydrofoils for sinusoidal and non-sinusoidal heave oscillation, and the numerical results of sinusoidal hydrofoils were compared with the experimental values, which were in good agreement. An analysis of how different motion parameters of the sinusoidal hydrofoil affect the hydrodynamic performance was conducted, and the recommended operating condition range was given in combination with the flow field analysis. A unique non-sinusoidal curve was defined, which can enable the motion to enter the crest and trough earlier or later. The parameters for controlling the degree of non-sinusoidal were also defined. A detailed discussion was carried out on how the non-sinusoidal parameters affect the hydrodynamic performance and the change in the flow field. The corresponding recommended working conditions and application scope were given. Further studies can reveal the propulsive mechanism of the swinging caudal fin and provide a reference for the engineering and design of the next generation of bionic fish. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

33 pages, 403 KiB  
Article
Some Further Insight into the Sturm–Liouville Theory
by Salvatore De Gregorio, Lamberto Lamberti and Paolo De Gregorio
Mathematics 2025, 13(15), 2405; https://doi.org/10.3390/math13152405 - 26 Jul 2025
Viewed by 111
Abstract
Some classical texts on the Sturm–Liouville equation (p(x)y)q(x)y+λρ(x)y=0 are revised to highlight further properties of its solutions. Often, in the [...] Read more.
Some classical texts on the Sturm–Liouville equation (p(x)y)q(x)y+λρ(x)y=0 are revised to highlight further properties of its solutions. Often, in the treatment of the ensuing integral equations, ρ=const is assumed (and, further, ρ=1). Instead, here we preserve ρ(x) and make a simple change only of the independent variable that reduces the Sturm–Liouville equation to yq(x)y+λρ(x)y=0. We show that many results are identical with those with λρq=const. This is true in particular for the mean value of the oscillations and for the analog of the Riemann–Lebesgue Theorem. From a mechanical point of view, what is now the total energy is not a constant of the motion, and nevertheless, the equipartition of the energy is still verified and, at least approximately, it does so also for a class of complex λ. We provide here many detailed properties of the solutions of the above equation, with ρ=ρ(x). The conclusion, as we may easily infer, is that, for large enough λ, locally, the solutions are trigonometric functions. We give the proof for the closure of the set of solutions through the Phragmén–Lindelöf Theorem, and show the separate dependence of the solutions from the real and imaginary components of λ. The particular case of q(x)=αρ(x) is also considered. A direct proof of the uniform convergence of the Fourier series is given, with a statement identical to the classical theorem. Finally, the proof of J. von Neumann of the completeness of the Laguerre and Hermite polynomials in non-compact sets is revisited, without referring to generating functions and to the Weierstrass Theorem for compact sets. The possibility of the existence of a general integral transform is then investigated. Full article
15 pages, 5142 KiB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 145
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

34 pages, 2191 KiB  
Review
Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Monitoring Treatment Response in Psychiatry: A Scoping Review
by Ciprian-Ionuț Bǎcilǎ, Gabriela Mariana Marcu, Bogdan Ioan Vintilă, Claudia Elena Anghel, Andrei Lomnasan, Monica Cornea and Andreea Maria Grama
J. Clin. Med. 2025, 14(15), 5197; https://doi.org/10.3390/jcm14155197 - 22 Jul 2025
Viewed by 256
Abstract
Background/Objective: Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique with growing relevance in psychiatry. Its ability to measure cortical hemodynamics positions it as a potential tool for monitoring neurofunctional changes related to treatment. However, the specific features and level of consistency [...] Read more.
Background/Objective: Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique with growing relevance in psychiatry. Its ability to measure cortical hemodynamics positions it as a potential tool for monitoring neurofunctional changes related to treatment. However, the specific features and level of consistency of its use in clinical psychiatric settings remain unclear. A scoping review was conducted under PRISMA-ScR guidelines to systematically map how fNIRS has been used in monitoring treatment response among individuals with psychiatric disorders. Methods: Forty-seven studies published between 2009 and 2025 were included based on predefined eligibility criteria. Data was extracted on publication trends, research design, sample characteristics, fNIRS paradigms, signal acquisition, preprocessing methods, and integration of clinical outcomes. Reported limitations and conflicts of interest were also analyzed. Results: The number of publications increased sharply after 2020, predominantly from Asia. Most studies used experimental designs, with 31.9% employing randomized controlled trials. Adults were the primary focus (93.6%), with verbal fluency tasks and DLPFC-targeted paradigms most common. Over half of the studies used high-density (>32-channel) systems. However, only 44.7% reported motion correction procedures, and 53.2% did not report activation direction. Clinical outcome linkage was explicitly stated in only 12.8% of studies. Conclusions: Despite growing clinical interest, with fNIRS showing promise as a non-invasive neuroimaging tool for monitoring psychiatric treatment response, the current evidence base is limited by methodological variability and inconsistent outcome integration. There is a rising need for the adoption of standardized protocols for both design and reporting. Future research should also include longitudinal studies and multimodal approaches to enhance validity and clinical relevance. Full article
(This article belongs to the Special Issue Neuro-Psychiatric Disorders: Updates on Diagnosis and Treatment)
Show Figures

Figure 1

14 pages, 926 KiB  
Article
The Effectiveness of Manual Therapy in the Cervical Spine and Diaphragm, in Combination with Breathing Re-Education Exercises, on the Range of Motion and Forward Head Posture in Patients with Non-Specific Chronic Neck Pain: A Randomized Controlled Trial
by Petros I. Tatsios, Eirini Grammatopoulou, Zacharias Dimitriadis and George A. Koumantakis
Healthcare 2025, 13(14), 1765; https://doi.org/10.3390/healthcare13141765 - 21 Jul 2025
Viewed by 368
Abstract
Background/Objectives: A randomized controlled trial (RCT) was designed to test the emerging role of respiratory mechanics as part of physiotherapy in patients with non-specific chronic neck pain (NSCNP). Methods: Ninety patients with NSCNP and symptom duration >3 months were randomly allocated to three [...] Read more.
Background/Objectives: A randomized controlled trial (RCT) was designed to test the emerging role of respiratory mechanics as part of physiotherapy in patients with non-specific chronic neck pain (NSCNP). Methods: Ninety patients with NSCNP and symptom duration >3 months were randomly allocated to three intervention groups of equal size, receiving either cervical spine (according to the Mulligan Concept) and diaphragm manual therapy plus breathing reeducation exercises (experimental group—EG1), cervical spine manual therapy plus sham diaphragmatic manual techniques (EG2), or conventional physiotherapy (control group—CG). The treatment period lasted one month (10 sessions) for all groups. The effect on the cervical spine range of motion (CS-ROM) and on the craniovertebral angle (CVA) was examined. Outcomes were collected before treatment (0/12), after treatment (1/12), and three months after the end of treatment (4/12). The main analysis comprised a two-way mixed ANOVA with a repeated measures factor (time) and a between-groups factor (group). Post hoc tests assessed the source of significant interactions detected. The significance level was set at p = 0.05. Results: No significant between-group baseline differences were identified. Increases in CS-ROM and in CVA were registered mainly post-treatment, with improvements maintained at follow-up for CS-ROM. EG1 significantly improved over CG in all movement directions except for flexion and over EG2 for extension only, at 1/12 and 4/12. All groups improved by the same amount for CVA. Conclusions: EG1, which included diaphragm manual therapy and breathing re-education exercises, registered the largest overall improvement over CG (except for flexion and CVA), and for extension over EG2. The interaction between respiratory mechanics and neck mobility may provide new therapeutic and assessment insights of patients with NSCNP. Full article
(This article belongs to the Special Issue Future Trends of Physical Activity in Health Promotion)
Show Figures

Figure 1

16 pages, 2403 KiB  
Article
Optimization Design of the Two-Stage Reduction Micro-Drive Mechanism Based on Particle Swarm Algorithm
by Na Zhang, Dongmei Wang, Kai Li, Kaiyang Wei, Hongyu Ge and Manzhi Yang
Micromachines 2025, 16(7), 826; https://doi.org/10.3390/mi16070826 - 19 Jul 2025
Viewed by 206
Abstract
Achieving high-precision positioning operations in a small space was of great significance in aerospace, biomedical, and other fields. In order to obtain smaller displacements with higher accuracy, this paper focused on the design, optimization, and performance analysis of a two-stage reduction micro-drive mechanism. [...] Read more.
Achieving high-precision positioning operations in a small space was of great significance in aerospace, biomedical, and other fields. In order to obtain smaller displacements with higher accuracy, this paper focused on the design, optimization, and performance analysis of a two-stage reduction micro-drive mechanism. Using the principle of lever and the principle of balanced additional force, a two-stage reduction micro-motion mechanism without parasitic motion and non-motion directional force was designed, and the structure optimization of the mechanism was completed by employing the particle swarm algorithm. A finite element analysis was conducted to assess the strength, dynamics, and kinematic properties of the mechanism. Experimental methods were also employed to analyze its dynamic and kinematic properties. The analysis results demonstrated that the mechanism met the design requirements in terms of strength and dynamic properties, with a maximum error of 9.02% and a maximum kinematic error of 0.0267 μm. The achieved reduction ratio was 24.73:1. These results indicated that the mechanism possesses excellent strength and dynamic performance, a large reduction ratio, high motion accuracy, and good linearity. This paper contributes significantly to the advancement of research in precision mechanical motion and micro-drive mechanisms. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 3rd Edition)
Show Figures

Figure 1

12 pages, 612 KiB  
Article
Treatment of Chronic Neck Pain with Transcranial Direct Current Stimulation: A Single-Blinded Randomized Clinical Trial
by Manuel Rodríguez-Huguet, Miguel Ángel Rosety-Rodríguez, Daniel Rodríguez-Almagro, Rocío Martín-Valero, Maria Jesus Vinolo-Gil, Jorge Bastos-Garcia and Jorge Góngora-Rodríguez
Biomedicines 2025, 13(7), 1746; https://doi.org/10.3390/biomedicines13071746 - 17 Jul 2025
Viewed by 427
Abstract
Background/Objectives: Neck pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, affecting the cervical region. It represents one of the leading causes of disability, with a prevalence of 30%. Transcranial direct current stimulation (tDCS) [...] Read more.
Background/Objectives: Neck pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, affecting the cervical region. It represents one of the leading causes of disability, with a prevalence of 30%. Transcranial direct current stimulation (tDCS) is a non-invasive electrotherapy technique that enables direct modulation of cortical excitability. It involves the application of a low-intensity electrical current to the scalp, targeting the central nervous system. The aim of this study was to analyze the effects of tDCS on functionality, pain, mobility, and pressure pain threshold in patients with chronic nonspecific neck pain. Methods: Thirty participants (18–60 years) were selected to receive ten treatment sessions over a four-week period using tDCS (CG = 15) or transcutaneous electrical nerve stimulation (TENS) (CG = 15), with the following various related variables evaluated: functionality (Neck Disability Index), pain intensity (NPRS), cervical range of motion (ROM), and pressure pain threshold (PPT). Assessments were conducted at baseline, post-treatment, one month, and three months after the intervention. Results: The within-group analysis revealed statistically significant improvements for both groups at post-treatment, one-month follow-up, and three-month follow-up. Conclusions: The comparison between groups shows favorable changes in the tDCS group for PPT measurements. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

21 pages, 899 KiB  
Article
Cervical Spine Range of Motion Reliability with Two Methods and Associations with Demographics, Forward Head Posture, and Respiratory Mechanics in Patients with Non-Specific Chronic Neck Pain
by Petros I. Tatsios, Eirini Grammatopoulou, Zacharias Dimitriadis, Irini Patsaki, George Gioftsos and George A. Koumantakis
J. Funct. Morphol. Kinesiol. 2025, 10(3), 269; https://doi.org/10.3390/jfmk10030269 - 16 Jul 2025
Cited by 1 | Viewed by 354
Abstract
Objectives: New smartphone-based methods for measuring cervical spine range of motion (CS-ROM) and posture are emerging. The purpose of this study was to assess the reliability and validity of three such methods in patients with non-specific chronic neck pain (NSCNP). Methods: [...] Read more.
Objectives: New smartphone-based methods for measuring cervical spine range of motion (CS-ROM) and posture are emerging. The purpose of this study was to assess the reliability and validity of three such methods in patients with non-specific chronic neck pain (NSCNP). Methods: The within-day test–retest reliability of CS-ROM and forward head posture (craniovertebral angle-CVA) was examined in 45 patients with NSCNP. CS-ROM was simultaneously measured with an accelerometer sensor (KFORCE Sens®) and a mobile phone device (iHandy and Compass apps), testing the accuracy of each and the parallel-forms reliability between the two methods. For construct validity, correlations of CS-ROM with demographics, lifestyle, and other cervical and thoracic spine biomechanically based measures were examined in 90 patients with NSCNP. Male–female differences were also explored. Results: Both methods were reliable, with measurements concurring between the two devices in all six movement directions (intraclass correlation coefficient/ICC = 0.90–0.99, standard error of the measurement/SEM = 0.54–3.09°). Male–female differences were only noted for two CS-ROM measures and CVA. Significant associations were documented: (a) between the six CS-ROM measures (R = 0.22–0.54, p < 0.05), (b) participants’ age with five out of six CS-ROM measures (R = 0.23–0.40, p < 0.05) and CVA (R = 0.21, p < 0.05), (c) CVA with two out of six CS-ROM measures (extension R = 0.29, p = 0.005 and left-side flexion R = 0.21, p < 0.05), body mass (R = −0.39, p < 0.001), body mass index (R = −0.52, p < 0.001), and chest wall expansion (R = 0.24–0.29, p < 0.05). Significantly lower forward head posture was noted in subjects with a high level of physical activity relative to those with a low level of physical activity. Conclusions: The reliability of both CS-ROM methods was excellent. Reductions in CS-ROM and increases in CVA were age-dependent in NSCNP. The significant relationship identified between CVA and CWE possibly signifies interconnections between NSCNP and the biomechanical aspect of dysfunctional breathing. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

15 pages, 684 KiB  
Article
Differences in Kinematic and Muscle Activity Between ACL Injury Risk and Healthy Players in Female Football: Influence of Change of Direction Amplitude in a Cross-Sectional Case–Control Study
by Loreto Ferrández-Laliena, Lucía Vicente-Pina, Rocío Sánchez-Rodríguez, Graham J Chapman, Jose Heredia-Jimenez, César Hidalgo-García, José Miguel Tricás-Moreno and María Orosia Lucha-López
Medicina 2025, 61(7), 1259; https://doi.org/10.3390/medicina61071259 - 11 Jul 2025
Viewed by 192
Abstract
Background and Objectives: Anterior cruciate ligament (ACL) injury rates remain high and have a significant impact on female football players. This study aims to evaluate knee kinematics and lower limb muscle activity in players at risk of ACL injury compared to healthy [...] Read more.
Background and Objectives: Anterior cruciate ligament (ACL) injury rates remain high and have a significant impact on female football players. This study aims to evaluate knee kinematics and lower limb muscle activity in players at risk of ACL injury compared to healthy players through three side-cutting tests. It also investigates how the amplitude of a change in direction influences stabilization parameters. Materials and Methods: A cross-sectional case–control study was conducted with 16 second division female futsal players (23.93 ± 5.16 years), divided into injured (n = 8) and healthy groups (n = 8). Injured players had a history of non-contact knee injury involving valgus collapse, without undergoing surgical intervention. Three change of direction tests, namely the Change of Direction and Acceleration Test (CODAT), Go Back (GOB) test, and Turn (TURN) test, were used for evaluation. The peak and range of knee joint angles and angular velocities across three planes, along with the average rectified and peak envelope EMG signals of the Biceps Femoris (BF), Semitendinosus (ST), Vastus Medialis (VM), and Lateral Gastrocnemius (LG), were recorded during the preparation and load phases. Group differences were analyzed using two-factor mixed-model ANOVA with pairwise comparisons. Statistical significance was set at p < 0.05. Results: Injured players demonstrated lower external tibial rotation angular velocity and a greater range of motion in tibial external rotation compared to healthy players. Additionally, the injured group showed significantly higher average rectified muscle activity in VM and LG both increased by 4% during the load phase. The CODAT and TURN tests elicited higher BF and VM muscle activity, compared to the GOB test. The TURN test also showed greater extension angular velocity in the sagittal plane. Conclusions: The results revealed differences in knee kinematics and muscle activity between players at risk of ACL injury and healthy players, influenced by the amplitude of directional changes. Players altered transverse plane mechanics and increased VM and LG activation during LOAD may reflect a dysfunctional motor pattern, while the greater sagittal plane angular velocity and VM and BF activation from the CODAT and the TURN test highlight their higher potential to replicate ACL injury mechanisms compared to the GOB test. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

18 pages, 15953 KiB  
Review
Development of Objective Measurements of Scratching as a Proxy of Atopic Dermatitis—A Review
by Cheuk-Yan Au, Neha Manazir, Huzhaorui Kang and Ali Asgar Saleem Bhagat
Sensors 2025, 25(14), 4316; https://doi.org/10.3390/s25144316 - 10 Jul 2025
Viewed by 434
Abstract
Eczema, or atopic dermatitis (AD), is a chronic inflammatory skin condition characterized by persistent itching and scratching, significantly impacting patients’ quality of life. Effective monitoring of scratching behaviour is crucial for assessing disease severity, treatment efficacy, and understanding the relationship between itch and [...] Read more.
Eczema, or atopic dermatitis (AD), is a chronic inflammatory skin condition characterized by persistent itching and scratching, significantly impacting patients’ quality of life. Effective monitoring of scratching behaviour is crucial for assessing disease severity, treatment efficacy, and understanding the relationship between itch and sleep disturbances. This review explores current technological approaches for detecting and monitoring scratching and itching in AD patients, categorising them into contact-based and non-contact-based methods. Contact-based methods primarily involve wearable sensors, such as accelerometers, electromyography (EMG), and piezoelectric sensors, which track limb movements and muscle activity associated with scratching. Non-contact methods include video-based motion tracking, thermal imaging, and acoustic analysis, commonly employed in sleep clinics and controlled environments to assess nocturnal scratching. Furthermore, emerging artificial intelligence (AI)-driven approaches leveraging machine learning for automated scratch detection are discussed. The advantages, limitations, and validation challenges of these technologies, including accuracy, user comfort, data privacy, and real-world applicability, are critically analysed. Finally, we outline future research directions, emphasizing the integration of multimodal monitoring, real-time data analysis, and patient-centric wearable solutions to improve disease management. This review serves as a comprehensive resource for clinicians, researchers, and technology developers seeking to advance objective itch and scratch monitoring in AD patients. Full article
Show Figures

Figure 1

20 pages, 1816 KiB  
Review
Recent Achievements of Epicardial Patch Electronics Using Adhesive and Conductive Hydrogels
by Su Hyeon Lee, Jong Won Lee, Daehyeon Kim, Gi Doo Cha and Sung-Hyuk Sunwoo
Gels 2025, 11(7), 530; https://doi.org/10.3390/gels11070530 - 9 Jul 2025
Viewed by 392
Abstract
Implantable cardiac devices are critical in improving patients’ quality of life through precise and continuous interaction between the device and pathological cardiac tissue. Due to the inherently rigid nature of conventional devices, several complications arise when interacting with soft cardiac tissue, caused by [...] Read more.
Implantable cardiac devices are critical in improving patients’ quality of life through precise and continuous interaction between the device and pathological cardiac tissue. Due to the inherently rigid nature of conventional devices, several complications arise when interacting with soft cardiac tissue, caused by a mechanical mismatch between the device and myocardium. This leads to the excessive formation of fibrous tissue around the implanted device, ultimately compromising both device functionality and tissue health. To address these challenges, flexible electronics based on polymers and elastomers significantly softer than conventional rigid metals and silicon have been explored. The epicardial approach enables the device to conform to the curved myocardial surface and deform synchronously with cardiac motion, thereby improving mechanical compatibility. However, modulus mismatches between soft polymers and cardiac tissue can still lead to mechanical instability and non-uniform adhesion, potentially affecting long-term performance. This review comprehensively summarizes recent research advancements in epicardial patch electronics based on bioadhesive and conductive hydrogels. We emphasize current research directions, highlighting the potential of hydrogels in epicardial electronics applications. Critical discussion includes recent trends, ongoing challenges, and emerging strategies aimed at improving the properties of hydrogel-based epicardial patches. Future research directions to facilitate clinical translation are also outlined. Full article
(This article belongs to the Special Issue Novel Gels for Biomedical Applications)
Show Figures

Figure 1

27 pages, 9584 KiB  
Article
Dynamic Response of a Floating Dual Vertical-Axis Tidal Turbine System with Taut and Catenary Mooring Under Extreme Environmental Conditions in Non-Operating Mode
by Yunjun Lee, Jinsoon Park and Woo Chul Chung
J. Mar. Sci. Eng. 2025, 13(7), 1315; https://doi.org/10.3390/jmse13071315 - 8 Jul 2025
Viewed by 235
Abstract
This study analyzes the dynamic response of a floating dual vertical-axis tidal turbine platform under extreme environmental loads, focusing on two different mooring systems as follows: taut and catenary. The analysis assumes a non-operational turbine state where power generation is stopped, and the [...] Read more.
This study analyzes the dynamic response of a floating dual vertical-axis tidal turbine platform under extreme environmental loads, focusing on two different mooring systems as follows: taut and catenary. The analysis assumes a non-operational turbine state where power generation is stopped, and the vertical turbines are lifted for structural protection. Using time-domain simulations via OrcaFlex 11.4, the floating platform’s motion and mooring line effective tensions are evaluated under high waves, strong wind, and current loads. The results reveal that sway and heave motions are significantly influenced by wave excitation, with the catenary system exhibiting larger responses due to mooring system features, while the taut system experiences higher mooring effective tension but shows more restrained motion. Notably, in the roll direction, both systems exhibit peak frequencies unrelated to the wave spectrum, attributed instead to resonance with the system’s natural frequencies—0.12438 Hz for taut and 0.07332 Hz for catenary. Additionally, the failure scenario of ML02 (Mooring Line 02) and the application of dynamic power cables to the floating platform are analyzed. The results demonstrate that under non-operational and extreme load conditions, mooring system type plays a main role in determining platform stability and structural safety. This comparative analysis offers valuable insights for selecting and designing mooring configurations optimized for reliability in extreme environmental conditions. Full article
(This article belongs to the Special Issue Numerical Analysis and Modeling of Floating Structures)
Show Figures

Figure 1

13 pages, 2884 KiB  
Article
Entropy-Based Human Activity Measure Using FMCW Radar
by Hak-Hoon Lee and Hyun-Chool Shin
Entropy 2025, 27(7), 720; https://doi.org/10.3390/e27070720 - 3 Jul 2025
Viewed by 290
Abstract
Existing activity measurement methods, such as gas analyzers, activity trackers, and camera-based systems, have limitations in accuracy, convenience, and privacy. To address these issues, this study proposes an improved activity estimation algorithm using a 60 GHz Frequency-Modulated Continuous-Wave (FMCW) radar. Unlike conventional methods [...] Read more.
Existing activity measurement methods, such as gas analyzers, activity trackers, and camera-based systems, have limitations in accuracy, convenience, and privacy. To address these issues, this study proposes an improved activity estimation algorithm using a 60 GHz Frequency-Modulated Continuous-Wave (FMCW) radar. Unlike conventional methods that rely solely on distance variations, the proposed method incorporates both distance and velocity information, enhancing measurement accuracy. The algorithm quantifies activity levels using Shannon entropy to reflect the spatial–temporal variation in range signatures. The proposed method was validated through experiments comparing estimated activity levels with motion sensor-based ground truth data. The results demonstrate that the proposed approach significantly improves accuracy, achieving a lower Root Mean Square Error (RMSE) and higher correlation with ground truth values than conventional methods. This study highlights the potential of FMCW radar for non-contact, unrestricted activity monitoring and suggests future research directions using multi-channel radar systems for enhanced motion analysis. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

15 pages, 5288 KiB  
Article
A Mesoscale Particle Method for Simulation of Boundary Slip Phenomena in Fluid Systems
by Alexander E. Filippov, Mikhail Popov and Valentin L. Popov
Computation 2025, 13(7), 155; https://doi.org/10.3390/computation13070155 - 1 Jul 2025
Viewed by 297
Abstract
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including [...] Read more.
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including phase changes, plastic deformation and flow, interface phenomena, turbulence, etc. The physical system under study comprised two atomically flat surfaces composed of particles of different sizes and separated by a model fluid formed by moving particles with repulsing cores of different sizes and long-range attraction. The resulting simulation method was tested under a variety of particle densities and conditions. It was shown that the particles can enter different (solid, liquid, and gaseous) states, depending on the effective temperature (kinetic energy caused by surface motion and random noise generated by spatially distributed Langevin sources). The local order parameter and formation of solid domains was studied for systems with varying density. Heating of the region close to one of the plates could change the density of the liquid in its proximity and resulted in chaotization (turbulence); it also dramatically changed the system configuration, the direction of the average flow, and reduced the effective friction force. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

13 pages, 2453 KiB  
Article
Research on the Impact of Shot Selection on Neuromuscular Control Strategies During Basketball Shooting
by Qizhao Zhou, Shiguang Wu, Jiashun Zhang, Zhengye Pan, Ziye Kang and Yunchao Ma
Sensors 2025, 25(13), 4104; https://doi.org/10.3390/s25134104 - 30 Jun 2025
Viewed by 354
Abstract
Objective: This study aims to investigate the effect of shot selection on the muscle coordination characteristics during basketball shooting. Methods: A three-dimensional motion capture system, force platform, and wireless surface electromyography (sEMG) were used to simultaneously collect shooting data from 14 elite basketball [...] Read more.
Objective: This study aims to investigate the effect of shot selection on the muscle coordination characteristics during basketball shooting. Methods: A three-dimensional motion capture system, force platform, and wireless surface electromyography (sEMG) were used to simultaneously collect shooting data from 14 elite basketball players. An inverse mapping model of sEMG signals and spinal α-motor neuron pool activity was developed based on the Debra muscle segment distribution theory. Non-negative matrix factorization (NMF) and K-means clustering were used to extract muscle coordination features. Results: (1) Significant differences in spinal segment activation timing and amplitude were observed between stationary and jump shots at different distances. In close-range stationary shots, the C5-S3 segments showed higher activation during the TP phase and lower activation during the RP phase. For mid-range shots, the C6-S3 segments exhibited greater activation during the TP phase. In long-range shots, the C7-S3 segments showed higher activation during the TP phase, whereas the L3-S3 segments showed lower activation during the RP phase (p < 0.01). (2) The spatiotemporal structure of muscle coordination modules differed significantly between stationary and jump shots. In terms of spatiotemporal structure, the second and third coordination groups showed stronger activation during the RP phase (p < 0.01). Significant differences in muscle activation levels were also observed between the coordination modules within each group in the spatial structure. Conclusion: Shot selection plays a significant role in shaping neuromuscular control strategies during basketball shooting. Targeted training should focus on addressing the athlete’s specific shooting weaknesses. For stationary shots, the emphasis should be on enhancing lower limb stability, while for jump shots, attention should be directed toward improving core stability and upper limb coordination. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop